
Are All Languages Equal? Curriculum Learning over
Different Languages
Giulia Pucci1, Leonardo Ranaldi1,2 and Fabio Massimo Zanzotto1

1University of Rome Tor Vergata
2Idiap Research Institute, Switzerland

Abstract
Curriculum Learning (CL) is emerging as a relevant technique to reduce the cost of pre-training Large Language Models.
The idea, tested for the English language, is to train LLMs by organizing training examples from the simplest to the most
complex. Complexity measures may depend on the specific language. Hence, this paper aims to investigate whether CL
and the complexity measure can be easily exported to other languages. For this reason, we present a set of linguistically
motivated measures to determine the complexity of examples, which has been used in English: these measures are based on
text length, rarity, and comprehensibility. We then test the approach to two Romance languages: Italian and French. Our
results show that the technique can be easily exported to languages other than English without adaptation.
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1. Introduction
Transformers-based models have disrupted natural lan-
guage understanding methods outperforming previous
methods and sometimes even humans in many tasks
[1, 2, 3, 4]. Unsupervised learning on huge corpora, no
matter the domain, seems to be the way to increase per-
formance; however, besides the onerous costs, there are
difficulties with the data.

Therefore, this results in a significant carbon footprint
[5], contrary to global sustainability goals. There are
many approaches to address the AI carbon footprint prob-
lem, ranging from using more carbon-efficient energy
sources to applying efficient AI models and training al-
gorithms. Indeed, Transformers seem to be only huge
memories [6, 7] and, thus, better ways to train these
models are necessary. Bengio et al. [8] in Curriculum
Learning (CL) proposes a specific class of efficient train-
ing strategies for deep learning models.

The naïve approach for training Large Language Mod-
els involves feeding textual batches randomly sampled
from the training corpora is re-visited in the CL, where
the model is refined with a sequence of progressively
more challenging examples [9]. This is motivated by and
emulates how humans learn, starting with more straight-
forward concepts and gradually building up more com-
plex ones. Soviany et al. [10] show that CL helps the
model to perform better and converge faster.
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In this paper, we deeply analyze the learning diver-
gencies training from scratch with BERT [11] and GPT2
[12] on the same corpus in multiple languages. Further-
more, following our CL-LRC metrics [13] based on length,
rarity, and comprehensibility, computational costs are
reduced, and the divergences are filled.

Hence, using the same small corpus in three different
languages, English (original), Italian, and French (trans-
lated), experimental results show that loss values during
the training vary in the different languages. Moreover,
this difference seems to be softened in terms of perplexity
scores when the pre-training block-sizes increase incre-
mentally.

2. Background
Optimizing the use of computational resources to in-
crease the learning capabilities of Large Language Models
(LLMs) is a widely studied problem. The main approaches
are based on architecture, learning, and, finally, data.
Although current optimization methods at the architec-
tural level have demonstrated extensive functionality on
further fine-tuning, there still needs to be gaps at the
pre-training level.

Clark et al. [14] propose a method for reducing compu-
tational costs by modifying the Masked Language Mod-
els with a discriminator, but it may have limitations in
tasks that require a deep understanding of long-term
dependencies or complex relationships between words.
Sanh et al. [15] proposed parameter reduction techniques
and obtained a lightweight version of BERT that is less
compelling than the original in adapting parameters on
specific tasks.

Finally, the last approach in vogue concerns the ef-
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Table 1
Curriculum Learning and LRC pre-training overview.

ficient adjustment of parameters. Parameter-Efficient
Tuning (PEFT) is an efficient technique for tuning a small
portion of model parameters and freezing others. Stan-
dard techniques for PEFT: LoRA [16], Prefix Tuning [17],
P-Tuning [18] reduce computational and storage and
maintain the performance. However, these PEFT meth-
ods are applied to fine-tuning a model for a specific task
and not to pre-training from scratch. While these topics
have been extensively studied, the data-level approach
has yet to be explored.

Many studies have found that the multi-headed self-
attention mechanism requires tremendous computational
effort. Since each head of this mechanism appears to
be more attentive to local dependencies than global
ones [19, 20, 21], training local self-attention in shorter
blocks seems to be less complex than training global self-
attention in more extended blocks. Nagatsuka et al. [9]
proposed a Curriculum Learning (CL) strategy concen-
trating on hands-on self-attention mechanism training
to enhance this aspect. They applied the strategy directly
to BERT pre-training, manipulating the size of the input
text block in the self-attention mechanism as a measure
of difficulty.

Further the world of transformer-based models, many
CL studies have used sentence length, external resources,
or input sequences to measure difficulty in various NLP
tasks such as in parsing tasks [22], reading comprehen-
sion [23], and concept masking for pre-training of the
knowledge graph-related models [24].

In this paper, to solve the gap of LLMs in learning

English, Italian and French, we studied the difficulties
faced in learning more languages. We propose text com-
plexity techniques combined with input text block-size
in the context of the self-attention mechanism. The two
approaches measure the difficulty of pre-training two lan-
guage models: BERT [11] and GPT2 [12]. Our proposal
adds to the incremental CL brought in [9], an additional
light step for calculating the pre-training text complex-
ity. Our model performs better than the baselines and
methods proposed in [9] regarding loss and perplexity.

3. Our Methods
Starting from the fact that language has a structure that
varies between different languages, we searched for a
strategy to alleviate these divergences [25, 26]. Hence or-
ganizing the examples during pre-training could improve
the model’s performance. Therefore, starting from the
concept of Curriculum Learning (CL) shown by Bengio
et al. [8], according to which learning algorithms per-
form better when the data are presented following the
current competencies of the model, we used the method-
ology proposed in [9] applying an incremental learning
technique on increasing block-sizes. We propose to use
these techniques in different languages and extend the
work done with a generative model. Finally, we study
the impact of language complexity by intruding LRC, a
measure used to determine the complexity of examples
during pre-training before standard CL.

The application of the CL-LRC method consists of



Table 2
Examples of the complexity values produced by the metrics defined in Section 3.1.

three steps (Figure 1): (i) sorting the corpus according to
our complexity measure starting from the least complex
sentences to the most complex ones; (ii) partitioning the
corpus according to input blocks of predefined sizes; (iii)
stepwise pre-training by increasing the block size.

3.1. Complexity
The increasing block-size techniques and complexity
measures are our method’s core. While the dynamic re-
sizing technique is fixed and does not change in different
scenarios, the complexity of a text example is challenging
to define.

Since the tasks used in pre-training should aim to learn
language from context, precisely as humans do, organiz-
ing the complexity of examples could improve CL in
LLMs.

We propose combining three factors: the number of
tokens or sentence length, the repetitiveness or rarity of
words in the corpus, and finally, the comprehensibility or,
more commonly, the Flesch-Kincaid readability metric.
Aggregating these three heuristics forms 𝑑𝐿𝑅𝐶 , one of
the foundational elements of our framework. Hence, we
denote our training corpus as a collection of 𝐷 sentences,
{𝑠𝑖}𝐷𝑖=0, where each sentence is a sequence of words
denoted with 𝑠𝑖 = {𝑤𝑖

0, 𝑤
𝑖
1, ..., 𝑤

𝑖
𝑛}.

Number of tokens The number of occurrences or sen-
tence length is critical since longer sequences are more
difficult to encode, as the possibility of them being cut is
high. Therefore, longer sentences would be more prone
to losing context during the pre-training tasks. We com-
pute sentence length for each period 𝑠𝑖 of our corpus
𝐷:

𝑑𝐿(𝑠𝑖) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑖) (1)

Following obtaining the 𝑑𝐿𝑚𝑎𝑥 and 𝑑𝐿𝑚𝑖𝑛 , we normalize
the values:

�̂�𝐿(𝑠𝑖) =
𝑑𝐿(𝑠𝑖)− 𝑑𝐿𝑚𝑖𝑛

𝑑𝐿𝑚𝑎𝑥 − 𝑑𝐿𝑚𝑖𝑛

,∀𝑖 ∈ [0, |𝐷|]. (2)

Rarity The repetitiveness of words is a significant fac-
tor. We use the metric introduced in [27] where rarity
is defined as the probability product of unigrams. This
metric represents sentence information since the scores
of longer sentences are the sum of more words and thus
are likely to be more meaningful. Given a corpus of sen-
tences, {𝑠𝑖}𝐷𝑖=0, the complexity metric for word rarity is
defined as:

𝑑𝑅(𝑠𝑖)
Δ
= −

𝑁𝑖∑︁
𝑘=1

log 𝑝
(︁
𝑤𝑖

𝑘

)︁
(3)

where we use logarithms of word probabilities. The com-
ponent 𝑝(𝑤) is defined as:

𝑝(𝑤)
Δ
=

1

𝑁𝑡𝑜𝑡𝑎𝑙

𝑀∑︁
𝑖=1

𝑁𝑖∑︁
𝑘=1

1𝑤𝑖
𝑘
=𝑤 (4)

for each 𝑤 unique word in a corpus and 1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, is the
indicator function equal to 1 if its condition is satisfied
or 0. We compute this value for each sentence 𝑠𝑖 of
our corpus 𝐷, obtaining the 𝑑𝑅𝑚𝑎𝑥 and 𝑑𝑅𝑚𝑖𝑛 and we
normalize the values:

�̂�𝑅(𝑠𝑖) =
𝑑𝑅(𝑠𝑖)− 𝑑𝑅𝑚𝑖𝑛

𝑑𝑅𝑚𝑎𝑥 − 𝑑𝑅𝑚𝑖𝑛

,∀𝑖 ∈ [0, |𝐷|]. (5)

Readability Metric Comprehensibility or, more com-
monly, readability may be related to the speed of per-
ception, reflex blink technique, reading speed, reading
fatigue, cognitively motivated characteristics, and word



English Italian French
Model Loss Perplexity Loss Perplexity Loss Perplexity
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (BERT) 2.74 270.42 3.96 336.38 4.19 304.20
Baseline𝐿𝑅𝐶 (BERT) 2.53 254.23 4.06 330.21 4.38 296.71
Total-Curriculum (BERT) 2.56 250.64 3.83 324.73 4.06 300.18
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 (BERT) 2.26 245.348 3.86 304.70 3.46 287.16
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (GPT2) 4.33 122.37 6.24 135.48 6.36 125.05
Baseline𝐿𝑅𝐶 (GPT2) 4.20 119.36 6.46 122.32 6.83 122.26
Total-Curriculum (GPT2) 3.97 117.29 6.32 120.97 6.09 124.63
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 (GPT2) 3.55 96.66 6.43 116.65 6.38 108.23

Table 3
Loss and Perplexity after Pre-training on the test set.

difficulty for a specific reader. Unfortunately, it is not
always possible to collect these characteristics.

We used the Flesch-Kincaid metric [28] as an assess-
ment tool for text comprehension. This metric is based
on the length of sentences and words within a text by
quantifying difficulty with a score. The lower the score,
the easier it is to read and understand the text. We use
the following formula:

𝑑𝐶(𝑠𝑖) = 0.39
𝑎𝑣𝑔(𝑑𝐿(𝑠𝑖))

100
+

11.8
𝑎𝑣𝑔(𝑑𝐿(𝑤𝑖))

100
− 15.59

(6)

where 𝑎𝑣𝑔(𝑑𝐿(𝑠𝑖)) average sentence length is the
number of words in a sentence divided by the number of
sentences, and 𝑎𝑣𝑔(𝑑𝐿(𝑤𝑖) is the average word length,
i.e., does the number of words divides the number of syl-
lables per word. The value 0.39 is used to scale the effect
of the average sentence length to compare it to the effect
of the average word length, weighted by 11.8. The final
score is then adjusted by subtracting the value of 15.59,
which adjusts the score scale to match the grading levels
used in education more closely. We calculate this value
for each sentence 𝑠𝑖 and obtain the maximum 𝑑𝐶𝑚𝑎𝑥 and
the minimum 𝑑𝐶𝑚𝑖𝑛 scores. Finally, we normalize these
values:

�̂�𝐶(𝑠𝑖) =
𝑑𝐶(𝑠𝑖)− 𝑑𝐶𝑚𝑖𝑛

𝑑𝐶𝑚𝑎𝑥 − 𝑑𝐶𝑚𝑖𝑛

, ∀𝑖 ∈ [0, |𝐷|]. (7)

3.2. Applying Complexity Heuristics
In the first phase, we compute the complexity of each
sentence 𝑑𝐿𝑅𝐶(𝑠𝑖) by adding the normalized values
of length �̂�𝐿(𝑠𝑖), rarity �̂�𝑅(𝑠𝑖), and readability score
�̂�𝐶(𝑠𝑖), that is:

𝑑𝐿𝑅𝐶(𝑠𝑖) = �̂�𝐿(𝑠𝑖) + �̂�𝑅(𝑠𝑖) + �̂�𝐶(𝑠𝑖) (8)

Then, we sort the sentences of the original corpus by
order of increasing complexity before the pre-training
phase. Finally, we recompose the re-ordered corpus ready
for pre-training.

3.3. Splitting a Corpus-Based on
Block-sizes

Secondly, following the work of Nagatsuka et al. [9],
we split the original corpora into training samples of the
specified size. Each input text (block) for BERT and GPT2
pre-training should not be linguistically consistent as a
sentence but a fixed interval of contiguous text. Thus, it
is not guaranteed that the input is a period or begins with
the first word of a sentence. Moreover, after extensive
experiments, Liu et al. [29] argue that the input sequence
should be at most 512 tokens. However, we follow an
incremental approach that differs from the static sizing of
512 tokens per batch. The difference is the order, which
is the reason why it could be easier for a Transformer
to learn by order of complexity. We train a Byte-Pair
Encoding (BPE) at the byte level [30] to split the raw
text into a sequence of tokens. Byte-level BPE allows
the decomposition of words, including words outside
the vocabulary likely to appear during testing, especially
when using a small training dataset. In the experiment,
we set the vocabulary size to 20, 000.

3.4. Gradual Training
Using the corpus sorted by complexity order, we train a
step model with four block sizes, namely 64, 128, 256,
and 512. At first, we train the model with the shortest
block-size, 64, for an arbitrary number of steps. Then, we
continue to train the model with block-sizes of 128 and
256, respectively, for the same number of steps. Finally,
we finish with the largest block-size of 512.

4. Experimental Results and
Discussion

We evaluated our proposed CL-LRC approach in model
performance in the experiments. Therefore, we show
that performances increase to the proposed state of the
art in [9]. We use Wikitext-2 [31] to reproduce the re-



sults proposed. Hence, we perform the pre-training from
scratch for BERT [11] and GPT2 [30]. Therefore, we in-
vestigated perplexity, loss, and learning curves during
and at the end of the pre-training. All experiments were
performed on two NVIDIA RTX A6000 with 48 GB of
memory. The code and model will be released for further
research.

4.1. Data
BERT and GPT2 are pre-trained with huge corpora, i.e.,
bookcorpus and Wikipedia-dump with about 3 billion
words [32]. In this work, we used Wikitext-2 [31], a
small corpus for simulations, allowing pre-training with a
limited computational resource. Wikitext-2 is a standard
language model corpus with 720 good-quality articles
from English Wikipedia. In addition, we introduced two
further corpora from the Italian and French translations
of Wikitext-2.

4.2. Experimental setup
We use the same corpus in three different languages
to analyze learning divergences between different lan-
guages. Hence, we perform pre-training from scratch
with the baseline methods, and then with complexity
metrics (Baseline𝐿𝑅𝐶 ), the Total-Curriculum (CL pro-
posed in [9]), and our CL-LRC called 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶

using the settings proposed in [9]. In particular, in our
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 , we sort the corpora according to com-
plexity, split the corpora according to the difficulty level
of the training samples, and perform the pre-training
phase by increasing the block size. We performed these
steps for all corpora and pre-train BERT and GPT2 from
scratch. Finally, we report the losses during learning,
the final losses on the evaluation set, and the average
perplexity of different cuts of the evaluation set.

4.3. Results
Difficulties in learning a language depend on the complex-
ity of the language itself. However, it can be alleviated
using curricular techniques and greatly improved using
linguistically motivated methods, maintaining reduced
training times as shown in Table 6. These conclusions
derive from the pre-training results from scratch in three
languages using Baseline, Total-Curriculum, and our CL-
LRC techniques visible in Table 3. In Figure 5, it can be
observed from the baselines of the different corpora that
English language learners, on average, are less perplexed.
Moreover, the 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 outperforms the others
in all corpora. However, the batch-size increase supports
the performance achieved by Curriculum Learning. Fi-
nally, in Figure 4, learning curves explain the trade-off
between pre-training steps and loss values.

4.3.1. Our Methods vs CL & Baseline

The linguistically motivated pre-training by our met-
rics has improved the technique proposed in [9]
and outperformed the baseline models. In particular,
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 (BERT) outperforms the version with-
out LRC of 5 points for English and more than 30 points
for Italian and French over perplexity scores. The same
is true for GPT2 with less striking results (ranging from
16 to 4 points). Hence, this measure seems to have less
impact on the Italian and French, as we can observe from
Baseline𝐿𝑅𝐶 models for English pre-training and others.
Finally, in Fig. 5, we can observe a clear gap in perplexity
in the presence of portions of text with a small number
of tokens, which is reduced to zero or almost zero when
the number of tokens is more significant.

4.3.2. Languages over Complexity

With the aim of studying intrinsic learning difficulties,
we propose our line of experiments from the same corpus
translated into three different languages: English (origi-
nal), French, and Italian. We can observe that the models
started from scratch have more difficulty learning the
French and Italian corpora than the English ones. We be-
lieve this result’s origin stems from the structure and com-
plexity of the languages concerned. It is widely known
that being both Romance languages, French and Italian
have a very complex grammatical structure, very differ-
ent from English. Regarding verb conjugation, while
English verbs have relatively simple and regular conjuga-
tion patterns, French and Italian ones are very intricate,
with various tenses, moods, aspects, and verb endings.
For the agreement rules, unlike French and Italian, En-
glish has no grammatical gender distinction, so there is
no agreement based on gender. Moreover, in contrast to
the skinny use in English, French, and Italian have com-
plex systems of clauses and subordination. Therefore,
it is more difficult for a non-native speaker of Italian or
French to learn these two languages from scratch, for the
same reasons it is also for the models we tested.

4.4. Convergence Speed & Training time
Our CL-LRC outperforms the Total-Curriculum regarding
loss during pre-training. However, in Figure 4, it can be
seen that the loss of the basic model converges to around
50; in contrast, both models with curriculum steadily
decrease and reach a higher convergence rate. More-
over, it can be observed that the loss of the curriculum-
based model decreased steadily whenever the difficulty
of the training samples was changed. Finally, in Table
6, it is possible to observe how curricular approaches
can significantly reduce training time and consecutively
consumption and costs.



5. Conclusion
In this paper, we explored the effectiveness of Curricu-
lum Learning (CL) in reducing the cost of pre-training
and increasing the results. We trained LLMs by orga-
nizing examples from the simplest to the most complex,
thereby leveraging the concept of complexity measures.
Hence, we pre-trained from scratch BERT and GPT2 us-
ing standard baselines and CL approaches. After deep
analysis, we show that divergence in learning can be mit-
igated using CL approaches reinforced by measures to
determine the complexity of examples. These measures,
applied during pre-training to sort the corpus according
to complexity, show outstanding results. While the orig-
inal approach was tested and validated for the English
language, this research aimed to investigate whether CL
and its associated complexity measure could be applied
to other languages without significant adaptation. Exper-
iments conducted in a low-resource environment show
that the proposed method leads to better performance in
terms of loss during learning and perplexity on test data.

In future works, we will continue to propose pedagog-
ically motivated mechanisms to analyze weaknesses [33]
and empower Cross-lingual abilities to deliver multistep-
reasoning answers [34].
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Appendix A

Table 4
Loss during training phase.

Appendix B

Table 5
Perplexity scores over different chunck of tokens of testset.



Appendix C
Model Training Time (English) Training Time (Italian) Training Time (French)
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (BERT) 5:22:33 5:41:11 5:52:33
Baseline𝐿𝑅𝐶 (BERT) 5:20:15 5:43:26 5:50:51
Total-Curriculum (BERT) 4:37:11 4:31:38 4:42:27
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 (BERT) 4:35:46 4:37:16 4:40:04
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (GPT2) 6:37:21 6:42:28 6:58:13
Baseline𝐿𝑅𝐶 (GPT2) 6:37:21 6:44:09 7:02:51
Total-Curriculum (GPT2) 5:10:29 5:19:05 6:16:18
𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚𝐿𝑅𝐶 (GPT2) 5:06:46 5:20:16 6:09:16

Table 6
Statistics of the training time (hours) of the baseline and Curriculum Learning models.
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