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Abstract
Alterations in speech and voice are among the earliest symptoms of Parkinson’s Disease (PD). Nevertheless, the rich
information carried by patients’ speech and voice is only partially used for diagnosis and clinical decision-making that is
currently based on holistic ratings of speech intelligibility. An accurate diagnosis could be supported by the application of
fully automated analytic methods and machine learning techniques on speech recordings. However, most of the proposed
procedures were designed for highly functional but “artificial” vocal paradigms such as sustained phonation and consider all
the considerable amount of features that can be extracted using automatic systems. In this work, we perform PD detection
trials using features extracted from connected speech rather than isolated speech units. Moreover, we support the adopted
machine learning-based methods with linguistic considerations so as to reduce the number of features to some meaningful
ones. The main findings highlight that this procedure allows more accurate, economical and, most importantly, interpretable
discrimination.

1. Introduction
1 Parkinson’s Disease (PD) is the most common move-
ment disorder and the second most common neurode-
generative disorder worldwide after Alzheimer disease.
It affects more than 2-3% of the population aged 65 and
over [1, 2].

Caused by the deterioration or loss of dopaminergic
neurons in the substantia nigra of basal ganglia, PD is
generally diagnosed based on clinical criteria, by using a
medical individual’s history and a physical/neurological
exam. The loss of dopamine in the central nervous sys-
tem, along with the anatomical and physiological changes
related to the disease, has an impact on laryngeal, res-
piratory and articulatory functions of Persons with PD
(PwPD). Alterations in speech and voice are in fact among
the earliest symptoms of PD, which results in a motor
speech disorder called hypokinetic dysarthria [3, 4]. Nev-
ertheless, the rich information carried by patients’ speech
and voice is only partially used for diagnosis and clinical
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decision-making, since the Unified Parkinson’s Disease
Rating Scale (UPDRS), a standardized rating tool used
to assess the severity and progression of the pathology,
only presents one item (item 3.1) that concerns the eval-
uation of speech [5]. This item is based on the clinician’s
perception and mostly considers speech in terms of in-
telligibility. A deeper understanding of speech and voice
phenomena by advanced data analytics methods could
be therefore very useful in both the diagnostic phase and
in the monitoring of therapy response in PwPD.

2. Speech in Parkinson’s Disease
PD-related dysarthria, caused by poor activation and co-
ordination of the muscles involved in speech production,
includes a range of alterations, extensively described in
experimental studies on different languages [6].

As for the voice quality, a breathy, husky-semiwhisper
and hoarse voice is often reported in PwPD, accompanied
by vocal tremor, an increase in nasality, reduced voice
intensity and constant loudness [7]. Voice quality spec-
trum was also studied using a deep learning approach
applied to differential phonological posterior features
for the characterization of pathological PD speech, col-
lected through different tasks and compared to healthy
non-modal phonation. [8].

At the segmental level, the decreased amplitude of
motility of lips, tongue, and jaw provokes imprecision
in the production of consonantal sounds, with the so-
called spirantization phenomenon or occlusive weaken-
ing [9, 10]. A reduction in the vowel space area and an im-
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paired and less distinctive formant generation in speech
of PwPD have also been described, both in sustained pro-
longation of single vowels [11] and in continuous speech,
such as sentence repetition [12] or reading passage [13].
The centralization of formant values, measured by the
Vowel Articulation Index (VAI), was also proposed as a
potential early marker of PD, especially when observed
in spontaneous speech [14].

As for the suprasegmental aspects, PwPD often report
a significantly narrower tonal range (monopitch) or an
abnormal pitch variability, along with a compromised
ability to consciously manipulate intonation [15, 4]. Ar-
ticulation and speech rate are also altered in PD, although
previous findings do not highlight a uniform pattern
of variation in the speech of PwPD: in some studies a
reduction in speech rate was observed in PD patients
[16], while some reported the opposite effect [17, 18] and
other found no intergroup differences between patho-
logical and healthy speech [19]. Furthermore, different
rhythmic metrics were used to describe the alteration
of rhythm in PD speech, as part of a more “general dys-
rhythmia” [20]. In recent studies on Italian PD patients,
the percentage of vocalic intervals (%V) was found to
be effective in characterizing pathological speech, when
compared to that of healthy individuals, both in read and
spontaneous conditions and even at a very early stage of
the disease [21, 22].

In the last decades, in line with the growing inter-
est and efforts in the identification of reliable linguis-
tic and acoustic biomarkers of PD, some studies demon-
strated that an accurate diagnosis could be supported by
the application of fully automated analytic methods and
machine learning techniques on speech recordings [23].
However, most of the proposed procedures were designed
for highly functional (but “artificial”) vocal paradigms
such as sustained phonation, diadochokinetic tasks, syl-
lable repetition, short sentences [24, 25, 26, 27, 28, 29].
These kinds of elicitation techniques indeed provide
highly controlled signals, but such control affects phona-
tion and may even mask features that may emerge in
less controlled semi(spontaneous) connected speech. In
addition, previous studies often achieve high levels of
accuracy in the detection of PD speech by taking into
account a very large number of features, and the clas-
sification focuses on computational aspects rather than
linguistic ones [30].

In this contribution, we address the following issues:

• investigate the role of acoustic features, usually
overlooked or, however, not always or directly
taken into account by specialists for PD diagnosis;

• consider patterns that emerge from connected
(read) speech rather than isolated speech units
(phones, syllables, words) productions;

• support machine learning-based methods with

linguistic considerations so as to reduce the size
of the big sets of features automatically extracted
to some meaningful ones and provide an effective
linguistic interpretation of the results.

3. Method

3.1. Data and Annotation
The study has been conducted on data from the Italian
Parkinson’s Voice and Speech corpus [31, 32], which con-
sists of speech data collected through different speech
production tasks from three groups of Italian (Apulian)
speakers: PD patients, age-matched healthy control (HC)
speakers and younger HC speakers.

In particular, we considered a subset of this corpus,
consisting in 25 speech samples elicited through a reading
task2 from 15 PD patients and 10 age-matched healthy
speakers. Subjects in the PD group are classified by the
specialists as <4 on the modified Hoehn and Yahr scale,
which stands for a non-severe stage of the severity of
their disease. The patients’ speech ability is evaluated
following the tips provided in section 3.1 (eloquence) of
the Unified Parkinson’s Disease Rating Scale (UPDRS)
as minimally/slightly impaired (maximum score is 4 =
severe impairment). Demographic and clinical features of
patients with PD and HC speakers are resumed in Table
1.

HC (n=10) PD (n=15)
Age (m±SD) 68±6 64±9
Sex (M/F) 4/6 11/4

H&Y - <4
UPDRS (Item 3.1) - 1.07±1.18

Table 1
Biographical (Sex and Age) characteristics of the PD and HC
speakers and clinical data (H&Y: Hoehn & Yahr scale; UPDRS:
Unified Parkinson’s Disease Rating Scale) of PD speakers [32].

The considered dataset had already been the object
of a spectroacoustic analysis in a previous study [22]
and the acoustic signal had been therefore manually seg-
mented and annotated into vowel (V) and consonantal
(C) intervals (see Figure 1). Main descriptive statistics of
the dataset are reported in Table 2.

3.2. Analysis
In this study, we intend to use the described continuous
speech data for PD detection based on a reduced set of
interpretable features of the acoustic signal. To this aim,

2The reading task was based on a phonemically balanced text
[31].



Figure 1: Spectrogram and annotation of the utterance “era
sul letto”, “(Dad) was on the bed”. C: consonantal interval, V:
vowel interval, sp: silent pause.

Tot HC PD
Total duration (s) 1765 614 1151

Duration of
speech portions (s) 1206 455 751

Duration of
samples (s) (m±SD) 71±17 61±4 77±20

n. of V intervals 4664 1761 2903
n. of CV intervals 5260 2107 3153

n. of Phonetic Chains 910 312 598

Table 2
Descriptive statistics of the considered subset.

three trials of PD detection were conducted, each time
considering a different basic unit, namely:

• Vowels (V) - in previous studies, the percentage of
vocalic interval in the speech signal was demon-
strated to be informative in PD detection. So we
investigate whether vowels alone contain enough
information for the detection task;

• Consonant and Vowels (CV) - we extend the con-
text of vowels to the previous consonants, obtain-
ing a wider feature extraction window to evaluate
the influence of consonants preceding vowels on
PD detection;

• Phonetic Chains (PC) - lastly we employ the pho-
netic chain, namely the sequence of vowels and
consonants between two silent pauses. On the
one hand, such units provide the most compre-
hensive automatically detectable window for fea-
ture extraction. On the other hand, being a larger
unit of speech production, it should provide far
enough features to discriminate speaker status.

Based on the OpenSmile toolkit [33], we selected the
eGeMAPSv02 [34] as the basic feature set, and then inves-
tigated which features could be considered as the most
relevant for discrimination considering previous liter-
ature [35] and inspection of the data with the Orange
software [36].

Then, the impact of the selected features was evalu-
ated by employing two unsupervised machine-learning

techniques:

• The K-Means2[37] a vector-quantization method
which divides n objects in k clusters based on their
mean distance.

• Hierarchical Agglomerative Clustering
(HAC)2 [38] is a greedy technique that aims
at grouping (or splitting) clusters based on a
similarity measure. The final output is a clusters
hierarchy which could be divided based on the
number of desired clusters.

These simple yet efficient techniques were employed to
obtain explainable and interpretable results.

The PD detection trials were conducted considering
the following sets of features:

• a full feature set, i.e. the eGeMAPSv02 complete
feature set (88 features) [34] plus the speakers’
sex.

• a subset feature set, i.e. 18 features from the
eGeMAPSv02 feature set, plus the sex (see Ap-
pendix A).

In both cases, features were normalized at zero mean
and unitary variance.

4. Results
The inspection conducted with the Orange software high-
lighted that the most relevant features for discriminating
between PwPD and HC speakers are those concerning
the spectral distribution (i.e., slope, alpha ratio, Ham-
marberg index), followed by those concerning energy
and amplitude (i.e. loudness, shimmer), and frequency
(MFCC). The observed features were included in the sub-
set employed for the discrimination trials (as reported
in Appendix A. Also, the table in Appendix C shows the
Mean values and Standard Deviation of these features in
PC units per speaker).

Results show that classification based on the Phonetic
Chain (see Figure 4) outperforms by far classifiers based
on both V and CV. On the one hand, the HAC classifier
with the full feature set reaches nearly 99% of true posi-
tive detection and 85% of true negative detection. On the
other hand, the K-means performs at its best with the
feature subset with an 89% of true positive and a 72% of
true negative. This means that by reducing the number
of features of 75% with respect to the original feature
set, the K-means has a 10% reduction in true positive (i.e.,
PD) detection and a 13% reduction in true negative (i.e.,
HC) detection, with respect to HAC on the full feature
set.

The vowels-based setting (see Figure 2) shows better
performances with the feature subset with both K-means



Figure 2: V Clustering.

Figure 3: CV Clustering.

and HAC. However, the True negative detection rate is
near 60% in the best case, while the true positive rate is
at 80% in the best case.

Finally the CV setting (see Figure 3) shows perfor-
mances which are comparable to a coin toss in most of
cases. Only the K-means based on feature subset reaches
a true positive detection rate of 81%, with a true negative
detection rate of 54%.

In light of these results, we decided to also investi-
gate the correlation between the considered features and

Figure 4: PC Clustering.

the intelligibility score (from the above-described UP-
DRS) given by the specialists. As illustrated in figure 5,
no strong correlation emerges between UPDRS scores
and the analysed acoustic features with the exception of
slopeV0-500 that negatively correlates with the special-
ists’ ratings (see Appendix B for the correlation matrices
concerning the features extracted from V and VC inter-
vals, Figure 7).

Figure 5: Feature correlation considering PC units.



5. Discussion and Conclusion
The present study provides relevant findings both for the
development of PD detection systems and the analysis
of Parkinsonian speech characteristics by integrating
computational methods with domain-specific linguistic
knowledge.

The correlation data between the UPDRS ratings con-
cerning PD speakers’ speech ability and the acoustic
features automatically extracted from the speech signal
corroborate the observation that the specialists’ holistic
assessment overlooks, or at least only partially and indi-
rectly considers, acoustic features, which, nonetheless,
prove to provide crucial information for the diagnosis.
In fact, the speech signal is affected by the condition
of the muscles involved in phonation. So, if the vocal
apparatus is somewhat compromised as an effect of the
muscular impairment due to the disease (dysarthria), the
signal should show this. Hence, the relevance of includ-
ing acoustic features in the assessment of the outbreak
and severity of PD.

However, fully automated extraction and treatment of
speech acoustic features is usually achieved with highly
complex systems whose interpretation is quite difficult
for both computational scientists, who might be not fa-
miliar with PD symptoms and the linguistic value of the
features of the speech signal, and for domain experts,
who might not be familiar with machine learning meth-
ods. Therefore, the design of models in a way that their
predictions can be explainable and easily interpretable
may actually be most sensible and economical. In fact,
this study highlights that not all the possibly considerable
acoustic features provide the same amount of information
and are actually relevant for discrimination. Moreover,
their contribution may vary as a result of the type and
span of the linguistic unit used for the feature extraction.

More specifically, the classification results show that
considering vowel intervals as units of reference for the
features extraction is already quite effective. Most effec-
tive is, however, considering wider contexts as provided
by the inter-pausal phonetic chain intervals, whereas
enlarging the vocalic intervals only to the previous con-
sonant (CV intervals as a basic unit) turns out to be noisy
rather than informative.

Then, on average, the feature subset proved to be most
informative, carrying out sufficient information to let
the classifiers reach a reasonable detection rate in the
considered medical scenario. In particular, the subset
mainly includes features concerning spectral distribution,
followed by those involving energy and amplitude and
finally frequency features (MFCC above all).

It is worth noticing that the study has been conducted
on continuous speech rather than on isolated phones, syl-
lables or words, to get closer to the normal working dy-

namic of the vocal apparatus during utterance phonation
and avoid artificial effects that may arise when producing
single short items.

To conclude, supporting automated analytic methods
and machine learning techniques with linguistic con-
siderations allows for more accurate, economical and,
most importantly, interpretable discrimination. Future
work will be devoted to delving deeper into the linguistic
analysis of the way the emergent features characterize
PD speech and the investigation of the explainability of
classification methods based on deep neural networks.
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Appendix A: Further Features
Analysis
List of the features included in the considered subset of
the eGeMAPSv02 features.

Features concerning the spectral distribution:

• slopeV0-500_sma3nz_amean
• slopeV0-500_sma3nz_stddevNorm
• alphaRatioV_sma3nz_amean
• alphaRatioV_sma3nz_stddevNorm
• hammarbergIndexV_sma3nz_amean
• hammarbergIndexV_sma3nz_stddevNorm
• spectralFlux_sma3_amean
• spectralFlux_sma3_stddevNorm

Features concerning energy and amplitude:

• loudness_sma3_amean
• loudness_sma3_percentile20.0
• shimmerLocaldB_sma3nz_amean
• shimmerLocaldB_sma3nz_stddevNorm

Features concerning frequency:

• mfcc1_sma3_amean
• mfcc1_sma3_stddevNorm
• mfcc1V_sma3nz_amean
• mfcc1V_sma3nz_stddevNorm
• jitterLocal_sma3nz_amean
• jitterLocal_sma3nz_stddevNorm

Appendix B: Further Results

Figure 6: Feature correlation considering V units.

Figure 7: Feature correlation considering V and CV units.
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Speaker Slope alphaRatio H-Index Shimmer Loudness MFCC

01PDm 0,0003
± 0,0159

-21,2933
± 2,9959

32,5541
± 3,1311

1,2979
± 0,2976

0,3965
± 0,1292

36,3328
± 5,8431

02PDm 0,0074
± 0,0111

-21,3531
± 2,7926

32,3354
± 3,5172

1,0792
± 0,2899

0,4698
± 0,1215

34,4790
± 5,6093

03PDm 0,0012
± - 0,0124

-21,6803
± 3,7769

29,2366
± 4,5719

1,0642
± 0,1860

0,5931
± 0,1269

38,3075
± 5,1538

04PDf 0,0083
± 0,0107

-25,8529
± 3,5913

37,0023
± 3,0799

0,7232
± 0,1815

0,3373
± 0,0763

33,3890
± 5,8998

05PDf 0,0283
± 0,0102

-16,0985
± 2,3628

26,4895
± 1,8925

0,9988
± 0,1635

0,6615
± 0,1167

29,3979
± 5,7566

06PDf 0,0080
± 0,0077

-19,9178
± 3,7987

32,1550
± 3,5414

1,2773
± 0,2916

0,2556
± 0,0906

30,4934
± 6,5089

07PDf 0,0322
± 0,0088

-18,0467
± 1,7098

28,5596
± 2,2559

0,9679
± 0,2658

0,2350
± 0,0626

30,9480
± 4,0652

08PDm 0,0020
± 0,0113

-22,3596
± 3,0759

31,7079
± 2,7711

1,4473
± 0,2784

0,2608
± 0,0790

34,6625
± 5,7257

09PDm 0,0002
± 0,0074

-20,2667
± 6,1511

29,4351
± 8,4180

1,0641
± 0,4419

0,3720
± 0,1468

33,0758
± 8,7907

10PDm 0,0006
± 0,0117

-22,4290
± 3,8050

31,4671
± 3,5929

1,1519
± 0,2819

0,1562
± 0,0651

26,6755
± 6,4457

11PDm 0,0074
± 0,0134

-22,3154
± 6,3170

31,3600
± 8,7320

1,0987
± 0,4362

0,1010
± 0,0460

24,7227
± 7,9015

12PDm 0,0000
± 0,0115

-29,8513
± 3,0748

40,0691
± 3,5827

1,1172
± 0,3162

0,1761
± 0,0754

30,2178
± 6,2936

13PDm 0,0051
± 0,0098

-18,6693
± 6,1645

25,7068
± 8,2491

0,9146
± 0,4247

0,2866
± 0,1100

33,8904
± 8,3735

14PDm 0,0185
± 0,0111

-23,1260
± 2,3925

32,0836
± 2,9519

1,2185
± 0,2678

0,4287
± 0,1531

32,0228
± 4,6341

15PDm 0,0090
± 0,0108

-21,9545
± 3,0236

30,2927
± 3,3761

1,1309
± 0,3094

0,2977
± 0,0723

32,9187
± 6,1951

16HCf 0,0633
± 0,0096

-18,6750
± 3,0968

27,9920
± 3,7985

1,2668
± 0,2783

0,2887
± 0,1005

29,5724
± 7,6025

17HCf 0,0926
± 0,0076

-18,0667
± 3,9360

25,8280
± 3,6499

1,1462
± 0,2630

0,2700
± 0,0491

30,1793
± 7,9545

18HCm 0,0711
± 0,0060

-10,3776
± 2,8562

21,0355
± 3,7580

1,2385
± 0,2646

0,7188
± 0,1946

22,0280
± 5,7435

19HCf 0,0783
± 0,0091

-16,3902
± 3,5428

27,4936
± 5,7825

1,2023
± 0,2160

0,4559
± 0,1197

30,9898
± 7,4353

20HCf 0,0846
± 0,0059

-21,5727
± 3,8459

34,0136
± 4,6024

1,6192
± 0,2362

0,1724
± 0,0470

33,4514
± 6,8876

21HCf 0,0716
± 0,0097

-17,2437
± 3,2172

26,4872
± 4,1833

1,0707
± 0,3338

0,4527
± 0,1017

29,4803
± 6,0164

22HCm 0,0662
± 0,0110

-14,8324
± 4,1724

25,3376
± 4,3715

1,5356
± 0,3035

0,4509
± 0,1726

32,5912
± 8,1394

23HCf 0,0948
± 0,0073

-20,3646
± 4,4190

29,3404
± 4,9695

1,1668
± 0,2565

0,4223
± 0,0784

33,8704
± 6,1713

24HCm 0,0715
± 0,0090

-11,9822
± 3,3146

22,3366
± 4,3487

1,3189
± 0,2434

0,4978
± 0,1417

33,4114
± 7,8817

25HCf 0,0876
± 0,0066

-16,7485
± 4,4084

27,8112
± 5,7054

1,2287
± 0,2130

0,4543
± 0,0990

27,9522
± 8,3363

Table 3
Mean value and Standard Deviation of the most relevant features in PC units per speaker.

Appendix C: Individual Variability
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