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Abstract

Our goal is to investigate, ultimately to enhance, to what degree existing LLM learn disentangled rule-based, compositional

linguistic representations. We take the approach of developing curated synthetic data on a large scale, with specific properties,

and using them to study sentence representations built using pretrained language models. Inspired by IQ tests, we develop

a new multiple-choice task. Finding a solution to this task requires a system detecting complex linguistic patterns and

paradigms in text representations. We present formal specifications of this task, illustrate it with two problems and present

their benchmarking results.

Il nostro obiettivo è indagare, allo scopo di migliorare, quanto gli LLM esistenti apprendano rappresentazioni linguistiche

composte, basate su regole districate. Il nostro approccio consiste nello sviluppare dati sintetici curati su larga scala, con

proprietà specifiche, e nell’utilizzarli per studiare le rappresentazioni di frasi costruite con modelli linguistici pre-addestrati.

Ispirandoci ai test del QI, abbiamo sviluppato un nuovo task a scelta multipla. Trovare la soluzione di questo task richiede che

il sistema individui schemi e paradigmi linguistici complessi nelle rappresentazioni testuali. Presentiamo le specifiche formali

di questo task, lo illustriamo con due problemi e presentiamo i risultati del benchmarking.
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1. Introduction

Current consensus about LLM, and NNs in general, is

that to reach better, possibly human-like, abilities, we

need to develop tasks and data that help us understand

their current generalisation abilities and help us train

or tune them towards more complex and compositional

skills.

Humans are good generalizers. A large body of lit-

erature has demonstrated that the human mind is pre-

disposed to generate rules from data and combine these

rules, in ways that have been argued to be distinct from

the patterns of activation of neural networks [1, 2, 3].

One possible approach to develop more robust methods,

then, is to drive the network to learn disentangled decom-

positions of complex observations and learn underlying

regularities [4].

Let’s look at an illustrative example of what complex

decomposition of covert rules would be necessary. Con-

sider complex argument structure relations in the lexicon:

for example, the Spray/load alternation in English, shown

in (1).

This alternation applies to verbs such as spray, paint,
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spread, fill, stuff and load, that describe covering surfaces

or filling volumes [5, 6]. They occur in two subcategori-

sation frames, related to each other in a regular way: the

object of the preposition with is the subject of the onto
frame, while the object of the onto prepositional phrase

is the subject of the with frame.

(1) John loaded the truck with hay.

Agent Locative Theme

John loaded hay onto the truck.

Agent Theme Locative

To learn the structure of such a complex alternation

automatically, a neural network must be able to identify

the elements manipulated by the alternation, and their

relevant attributes, and recognize the operations that

manipulate these objects, across more than one sentence.

To study what factors lead to learning more disen-

tangled linguistic representations —representations that

reflect the underlying linguistic rules of grammar— we

take the approach of developing curated synthetic data on

a large scale, building diagnostic models from pretrained

representations of these data and investigating the mod-

els’ behaviour. To this end, we develop a new linguistic

task, inspired by the IQ test RPM (Raven 1938), which we

call Blackbird Language Matrices (BLMs). BLMs define a

prediction task to learn complex linguistic patterns and

paradigms [7, 8].

In this paper, we present precise formal specifications

of the BLM task, illustrate it with the instantiations of

two BLM problems and their benchmarking results. This
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Figure 1: Example of progressive matrice in the visual world.

The multiple-choice task is to determine the missing element

in a visual pattern. The matrix is constructed according to two

rules (see text for explanation). Identifying these rules leads

to the correct answer (marked by double edges).

shows that the general formalism can be used to generate

datasets with the same format, and similar specification.

Expanding the covered phenomena can thus be done sys-

tematically, allowing for studies that combine or work

across multiple phenomena and languages [9]. We be-

lieve this task takes us closer to investigations of human

linguistic intelligence.

2. RPMs and BLMs

Raven’s progressive matrices are IQ tests consisting of

a sequence of images, called the context, connected in a

logical sequence by underlying generative rules [10]. The

task is to determine the missing element in this visual

sequence, the answer. An instance is shown in Figure 1:

given a matrix (left), choose the last element of the matrix

from given options. The matrices are built according to

generative rules that span the whole sequence of stimuli

and the answers are constructed to be similar enough

that the solution can be found only if the rules are iden-

tified correctly. For example in Figure 1, the matrix is

constructed according to two rules: Rule 1: row-wise,

from left to right, the red dot moves one place clockwise

each time. Rule 2: column-wise, from top to bottom, the

blue square moves one place anticlockwise each time.

Identifying these rules leads to the correct answer, the

only cell that continues the generative rules correctly.

A similar task has been developed called Blackbird Lan-

guage Matrices (BLMs) [7, 8, 11] for linguistic problems,

as given in Figure 2, which illustrates the template of a

BLM agreement matrix. As can be seen, the agreement

rules are implicitly expressed by patterns in the sentence,

with or without intervening attractor elements, and al-

ternate in a combinatorial pattern across the sentences

(shown in colour), so that only one answer concludes the

sequence.

3. Formal Specifications of BLMs

We define here the new Blackbird’s Language Matri-

ces (BLMs) task and data format.

Context

1 NP-sing PP1-sing VP-sing

2 NP-plur PP1-sing VP-plur

3 NP-sing PP1-plur VP-sing

4 NP-plur PP1-plur VP-plur

5 NP-sing PP1-sing PP2-sing VP-sing

6 NP-plur PP1-sing PP2-sing VP-plur

7 NP-sing PP1-plur PP2-sing VP-sing

8 ???

Answer

1 NP-sing PP1-sing et NP2 VP-sing Coord

2 NP-plur PP1-plur PP2-sing VP-plur correct

3 NP-sing PP-sing VP-sing WNA

4 NP-sing PP1-sing PP2-sing VP-plur AE

5 NP-plur PP1-sing PP1-sing VP-plur WN1

6 NP-plur PP1-plur PP2-plur VP-plur WN2

Figure 2: BLM instances for verb-subject agreement, with two

attractors. WNA= wrong number of attractors; AE= agreement

error; WN1= wrong nr. for 1
𝑠𝑡

attractor noun (N1); WN2=

wrong nr. for 2
𝑛𝑑

attractor noun (N2).

Subject-verb agreement

E: the subject and the verb match

in agreement features.

I: occurs independently of distance

between subject and verb.

Spray/Load alternation:

E: the object of alternant 1 becomes PP(P) in alt. 2.

the object of alternant 2 becomes PP(P) in alt. 1.

the preposition with of alternant 1 becomes

the preposition onto in alternant 2.

I: Expression of thematic roles and argument structure:

Object of Alt1 is Locative, PP of Alt1 is Instrumental

Object of Alt2 is Theme, PP of Alt2 is Locative

Figure 3: Examples of formal definitions of E and I for two

LPs. The lexical expression of preposition P is considered an

attribute.

Definition Let a 4-tuple (𝐿𝑃,𝐶,𝑊,𝑤𝑐) be given,

where 𝐿𝑃 is the definition of the linguistic gram-

matical phenomenon, 𝐶 is the corresponding con-

text matrices, 𝑊 is the answer set, and 𝑤𝑐 is the

correct item of 𝑊 .

The BLM task can be defined as the instruction:

find (𝑤𝑐 ∈ 𝑊 ) given 𝐶.

A BLM problem (𝐿𝑃,𝐶,𝑊,𝐴𝑢𝑔) is an instance of a BLM

task, where 𝐴𝑢𝑔 is the augmentation method for the ma-

trices. We describe all components in the next sections.



3.1. Defining the linguistic phenomenon

The first step in the definition of the problem consists

in formally defining the linguistic grammatical phe-

nomenon as a paradigm.

Definition Let a linguistic phenomenon LP be given.

LP is exhaustively defined by a grammar 𝐺𝐿𝑃 =
(𝑂,𝐴,𝐸, 𝐼, 𝐿) s.t.

𝑂 is the set of objects

𝐴 is the set of attributes of the objects in 𝑂

𝐸 is the set of external observed rules

𝐼 is the set of unobserved internal rules

𝐿 is the lexicon of objects in 𝑂, attributes in 𝐴,

and operators in 𝐸 ∪ 𝐼.

For example, as shown in the example Figure 3, in

the subject-verb agreement phenomenon, the agreement

rule is the primary production in 𝐸, while the fact that

agreement can occur independently of the distance of

the elements expresses the fact that agreement applies

to structural representations, a rule in 𝐼 . Sometimes, but

not always, I acts as a confusing factor.

Rules are triples of objects (shown in red), attributes

(in green) and operations (in blue). Objects are usually

phrases, attributes are usually morpho-syntactic proper-

ties of the phrases and operations are typical grammatical

operations: feature match, movement (becomes), lexical

substitution (changes).

3.2. Defining the matrices

Definition A 𝐵𝐿𝑀 matrix is a tuple=(𝑆,𝑅, 𝑇 ) s.t.

𝑆 is the shape of the matrix

𝑅 are the relational operators that connect the

items of the matrix

𝑇 is the set of items of the matrix.

Shape 𝑆(𝑛, 𝑙) is the shape of the matrix, which consists

of 𝑛 items and each item can be at most of length

𝑙.

The length of the items can vary. The items

can be sentences or elements in a morphological

paradigm. The choice of 𝑛 depends on how many

items need to be shown to illustrate the paradigm

and on whether the illustration is exhaustive or

sampled.

For example, a matrix of size eight is exhaus-

tive for an agreement problem with three noun

phrases and a two-way number differentiation

(singular, plural), but can only present a sample

of the information for the spray/load alternation.

Subject-verb number agreement

Violation of E: wrong subject-verb agreement

Violation of I: wrong agreement on N2 or N3

Violation of R: wrong number of attractors

Spray/load alternation

Violation of E: Wrong lexical choice of preposition

Violation of I: Subject of active voice is not Agent

Violation of R: Wrong number of arguments

Figure 4: Example answer set.

Relational operations

Connective sequential operations, such as alter-

nation or progression are chosen. Their purpose

is to transform a list of items (sentences or words)

into a predictable sequence that connects all the

items.

The values of𝑅, so far, are alternations or progres-

sion. They could also be conjunction, disjunction,

exclusive OR and other logical or graded opera-

tors.

Alternation applies to a given (𝑜, 𝑎) pair and loops

over all the values of 𝑎 with a given increment

defined over the items of the matrix. For ex-

ample, the grammatical feature number is bi-

nary in certain languages. So, alternation

(𝑜 = 𝑁𝑃 ; 𝑎𝑖 = (𝑠, 𝑝); 𝑖 = 1, 2, 3, ...). This is

used to create different alternations of (𝑜, 𝑎) in

the sentence, which in the subject-verb agree-

ment BLM is used to show independence from

linear distance.

Progression applies to countable attributes or ordinal

attributes, for example, existence. So, one can

have 1,2,...,𝑛 of a given object 𝑜. Progression can

also apply to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 or to graded properties

such as 𝑙𝑒𝑛𝑔𝑡ℎ.

Items The items 𝑇 are defined by

𝐺𝐿𝑃 = (𝑂,𝐴,𝐸, 𝐼, 𝐿) and they are drawn

from the set 𝒯 .

The matrix is created by sampling (𝑜, 𝑎, 𝑟) triples. The

ways in which 𝑟 ∈ 𝑅 can apply to a given (𝑜, 𝑎) pair has

to be predefined, as it is not entirely context-free.

3.3. Defining the answer set

The answer set 𝑊 consists of a set of items like those

in 𝐶. One item in W, 𝑤𝑐, is the correct answer to com-

plete the sequence defined by 𝐶 . The other items are

the contrastive set. They are items that violate 𝐺𝐿𝑃 , the

rules of construction of the context matrix C, either in



the primary rules 𝐸, in the auxiliary rules 𝐼 , or in the

matrix operators 𝑅.

Sometimes they are built almost automatically, some-

times by hand. The cardinality of the answer set is deter-

mined by how many facets of the linguistic phenomenon

need to be shown to have been learned.

3.4. Augmenting the matrices

Different levels of lexical and structural complexity can

be obtained by changing the lexical items (completely or

partially), in a given matrix.

Definition An augmented BLM is a quadruple

(𝑆,𝑅, 𝑇,𝐴𝑢𝑔).

𝑆 is the shape of the matrix, 𝑅 are the relational

operations that connect the 𝑇 items of the matrix.

𝐴𝑢𝑔 is a set of operations defined to augment the cardi-

nality of 𝒯 , while keeping S and R constant. 𝐴𝑢𝑔
is defined by controlled manipulations of Os and

As in 𝒯 to collect similar elements.

We augment the sentence set 𝒯 by modifying the noun

phrases of the items in 𝑇 . We generate alternatives with

a language model choosing among the top 𝑛, within an

acceptability margin from the original sentence. The

margin is set with a variable-size window and collects

the top 10 alternative noun phrases. The acceptability of

the resulting sentences is validated manually. In the next

sections, we illustrate the data for two BLM problems,

and baseline benchmarking results.

4. Example of two BLM problems

The creation of structured datasets can be a challenging

task, depending on the type of linguistic problem being

investigated, the available linguistic resources, and the

size of the lexical factors involved in the problem. Figure

5 summarizes the pipeline that needs to be followed for

the whole process: identifying the data for the linguistic

phenomenon under investigation, developing a lexical

set seed of lexical items for creating context and answer

sets for the BLMS, which are then combined to construct

desired context templates and answer sets. From the lin-

guistic phenomenon to the creation of the lexical set seed,

various approaches can be pursued based on the type of

linguistic phenomenon being investigated. This choice

might depend on whether the phenomenon has already

been extensively studied in experimental linguistics, the

scale of the lexical components involved in the linguistic

phenomenon, and the available resources in the target

language. We then employ a fill-mask task with trans-

formers to automatically generate additional, plausible

constituents for the desired structures.

Linguistic Phenomenon

Experimental 
Datasets

Devised ex-
novo structures

Masked augmentation 

Lexical set seed

Contexts and answers sets

Naturally 
occurring  
examples

Grammar repositories

Figure 5: Pipeline for the automatic creation of structured

datasets

Figure 9 in the appendix shows an example of the first

steps of the process for the BLM-AgrF dataset.

4.1. BLM-AgrF – subject-verb agreement

in French

In BLM-AgrF [11], a BLM problem for subject-verb agree-

ment consists of a context set of seven sentences that

share the subject-verb agreement phenomenon, but dif-

fer in other aspects – e.g. number of intervening noun

phrases between the subject and the verb, called attrac-

tors because they can interfere with the agreement, dif-

ferent grammatical numbers for these attractors, and

different clause structures. Each context is paired with a

set of candidate answers. The answer sets contain mini-

mally contrastive examples built by corrupting some of

the generating rules. This helps investigate the kind of

information and structure learned, by error analysis. An

example template is illustrated in Figure 2, and an actual

example in Figure 6.

The dataset comprises three subsets, of increasing lex-

ical complexity. Type I data is generated based on man-

ually provided seeds (Franck et al. 2002), illustrated in

Figure 9, and a template that captures the rules mentioned

above. Type II data is generated based on Type I data, by

introducing lexical variation with the aid of a transformer,

by generating alternatives for masked nouns. Type III

data is generated by combining sentences from different

instances from the Type II data, while maintaining the

structure of the sequence. The structural variations alter

the distance and relative depth of the subject and verb

and produce a variety of conditions. The different levels

of lexical variation will allow us to investigate the impact

of lexical variation on the ability of a system to detect

grammatical patterns. We include complete instances –



Context

1 Il vaso con il fiore si è rotto.

2 I vasi con il fiore si sono rotti.

3 Il vaso con i fiori si è rotto.

4 I vasi con i fiori si sono rotti.

5 Il vaso con il fiore del giardino si è rotto.

6 I vasi con il fiore del giardino si sono rotti.

7 Il vaso con i fiori del giardino si è rotto.

8 ???

Answer set

1 Il vaso con i fiori e il giardino si è rotto. coord

2 I vasi con i fiori del giardino si sono rotti. correct

3 Il vaso con il fiore si è rotto. WNA

4 Il vaso con il fiore del giardino si sono rotti. AE

5 I vasi con i fiori del giardino si sono rotti. WN1

6 I vasi con i fiori dei giardini si sono rotti. WN2

Figure 6: BLM instances for verb-subject agreement, with 2

attractors (fiore ’flower’, giardino ’garden’), with candidate an-

swer set. WNA=wrong number of attractors, AE=agreement er-

ror, WN1=wrong nr. for 1
𝑠𝑡

attractor noun (N1), WN2=wrong

nr. for 2
𝑛𝑑

attractor noun (N2)

in French – in Appendix A.

4.2. BLM-s/lE.v0 – spray/load verb

alternations in English

In the BLM-s/lE problem developed to exhibit the

spray/load alternation (discussed in the introduc-

tion), each sentence can be described in terms of one

distribution-of-three-values rule, governing the semantic

roles (Agent, Theme, Locative), and two distribution-

of-two-values rules governing syntactic types (nominal

phrase NP vs. prepositional phrases PP) and the mood of

the verb, whether active (Verb) or passive (VerbPass).

We created two templates, targeting the syntax-semantic

mapping of the arguments.

In the contrastive answer set, the target sentence is to

be chosen from a set of candidates that exhibit minimal

differences. The semantic-syntactic mapping of the alter-

nation can be decomposed into a set of smaller patterns

that describe the sentences in the alternation and that

can be violated to construct incorrect answers. Differ-

ent subsets of patterns can be used to develop different

answer sets.

A variation of this dataset, presented in [12] uses an

answer set that change the position of the agent in an

active sentence, the type of phrases following the verb,

embedding the PP in an NP, and changes in prepositions

that introduce different types of arguments.

The dataset presented here, changes subpatterns that

govern the correct learning of the syntactic form of the

sentence (Wrong Theme, Wrong Subject, Wrong PP

in Template 1; SwapLocAgent, NoAgent, SwapThe-

Context

1 NP-Agent Verb NP-Theme PP-Loc

2 NP-Theme VerbPass PP-Loc

3 NP-Agent Verb NP-Loc PP-Theme

4 NP-Loc VerbPass PP-Theme

5 NP-Agent Verb NP-Theme

6 NP-Agent Verb PP-Theme

7 NP-Agent Verb NP-Loc

8 ???

Answers

1 NP-Agent Verb PP-Loc correct

2 NP-Agent Verb *PP-Loc WPrep

3 NP-Agent Verb *[NP-Theme PP-Loc] PP-Loc WPP

4 NP-Agent Verb NP-Loc because PP-Theme Adv

5 NP-Agent Verb NP-Loc *PPLoc-Theme WT

6 *NP-Loc Verb PP-Loc WS

Figure 7: BLM context template 1 and answers for the

spray/load alternation. * = locus of the rule corruption, an-

gled brackets = syntactic embedding. WP= Wrong Prepo-

sition; WPP=Wrong Prepositional Phrase; Adv= Adverbial;

WT=Wrong Theme; WS=Wrong Subject.

meAgent, Repeat in Template 2), and others that govern

the proper lexical selection (Wrong Preposition, Ad-

verbial).

Different answer sets, that focus on different rule sub-

patterns, will allow for detailed investigations of the type

of information that is more easily or more difficult to de-

tect, and to determine principles of designing the answer

set for the most informative phenomenon investigation.

Like the BLM-AgrF dataset, the BLM-s/lEv.0 dataset

presents lexically varied versions, Type I, II, and III, of

increasing variability. The structure of the context and an-

swer set of one alternant is presented in Figure 7. Figure

11 for the other template and relevant lexical examples

of both templates are given in appendix B.

5. Benchmarking systems

Our goal is to investigate – and ultimately use this knowl-

edge to enhance – textual representations built using

pretrained large language models. To determine whether

such representations encode linguistic rules, and to what

degree they are compositional, we use BLM tasks that

provide data generated using specific rules, and baseline

systems that should be capable of detecting the patterns

that encode the relevant rules for the targeted phenomena

in the distributed continuous sentence representations.

We choose a FFNN and a CNN as our baselines. The FFNN

should be able to discover patterns distributed through-

out a sentence, and throughout a sequence of sentences,

while the CNN could discover localized patterns – both

in the sentence and the sequence.

As presented above, a BLM problem instance consists

of a context and an answer set. The context is a sequence



of 7 sentences, and the answer set is a set of 6 sentences,

one of which is a correct continuation of the input se-

quence. All sentences are encoded using BERT [13] – as

the embedding of the [CLS] token on the last layer of the

model. We used the pretrained "BERT-base-multilingual-

cased" model
1

. The sentence representations are com-

bined in different ways, depending on the baseline system

– a FFNN or a CNN – used.

The input to the FFNN is the concatenation of sentence

embeddings in the BLM instance context, as a vector of

size 7 * 768. This input is processed through 3 fully con-

nected layers, which progressively compress the input

size (7 * 768

𝑙𝑎𝑦𝑒𝑟1−−−−→ 3.5 * 768

𝑙𝑎𝑦𝑒𝑟2−−−−→ 3.5 * 768

𝑙𝑎𝑦𝑒𝑟3−−−−→
768) to obtain the size of a sentence representation. The

FFNN’s interconnected layers enable it to capture pat-

terns that are distributed throughout the entire input

vector.

The input to the CNN is the stacked sentence embed-

dings in the BLM instance context, as a (7 x 768) ar-

ray. This input undergoes three consecutive layers of

2-dimensional convolutions, where each convolutional

layer uses a kernel size of (3x3) and a stride of 1, without

dilation. The resulting output from the convolutional

process is then passed through a fully connected layer,

which compresses it to the size of the sentence represen-

tation (768). By using a kernel size of (3x3), stride=1, and

no dilation, this configuration emphasizes the detection

of localized patterns within the sentence sequence array.

The output of both systems is a vector representing a

sentence embedding. This is compared to the sentence

representations in the answer set, and the one with the

highest score is considered the correct answer. Details

are included in appendix C.

6. Results

Previous published work from our group and current

ongoing work has benchmarked the problems generated

by these datasets and analysed the errors, with interesting

results [11, 14].

We report here the novel results on the BLM-s/lE

dataset, which are qualitatively similar to those reported

for BLM-AgrF [11], thus confirming some general trends.

Figure 8 shows the results. The top panels shows results

using all the data, the bottom panel shows results using

only data sizes that match type I data size, hence smaller

data sizes for type II and type III.

Globally, the results are very good. But interesting

differences emerge if we vary data sizes. If we train on

all data, more lexically-varied data (types II and III) give

better results, but if we train on equally sized datasets,

we see an improvement of the results in training on type

1
https://huggingface.co/bert-base-multilingual-cased

CNN FFNN

All training data

Same training data

Figure 8: F1 results (averages over 5 runs) for alternant one.

II data whether testing on type II or III. It appears, then,

that on smaller datasets, the template patterns is perhaps

better learnt in type II, while still retaining the notion of

lexical variation that is lacking in type I.

Inspecting the increase in performance with different

training data sizes, shown in Figure 12 in the appendix,

it is confirmed that learning is very fast and plateaus

already with a few thousand examples for all train-test

combinations, with the exception of training on Type I

and testing on type III, which is clearly too difficult.

Both baseline systems lead to good results despite the

variations in the input – structural and lexical – that

superficially obfuscate these phenomena, and the near-

miss incorrect answers, confirming that the phenomena

we target are encoded in the sentence representations.

Because of their different architectures and the type of

patterns they discover, the high performance of both sys-

tems indicates that relevant patterns for our two targeted

phenomena are localized in BERT sentence embeddings.

Further steps can take advantage of the structured way

the data was constructed to attempt to disentangle the

various generative rules and additional factors in the

inputs.

7. Related Work

Previous work has focussed on understanding the auto-

matic learning of verb alternations in terms of syntactic

and semantic properties of the verbs and their argument

structures [15]. These properties have been explored in

https://huggingface.co/bert-base-multilingual-cased


relation to their representation in LLMs, across various

dimensions of performance for different models [16, 17].

In particular, [17] suggest that LLMs with contextual

embeddings encode linguistic information on verb alter-

nation classes, at both the word and sentence levels. In

their work, [17] build upon [16] observations and high-

light the superior performance of one transformer Electra

[18] compared to other large language models.

The automatic generation of RPM-like matrices,

whether in vision or in language, is technically challeng-

ing. In computer vision, several formalisms have been

proposed ([19] formulate RPMs with first-order logic;

[20] propose Procedurally Generated Matrices (PGM)

datasets through relation-object-attribute triple instantia-

tions; [21] use the Attributed Stochastic Image Grammar

(A-SIG [22]). Structured synthetic datasets have been

mostly developed to study issues of generalisation and

disentaglement, in vision [23], with full-fledged experi-

mentation and for language in a preliminary, nonRPM

-like dataset, consisting of simple examples containing a

few morphological markings [24]. The simplicity of the

sentences does not provide a sufficiently realistic chal-

lenge from a linguistic point of view. Very recent work

has started exploring the picture-naming potential of

language to solve problems in vision [25].

8. Conclusions

In this paper, we have presented the new BLM task, pro-

vided its formal specifications and illustrated the first

instances of BLM problems and benchmarking results

with baseline architectures. Current work is developing

new dedicated architectures based on Variation Autoen-

coders [14] and developing new BLM problems. Future

work lies in further automating the data development

pipeline, to make the creation on BLM data sets also ac-

cessible to less computationally-oriented linguists and

investigating the structure and nature of the information

encoded in the learned inner representations.
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A. BLM-AgrF problem

Example subject NPs from [26]

L’ordinateur avec le programme de l’experience
The computer with the program of the experiments

Manually expanded and completed sentences
L’ordinateur avec le programme de l’experience est en panne.
The computer with the program of the experiments is down.

Jean suppose que l’ordinateur avec le programme de l’experience est en panne.
Jean thinks that the computer with the program of the experiments is down.

L’ordinateur avec le programme dont Jean se servait est en panne.
The computer with the program that John was using is down.

A seed for language matrix generation
Jean suppose que l’ordinateur avec le programme de l’experience est en panne
Jean thinks that the computer with the program of the experiment is down

les ordinateurs avec les programmes sont en panne
the computers with the programs are down

Figure 9: Examples from [26], manually completed and expanded sentences based on these examples, and seeds made based

on these sentences for the subject-verb agreement BLM-AgrF dataset that contain all number variations for the nouns and the

verb.

Contexts

Example Translation

1 La conférence sur l’histoire a commencé plus tard que prévu. The talk on history has started later than expected.
2 Les responsables du droit vont démissionner. Those responsible for the right will resign.
3 L’ exposition avec les peintures a rencontré un grand succès. The show with the paintings has met with great success.
4 Les menaces de les réformes inquiètent les médecins. The threats of reforms worry the doctors.
5 Le trousseau avec la clé de la cellule repose sur l’étagère. The bunch of keys of the cell sits on the shelf.
6 Les études sur l’effet de la drogue apparaîtront bientôt. The studies on the effect of the drug will appear soon.
7 La menace des réformes dans l’ école inquiète les médecins. The threat of reforms in the school worries the doctors.
Answers

Example Translation

1 Les nappes sur les tables et le banquet brillent au soleil. The tablecloths on the table and the console shine in the sun.
2 Les copines des propriétaires de la villa dormaient sur la

plage.

The friends of the owners of the villa were sleeping on the beach.

3 Les avocats des assassins vont revenir. The laywers of the murderers will come back.
4 Les avocats des assassins du village va revenir. The lawyers of the murderers of the village will come back.
5 La visite aux palais de l’ artisanat approchent. The visit of the palace of the crafts is approaching.
6 Les ordinateurs avec le programme des expériences sont en panne. The computers with the program of the experiments are broken.

Figure 10: Example of lexically varied contexts for the main clause contexts for the subject-verb agreement BLM-AgrF dataset.

Correct answer in bold.



B. BLM-s/lE

Context

1 NP-Agent Verb NP-Theme

2 NP-Agent Verb PP-Theme

3 NP-Agent Verb NP-Loc

4 NP-Agent Verb PP-Loc

5 NP-Agent Verb NP-Theme PP-Loc

6 NP-Theme VerbPass PP-Loc

7 NP-Agent Verb NP-Loc PP-Theme

8 ???

Answers

1 NP-Loc VerbPass PP-Theme correct

2 NP-Loc Verb *NP-Agent PP-Theme SLA

3 NP-Loc VerbPass *PPLoc-Theme PP-Loc WP

4 NP-Loc VerbPass *PP-Loc Repeat

5 *NP-Theme Verb NP-Loc NoAgent

6 NP-Theme Verb *NP-Agent PP-Loc STA

Figure 11: BLM context template 2 and answers for the

spray/load alternation. * = locus of the rule corruption,

angled brackets = syntactic embedding. WP=WrongPrep,

SLA=SwapLocAgent, STA=SwapThemeAgent.

Figure 12: Effect of training data size on the BLM-S/lE

datasets.

Template 1, Type I

Context

The crew sprayed some water into a plastic container.

Some water was sprayed into a plastic container.

The crew sprayed a plastic container with some water.

A plastic container was sprayed with some water.

The crew sprayed some water.

The crew sprayed with some water.

The crew sprayed a plastic container.

???

Answers

The crew sprayed into a plastic container.

The crew sprayed under a plastic container.

The crew sprayed some water from rivers into a plastic con-

tainer.

The crew sprayed a plastic container because of some water.

The crew sprayed a plastic container under some water.

A plastic container sprayed into a plastic container.

Figure 13: Template 1 -Type I context and answer set.

Template 1, Type II

Context

Katrina sprayed some liquid into the windshield.

Some of the chemicals were sprayed into the windshield.

I sprayed the wall with some water.

The windshield was sprayed with some water.

The artist sprayed some of the material.

The artist sprayed with some of the chemicals.

Someone sprayed the sink.

???

Answers

The artist sprayed onto the wall.

The crew sprayed under the bathroom.

Katrina sprayed some of the chemicals for the refinery into

the windshield.

Someone sprayed the bathroom because of some water.

Katrina sprayed a plastic container under some liquid.

The bathroom sprayed into the bathroom.

Figure 14: Template 1 -Type II context and answer set.

Template 1, Type III

Context

The crew sprayed some water into a plastic container.

Heavier material was sewed onto the straps.

Water spurts the room with dirt.

It was pumped with steam.

Archaeologists clean the filter monthly and swash some tank

water.

Scientists promote a strategy to seed with sulfur.

The volunteers swash the biomedia.

???

Answers

The Egyptians sow on the soil.

Archaeologists clean the filter monthly and swash under the

sink.

The crew sprayed some of the paint from vegetables into the

windshield.

The man smeared the walls because of the flour.

The waitress sprinkles eggs under sugar.

The windows strung over the windows.

Figure 15: Template 1 -Type III context and answer set.



C. Architectural Specifications

All systems used a learning rate of 0.001 and Adam optimizer, and batch size 100. The training was done for 120

epochs. The experiments were run on an HP PAIR Workstation Z4 G4 MT, with435 an Intel Xeon W-2255 processor,

64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU.

We tested BERT sentence embeddings with baseline CNN and FFNN baseline architectures. [13]. The sentence

embeddings are the encoding of the [CLS] token on the last layer of the model.

The FFNN receives the input as a concatenation of sentence embeddings in a sequence, with a size of 7 * 768.

This input is then processed through 3 fully connected layers, which progressively compress the input size (7 * 768

→ 𝑙𝑎𝑦𝑒𝑟1 3.5 * 768 → 𝑙𝑎𝑦𝑒𝑟2 3.5 * 768 → 𝑙𝑎𝑦𝑒𝑟3 768) to obtain the size of a sentence representation. The FFNN’s

interconnected layers enable it to capture patterns that are distributed throughout the entire input vector.

The CNN takes as input an array of embeddings with a size of (7 x 768). This input undergoes three consecutive

layers of 2-dimensional convolutions, where each convolutional layer uses a kernel size of (3x3) and a stride of 1,

without dilation. The resulting output from the convolutional process is then passed through a fully connected layer,

which compresses it to the size of the sentence representation (768). By using a kernel size of (3x3), stride=1, and no

dilation, this configuration emphasizes the detection of localized patterns within the sentence sequence array.

Both networks produce the same output, which is a vector representing the sentence embedding of the correct

answer. The objective of learning is to maximize the probability of selecting the correct answer from a set of

candidate answers. To achieve this, we employ the max-margin loss function, considering that the incorrect answers

in the answer set are intentionally designed to have minimal differences from the correct answer. This loss function

combines the distances between the predicted answer and both the correct and incorrect answers. Initially, we

calculate a score for each candidate answer’s embedding 𝑒𝑖 in the answer set 𝒜 with respect to the predicted sentence

embedding 𝑒𝑝𝑟𝑒𝑑. This score is determined by the cosine of the angle between the respective vectors:

𝑠𝑐𝑜𝑟𝑒(𝑒𝑖, 𝑒𝑝𝑟𝑒𝑑) = 𝑐𝑜𝑠(𝑒𝑖, 𝑒𝑝𝑟𝑒𝑑)

The loss function incorporates the max-margin concept, taking into account the difference between the score of

the correct answer 𝑒𝑐 and each of the incorrect answers 𝑒𝑖:

𝑙𝑜𝑠𝑠𝑎 =
∑︁
𝑒𝑖

[1− 𝑠𝑐𝑜𝑟𝑒(𝑒𝑐, 𝑒𝑝𝑟𝑒𝑑) + 𝑠𝑐𝑜𝑟𝑒(𝑒𝑖, 𝑒𝑝𝑟𝑒𝑑)]
+

During prediction, the answer with the highest score value from the candidate set is selected as the correct answer.
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