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Abstract
English. Modern ASR systems generally encode information by employing representations that favour performance indicators
such as Word Error Rate (WER), making the interpretation of results and the diagnosis of any error extremely difficult if
not impossible. In particular, within the context of end-to-end ASR systems, studies have been devoted to investigating the
degrees of explainability of such systems by considering the use of different sets of linguistic features. This work explores
the potential of different machine learning algorithms by considering features extracted from syllabic units of analysis and
highlights that relying on syllabic Mel-Frequency Cepstral Coefficients increases the interpretability of complex techniques.
In fact, the latter currently extract basic units in ways that are highly skewed toward operational convenience. The proposed
method would reduce the need for computational resources both in training and in the inference phases, which results in
economical and less time-consuming processes.

1. Introduction
1 The advent of Deep Neural Networks (DNN) enabled
modern ASR systems and, more in general, Natural Lan-
guage Processing (NLP) systems to perform at their best
when fed with enough training data and supplied with
sufficient computational resources. The recent tendency
is to focus efforts on incrementing performance indica-
tors like Word Error Rate (WER), making DNN models
behind the scenes increasingly complex and larger, with
the effect of a dramatic reduction in their interpretability
and an increase in the number of parameters consid-
ered and therefore in the required computation effort
[1, 2]. As an example, state-of-the-art End-to-End (E2E)
ASR systems [3, 4, 5, 6] employ self-supervised learning
techniques to determine, based on huge amounts of unla-
belled data, the best representation of the speech signal
based on fixed-length units, which results in adaptable
systems. In the same way, Big Language Models (Big
LM) employ advanced encoding techniques, like those
based on Byte Pair Encoding (BPE)[7, 8, 9], to encode
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sub-word units reducing their impact on memory and
thus allowing for the creation of bigger models with mil-
lions or even billions of parameters aimed at catching
a wider range of natural language nuances. On the one
hand, these techniques definitely improve systems’ per-
formances and capabilities. On the other hand, they also
reduce models’ interpretability from their foundations,
which not only makes them increasingly similar to black
boxes but also augments their need for computational
resources. Wav2Vec2 authors [3] suggest that "switching
to a seq2seq architecture and a word piece vocabulary"
would result in performance gains. In line with this, the
employment of larger and linguistically motivated units,
like syllables, could bring several advantages. Firstly, it
would improve performance in terms of WER and com-
putational resources required to train and operate these
systems. Secondly, it would increment the system’s in-
terpretability, allowing domain experts (i.e. linguists,
especially phoneticians) to dive deep into error analysis,
which means favoring interpretable rather than computa-
tionally efficient but poorly understandable inputs. The
main contributions of this study are:

• the proposal of an interpretable approach to
speech-oriented feature extraction based on syl-
lable;

• a comparison of various classification techniques
with different interpretability grades.
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2. Related Work

2.1. Explaining Modern ASR
Among the drawbacks of modern Deep Neural Networks
(DNN) based systems, the most frequently cited are their
poor interpretability [10], the lack of sufficient training
corpora [11] and the high demand for computational re-
sources [12, 13, 14]. In recent years, studies have been
devoted to the investigation of the degrees of explain-
ability of ASR and, more in general, of speech-related
systems based on DNN. Some of these works aim to
interpret the internal model dynamics and overall ‘be-
haviour’ through model-output backtracing or simula-
tions via explainability methods [15, 16, 17]. In some
other cases, ‘probing’techniques have been employed to
investigate what’s encoded in DNN layers at different
‘depths’ [18, 19] by introducing probes aimed at catch-
ing intermediate internal representations to be used for
various tasks (e.g., regression or classification). Through
classification and measurements, some probing studies
have analysed how the accent of pronunciation in dif-
ferent English varieties influences the performance of
DeepSpeech2 [20, 21]. These studies employed linguistic-
related features and highlighted how the contextual pho-
netic information contained in intermediate representa-
tions influenced the classification. A further study used
probing to investigate the multi-temporal modelling of
phonetic information in the Wav2Vec2 ASR [3, 22]. Some
authors have also proposed a spectrogram-like repre-
sentation of emissions that could be used for speaker
identification and speech synthesis [23].

However, although some studies did consider linguis-
tic features to explain the behaviour of existing models,
these were related to isolated fixed-length segments and,
to the best of our knowledge, did not take into account
larger linguistically meaningful units (i.e. syllables).

2.2. Syllabic unit structure
The notion of syllable is quite well-known in linguistic
studies. However, its definition has been much debated
since it consists of dynamic and complex structures that
can be analysed from different perspectives, i.e., phono-
logical or phonetics, and involve various aspects, like
articulatory gestures coordination, intensity modulation
[24]. Acoustically, a syllable is described as being char-
acterized by an intensity peak in the speech signal sur-
rounded by less intense aggregated sounds.

The essential element of a syllabic unit is the sonor-
ity peak, the nucleus, which usually consists of vowel
sounds. The nucleus can be accompanied by aggregated
consonant sounds at the beginning of the unit preced-
ing the nucleus, the onset, or at the end following it, the
coda. Different languages allow syllabic combinations

of vocalic (V) and consonantal (C) sounds with different
degrees of complexity. However, in many languages, CV
is described as the most common structure and the most
resistant to phonetic variation and the related reduction
phenomena [25, 26, 27].

While disagreements have mainly concerned determin-
ing boundaries between different units, the alternation
of different units can be grounded on the principles of
sonority scale and onset maximization [28]. Thus, the
syllable can be described as a sequence of speech sounds
where the onset of the sequence is less intense than the
preceding coda.

Based on the structural integrity of the syllable, ev-
idence has been provided that the syllable rather than
phonetic segments can represent a relevant basic unit of
speech production and perception [29, 30]. In fact, [26]
shows that the observable variation in connected speech
is more systematic at the level of the syllable than at one
of the phonetic segments.

3. Material and Methods
To achieve our defined goal, we considered an input con-
sisting of syllables from datasets manually annotated by
domain experts and evaluated the performances achieved
by different classification methods when relying on dis-
tinct sets of syllable-based features.

3.1. Corpus and annotation
This study is based on the Italian and Spanish datasets of
the Nocando corpus [31] which consists of spoken narra-
tive texts produced by 11 Italian and 6 Spanish subjects.

The audio files and their transcriptions were processed
using the WebMAUS Basic services [32] which provided
automatic phonetic transcriptions. The latter were man-
ually edited in Praat [33] and syllabified according to the
principles of sonority sequencing and onset maximiza-
tion [28]. Syllabic units were also annotated for their
phonetic structural pattern (CV, CCV, CCVC, CVC, VC,
V).

The Italian dataset consists of 940 syllables. As ex-
pected, the structural patterns are not evenly distributed,
but the following distribution is observed: CV (65%), CVC
(16%), CCV (9%), VC (3%), CCVC (3%), V (2%).

As for the Spanish dataset, it consists of 609 syllables.
The occurring patterns do not differ much from the Italian
ones: CV (65%), CVC (14%), CCV (7%), VC (5%), V (4%),
CCVC (3%).

3.2. Syllable-based features
For our tasks, we assumed the hand-annotated syllables
as base units. These were considered in two different



ways. At first, we look at syllables as a single piece of sig-
nal, which is how they have been traditionally considered
and processed. Then, we consider them as a signal pre-
sumably made up of three components, namely the onset,
the nucleus and the coda. The following four feature sets
were considered.

• OPSM consisting of the GeMAPS [34] set from
the OpenSmile toolkit [35]. It is composed of
62 features and provides information about the
whole considered signal, namely the syllable.

• MFCC consists of 13 Mel Frequency Cepstrum
Coefficients, which represent the most salient
information for speech recognition tasks [36], ex-
tracted for each syllable part2, i.e. onset, nucleus
and coda.

• Full namely the concatenation OPSM and MFCC.
• PCA consists of the Principal Component Analy-

sis 3 (with an explained variance 95%) of the Full
set.

In order to avoid biases due to dimensionality, all the
considered feature sets were normalized to achieve zero-
mean and unitary variance 4.

3.3. The experimental protocol
This study consists of a classification task that concerns
samples labelled with syllable patterns and aims at classi-
fying them on the basis of the considered feature sets. In
particular, we compared the following four techniques:

• The K-Means3[38] a vector-quantization method
which divides n objects in k clusters based on their
mean distance.5

• Hierarchical Agglomerative Clustering
(HAC)3 [39] is a greedy technique which aims
at grouping (or splitting) clusters based on a
similarity measure. The final output is a clusters
hierarchy which could be divided based on the
number of desired clusters.6

• The Support Vector Machine (SVM)3 [40] is a
versatile algorithm used for classification and re-
gression tasks, whose objective is to find a hyper-
plane in a multi-dimensional space that enables
the classification of the considered data points.

2MFCC components were extracted through the Librosa library
at version 0.9.2.

3Defined in Scikit-learn [37] version 1.1.3.
4Normalization was achieved through the Scikit-learn (version

1.1.3) StandardScaler.
5K-Means parameters: k=6, tolerance to declare

convergence=1e-4, initialization through the k-means++ method,
random state=42, algorithm=LLoyd’s EM algorithm.

6HAC parameters: clusters=6, metric=euclidean, linkage=ward

• Lastly, we considered Convolutional Neural
Network (CNN) [41, 42] as they represent state-
of-the-art in speech processing tasks [3]. The
considered CNN7 consists of a Conv2d layer with
the ReLu activation function, followed by a Feed-
Forward with a SoftMax. In particular, we choose
to compare two settings: the first one with a ker-
nel size of 3x3; The second one considers a larger
context with a size of 3x9.

In the first phase, we compared K-Means, HAC and
SVM as, by their very nature, they are considered more
interpretable than neural networks. On the one hand, K-
Means and HAC allowed us to explore how sample group-
ing is affected when the numerousness of clusters is fixed
or not, without external supervision. Then, SVM provides
a robust and interpretable way of supervisingly evaluat-
ing how samples group when a model is set to learn a
few interpretable parameters. Lastly, we evaluated the
performance of a CNN on the MFCC feature set to com-
pare it with the best-performing method among those
from the previous phase, allowing us to compare how
an interpretable yet powerful method performs against
one of the fundamental building blocks of modern DNN.
We compare performances through the micro averaged
F1 score (Equation 1), which is particularly suitable for
multi-classification tasks.

𝐹1 =
𝑇𝑃

𝑇𝑃 + 1
2
* (𝐹𝑃 + 𝐹𝑁)

(1)

Given the fuzzy boundary between syllabic units and
the high degree of variability within each syllable struc-
ture class, which not only concerns the presence or ab-
sence of segments but also their phonetic specification,
the described techniques are applied considering the
pooled types of syllable samples.

4. Results
Figure 1 reports the F1-score achieved by K-Means, HAC
and SVM over all the considered feature sets. The SVM
classifier outperforms both clustering methods on any
feature set. However, this was not our primary goal. Note
how, for any of the considered methods, the performance
difference between the MFCC set and the PCA one is
rather small.

For the SVM, results reported are referred to the op-
timal configuration, which has been found through a
grid search on C (between 0.5 and 10 with a step of 0.5),
gamma (within 0.01, 0.001 and 0.0001) and kernel type
(within rbf, polynomial and sigmoid). The train, valida-
tion and dev set were respectively 60/20/20 of the original

7Implemented with Pytorch 1.13 and Pytorch-lightning 1.8.3



Figure 1: F-scores of SVM, K-Means and HAC per all the
considered feature sets.

dataset. Data splits were balanced on the combination of
the pattern (i.e. the label) and language.

Figure 2: Confusionmatrix of the SVMclassifier on theMFCC
feature set

The confusion matrix that reports the output of the
SVM classifier operating on the basis of MFCC (Fig. 2),
highlights that better performances concern the CV struc-
ture, which is also the more frequent in the data. As
for the other structures, misclassification cases mostly
concern their identification as CV, which reveals that
when considering syllabic units actually occurring in the
speech signal a particularly high similarity emerges be-

tween more complex patterns, i.e. CCV and CVC, and
the CV pattern.

Lastly, Fig. 3 reports the comparison between the SVM
classifier and the considered CNN configurations on the
MFCC feature set. Still, the SVM performed better than
both CNN-based configurations.

Figure 3: Comparison between SVM and CNN settings on
the MFCC feature set.

5. Discussion and Conclusions
In this study, we evaluated the use of phonetic syllables
as basic units for speech-related tasks aimed at preserv-
ing and, if possible, incrementing the interpretability of
different learning techniques. We employed four differ-
ent feature sets extracted upon the assumption of the
phonetic syllable as a fundamental unit, considering dif-
ferent points of view: the more theoretically informed
MFCC-based that is strongly tied to the signal; the more
analytic OPSM based on Opensmile statistical analysis;
the most extended which is a combination of both; the
most computationally efficient based on the PCA anal-
ysis. Then, upon these feature sets, we evaluated the
performance of three well-known machine learning tech-
niques known for being highly interpretable. Finally, we
compared the best-performing model, namely the SVM,
with a convolutional network on the MFCC set, obtain-
ing comparable performances. Our preliminary results
highlight that a set of features aimed at keeping things
interpretable, namely the MFCC, lets different methods
achieve performances that are comparable to those of
richer (Full), analytic (OPSM) or computationally opti-
mized (PCA) sets, which do not retain the same inter-
pretability grade. These findings corroborate the idea



that training speech-oriented learning models on larger
and linguistically meaningful units could increase the
capacity of domain experts and software/ml engineers
to diagnose system failures and, at the same time, help
reduce the effort and computational resources needed
for signal preprocessing. Ongoing analyses involve the
enlargement of the annotated datasets to improve the
results of further classification trials. In Appendix we re-
ported some preliminary results of a classification trial on
an extended dataset, about 26 minutes of hand-annotated
speech, consisting of 3589 phonetic syllables. In future
works, we plan to extend this kind of study to recent ar-
chitectures like Squeezeformer[43] or CNN-BLSTM[44].
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A. Further results
In Figures 5 and 4, we reported the confusion matrix of
the best-performing SVM classifier on MFCC features, in
the normalized and non-normalized versions respectively.
These preliminary results were obtained on an extended
version of the dataset which is currently under further
analysis.

Figure 4: Confusionmatrix of the SVMclassifier on theMFCC
feature set, based on a new version of the dataset incremented
by 20 minutes of annotated speech.

Figure 5: Normalized Confusion matrix of the SVM classifier
on theMFCC feature set, based on a new version of the dataset
incremented by 20 minutes of annotated speech.
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