
Building a Spoken Dialogue System for Supporting Blind
People in Accessing Mathematical Expressions
Pier Felice Balestrucci1, Luca Anselma1, Cristian Bernareggi2 and Alessandro Mazzei1

1Dipartimento di Informatica, Università degli Studi di Torino, Italy
2Laboratorio Polin - Dipartimento di Matematica, Università degli Studi di Torino, Italy

Abstract
English. Mathematical expressions are complex hierarchical structures of symbols that are usually accessed by visual
inspection. These expressions are seldom rendered with natural language since users are not usually required to read them
aloud. People with a visual impairment generally use LATEX with screen readers to acquire mathematical expressions. However,
LATEX can be verbose, slow to listen, and difficult to learn. This work proposes a way to make mathematical expressions
easier to be accessed by people with disabilities by exploiting their hierarchical structures. We describe and evaluate a
dialogue system to vocally navigate mathematical expressions in English. In contrast with standard screen readers, the vocal
interaction allows people to query the system about sub-parts of the expressions.

Italiano. Le espressioni matematiche sono complesse strutture gerarchiche di simboli generalmente esplorate visivamente.
Queste espressioni raramente vengono rappresentate tramite linguaggio naturale, perché agli utenti di solito non è richiesto di
leggerle ad alta voce. Le persone con disabilità visiva di solito usano il LATEX con uno screen reader per ascoltare le espressioni
matematiche. Tuttavia, il LATEX può essere verboso, lento da ascoltare e difficile da imparare. Questo lavoro propone una
alternativa per rendere più accessibili le espressioni matematiche alle persone con disabilità sfruttando la loro struttura
gerarchica. Descriviamo ed valutiamo quindi, un sistema di dialogo per navigare vocalmente le espressioni matematiche in
inglese. A differenza dei normali screen reader, l’interazione vocale consente alle persone anche di interrogare il sistema sugli
elementi che compongono le espressioni.

Keywords
dialogue system, natural language processing, visually impaired people

1. Introduction
In the last few years, improvements in speech technolo-
gies have enabled the use of Natural Language Processing
in various application domains. Among these, the field
of assistive technologies stands out as one with the most
potential. Specifically, spoken dialogue systems (SDSs)
can enhance the quality of life for numerous users with
special needs.

In this paper we study the task of accessing mathemat-
ics for blind people. Traditionally, people with a visual im-
pairment, in order to acquire mathematics, use LATEX with
screen readers, that are dedicated text-to-speech software.
However, LATEX is verbose, slow to listen, and not well
known in young people. Indeed, LATEX is designed as
a typographical language, that is a technical language
to provide typographical details rather than a compact
description of a mathematical content. Moreover, mathe-
matical expressions can range over multiple dimensions

CLiC-it 2023: 9th Italian Conference on Computational Linguistics,
Nov 30 — Dec 02, 2023, Venice, Italy
$ pierfelice.balestrucci@unito.it (P. F. Balestrucci);
luca.anselma@unito.it (L. Anselma);
cristian.bernareggi@gmail.com (C. Bernareggi);
alessandro.mazzei@unito.it (A. Mazzei)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

(e.g. fractions are arranged on two levels) and the linear
encoding of LATEX can produce a very long sequence with
distant relations among symbols closely connected.

To tackle these issues, in this paper we propose a SDS
based on the main idea to use standard natural language
to interact with mathematical contents. For instance by
using a SDS people with a visual impairment do not need
to use a keyboard and a mouse to use their device. They
can activate vocally the SDS to interact directly. Further-
more, this approach can also address other disabilities, in-
cluding motor impairments. The SDS uses mathematical
sentences, that are natural language sentences containing
the semantics of a mathematical expression [1, 2]. There
are many advantages in using mathematical sentences
with respect to LATEX. First, mathematical sentences are
shorter. Second, they are not semantically ambiguous as
some LATEX expressions (e.g. 𝑓(𝑥) could also stand for
𝑓 · (𝑥)). Third, they do not require knowledge of LATEX, so
that they can be used by a wider class of users (e.g. chil-
dren). In particular, the SDS converts the LATEX encoding
of the mathematical expression in a semantic language,
called Content Math Markup Language (CMML)1. From
CMML, English mathematical sentences are generated
according to good practices for spoken mathematics [3],
through a standard Natural Language Generation (NLG)

1https://www.w3.org/TR/MathML3/chapter4.html

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:pierfelice.balestrucci@unito.it
mailto:luca.anselma@unito.it
mailto:cristian.bernareggi@gmail.com
mailto:alessandro.mazzei@unito.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.w3.org/TR/MathML3/chapter4.html

architecture, i.e. a sentence planner and a realizer.
The interaction design of the SDS is quite straightfor-

ward: the SDS pronounces the mathematical sentences
and the user can interrupt it to “navigate” the expres-
sion (e.g. ask for repetition of its parts). So, the dialogue
manager component coordinates the recognition of a rep-
etition command with the generation of (a subpart of)
the mathematical sentence.

We performed a user-based evaluation on the effec-
tiveness and the usability of the SDS. The system imple-
mentation and evaluation were conducted with the in-
volvement of visually impaired experts. The results show
that the developed system has a good impact both on the
comprehension of mathematical expressions and on the
user experience, constituting a promising approach for
helping people with visual impairments.

The paper is structured as follows: In Section 2, we re-
port related work. In Section 3, we describe the main com-
ponents of the SDS. In Section 4, we describe a human-
based evaluation of the SDS and in Section 5, we closes
the paper with some consideration and future work. Fi-
nally, Section 6 discusses some limitations of our SDS.

2. Related Work

2.1. Access to mathematics by people with
visual impariments

Many different solutions have been investigated to enable
people with visual impariments to access mathematical
expressions. They can be divided up into two main cat-
egories: systems to read mathematics and systems to
type and simplify maths expressions. The former cat-
egory includes applications to read LaTeX in PDF files
[4, 5, 6, 7], maths in web pages through speech rendering
of MathML [8] or MathJax [9, 10], to read source LaTeX
documents [11, 12] and maths in R Markdown [13]. These
solutions propose and evaluate reading models based on
sequential reading or hierarchical reading of maths ex-
pressions based on keyboard interaction. To the best of
our knowledge, to date no studies have investigated a
dialogue system to facilitate reading and exploration on
maths expressions through speech input and output.

The latter category includes specialized applications
that are designed to facilitate students with visual impair-
ments to simplify expressions in LaTeX format [14] or in
a multimodal work environment specifically designed for
inclusive classes [15, 16] and to work with bi-dimensional
mathematical procedures as arithmetic operations [17].

2.2. Speech-to-text solutions for entering
maths expressions

This section introduces the solutions which have been
investigated to write mathematics through speech in-
put. TalkMaths [18] [19] is a prototype application
which translates a limited set of arithmetic, algebraic
and trigonometric expressions from spoken English into
LaTeX or MathML. It adopts Dragon Naturally Speak-
ing2 (DNS) as speech recognition system. The translation
rules are defined only for English and the recognition
implements a dictation model based on pauses, which
slow down the dictation process [20].

Mathifier [21] is an open source software module
which converts a subset of mathematical expressions
from English into LaTeX. It combines a dictionary, a lan-
guage model and an acoustic model to recognize mathe-
matical English utterances. It is based on Sphinx-4 [22] to
recognize speech. This project has not been maintained
and updated regularly.

CamMath [20] is a proof of concept prototype appli-
cation designed to prove the advantages of continuous
speech over discrete utterance of mathematical expres-
sions in English.

Metroplex MathTalk3 is a commercial application that
provides speech input of arithmetic, algebra, calculus and
statistics in English.

EquatIO4 enables dictation of simple maths expres-
sions in English in MS Word and in GSuite applications.

Even though these applications have been designed to
enable speech recognition of mathematical expressions,
none of them has addressed the needs of people with vi-
sual impairments by combining speech input and speech
output.

3. Spoken Dialogue System
In this section we describe the main components of the
SDS. As most rule-based SDSs [23], the information flow
follows a path initiated by the user, who starts the in-
teraction with a request to read a specific mathematical
expression (Fig. 1). The SDS pronounces the mathemati-
cal sentence. The user listens to the produced sentence,
and possibly interrupts the SDS asking for clarification.
At this point the SDS answers to the request and the
dialogue goes on. In Fig. 1 we report the architecture of
the SDS, which is based on three main components, that
are the response generator (described in Section 3.1), the
language understanding and the dialogue management
(described both in Section 3.2).

2https://www.nuance.com/it
3www.metroplexvoice.com/
4https://www.texthelp.com/en-us/products/equatio/

https://www.nuance.com/it
www.metroplexvoice.com/
https://www.texthelp.com/en-us/products/equatio/

Figure 1: Dialogue System Architecture

3.1. Response Generator and
Text-to-Speech

The generation side of the SDS follows the traditional
NLG architecture composed of document planning, sen-
tence planning and realizer [24]. In particular, for the
mathematical sentence generation, we follow the pipeline
described in Mazzei et al. [1, 2]. Note that, in contrast
with Mazzei et al. [1], we model the grammar of the math-
ematical sentence for English rather than Italian for this
novel SDS. Moreover, we propose an SDS, whereas in
Mazzei et al. [1] we proposed a pure NLG system, where
the interaction was limited to listening to the generated
sentence.

The document planning consists of an encoding of the
mathematical expression from LATEX into a semantically
unambiguous format, i.e. CMML, through the LatexML
tool [25], specifying some heuristics defined by the spe-
cific mathematical sub-domain (e.g. algebra).

Let us consider the following formula as an example:
“𝐴×𝐵 = {(𝑥, 𝑦) | 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}” and its LATEX repre-
sentation: “A \times B = { (x, y) \mid x \in A, y \in B}”. The
mathematical formula will be converted in the following
CMML format:

<apply>
<eq/>

<apply>
<cartesianproduct/>

<ci>A</ci>
<ci>B</ci>

</apply>
<apply>
<conditional-set/>

<apply>
<pair/>

<ci>x</ci>
<ci>y</ci>

</apply>
<apply>
<and/>

<apply>
<in/>

<ci>x</ci>
<ci>A</ci>

</apply>
<apply>
<in/>

<ci>y</ci>
<ci>B</ci>

</apply>
</apply>

</apply>
</apply>

The CMML representation of the above formula
is unambiguous: for each operator (empty tag–e.g.
<eq/>), there is an opening and closing tag (i.e. <ap-
ply>...</apply>). Within these tags, we can find nested
parts of the mathematical sentence such as other oper-
ators and the variables that compose the arguments of
each operator.

For implementing the sentence planning, we model the
syntactic structure of the English mathematical expres-
sions by using as reference the linguistic constructions
presented in Chang [3], a standard reference point for
spoken mathematics in assistive technologies. With this
linguistic reference for English, following the approach
of Mazzei et al. [1], we divide the mathematical opera-
tors in categories characterized by the same arity, and for
each one we define a syntactic template. For instance, the
operators in Table 1 (e.g. +) are generally modeled with
declarative sentence (e.g. 𝑎 𝑝𝑙𝑢𝑠 𝑏), while elementary
functions (e.g. 𝑠𝑖𝑛) are modeled with a noun phrase (e.g.
𝑠𝑖𝑛 𝑜𝑓 𝑥).

Symbol Operator English Form

+ plus plus
− minus minus
/ divide over
* times times

[...][..] power to
∖ settdiff minus
× cartesianproduct cross
∩ intersect the intersection of
∪ union the union of ... and ...

Table 1
Algebraic, Arithmetic and Set Operators

Note that within a category there are still different
ways to compose a sentence. Taking as an example the mi-
nus operator, it can appear as: (1)𝑚𝑖𝑛𝑢𝑠 5, (2) 𝑎𝑚𝑖𝑛𝑢𝑠 𝑏
(a noun phrase and a declarative phrase, respectively).
The difference between these two sentences depends on
how the operator is used. In (1) 𝑚𝑖𝑛𝑢𝑠 is used to define a
negative value, in (2) 𝑚𝑖𝑛𝑢𝑠 is used as the difference be-
tween two variables. From a realisation point, we need to
distinguish two different forms within the category of al-
gebraic, arithmetic and set operators: (1) unary form (e.g.

𝑚𝑖𝑛𝑢𝑠 5): a so-called adjective phrase must be defined
where the operator (e.g. 𝑚𝑖𝑛𝑢𝑠) works as an adjective;
(2) binary form (e.g. 𝑎 𝑚𝑖𝑛𝑢𝑠 𝑏): a declarative structure
must be defined where the operator (e.g. 𝑚𝑖𝑛𝑢𝑠) works
as the parent node of the expression.

The realisation phase uses SimpleNLG [26], which is a
Java library for morphological realization and lineariza-
tion in English. Note that we added special symbols
into SimpleNLG lexicon to produce both parentheses
and pauses. Finally, we control the pronunciation, vol-
ume and pitch by using the Speech Synthesis Markup
Language (SSML)5. As the last step, the mathematical
sentence is pronounced through a Text-to-Speech tech-
nology.

We experiment with two different vocal synthesizers:
the commercial AWS Polly6 and the open source eSpeak7

(both support SSML). AWS Polly is based on an advanced
deep learning technology and has a human-kind voice,
which is clear and highly user-adjustable, whereas eSpeak
is based on a so-called formant synthesis method and
produces a robotic voice. It is worth noting that eSpeak
is a very familiar voice for visually impaired people. The
users can choose which vocalizer to use.

3.2. Speech Recognition, Language
Understanding and Dialogue
Management

The speech recognition module in Fig. 1 is composed of
two different sub modules: Wake-up word detection and
Speech-to-Intent. A wake-up word [27] is a keyword that
triggers the speech-to-intent module. The classification
is binary and happens in real time. For this task we
used Porcupine (v.2.1) [28] which has good results in
comparison to other commercial systems. A Speech-to-
Intent system is able to recognize a user’s intent in a very
specific context. The system works on a small vocabulary
of terms and classifies each user’s request. For this task
we used Rhino (v.2.1) [29] which allowed us to detect in
real time the user’s vocal commands for our mathematical
context.

The intent is translated into a request which is in-
terpreted by the language understanding module with
regular expressions, which matches the intent produced
by the speech recognition with a domain specific speech
act. These speech acts are: (1) repetition, (2) query and
(3) resuming. The repetition intent lets the user ask the
repetition (from a subpart) of the mathematical sentence
(e.g. “Repeat from the first integer”). In this case the sys-
tem searches within the content response what the user
wants to be repeated. The query intent lets the user ask

5https://www.w3.org/TR/speech-synthesis11/
6https://aws.amazon.com/it/polly/
7http://espeak.sourceforge.net/

the system to repeat a specific part of the mathematical
sentence (e.g. “What is the limit of the second integer?”).
In this case, the specific operator in the user’s request
will be searched. If matched, the system produces an
answer with the requested part of the operator. Finally,
the resuming intent lets the user resume the interaction
after an interruption (e.g. “Go on”).

The main algorithm of this module is represented
below:

dialogue():
1. Say "I'm starting to say the sentence"
2. Activate the Wake-up Word Detection

system
3. For each word within the sentence:
4. Say the word
5. If the Wake-up Word Detection

system has detected "Hey stop":
6. Say "Ok, I'm listening to you"
7. Activate the Request

Recognition system
8. Fulfill the request
9. Say "I've finished reading this

sentence, but I'm still here for you"
10. Activate the Request Recognition

system

In lines 1 and 9 the system announces to the user the
start and the end of the expression. After the activation
of the wake-up word detection system, for each word the
system will pronounce it. If the user says the wake-up
word, the system will stop and put itself into a listening
phase waiting for a request. Completed the expression,
the System can continue to answer user’s requests.
The “fulfill the request” method in line 8 works as follows:

fulfill_request(intent, request):
1. Parsify the request
2. If the intent is "Query":
3. Search for an operator in the

request
4. Match the request with the

operator arguments
5. If the match is successful:
6. Answer the question
7. Otherwise, utter an

apology message
8. If the intent is "RepetitionFrom":
9. Search within the sentence

uttered what the user
wants to hear repeated

10. If the search is successful:
11. Repeat from that point
12. Otherwise, utter an

apology message
13. If the intent is "Resume":
14. Resume the synthesis of the

mathematical expression

https://www.w3.org/TR/speech-synthesis11/
https://aws.amazon.com/it/polly/
http://espeak.sourceforge.net/

If the intent has been interpreted as repetition, the
system will search within the content response what the
user wants to be repeated. If the user’s intent has been
interpreted as query, the specific operator in the user’s
request will be searched. If matched, the system will
answer the requested part of the operator. The dialogue
management module is in charge of making decisions.
If the interpreted request does not correspond to any of
the supported possibilities, it asks the user to repeat the
request. Otherwise, the dialogue management searches
the content of the response for the user and sends it to
the response generator module.

4. Evaluation
To evaluate the SDS, we conducted two experiments in-
volving visually impaired users with the approval of the
University’s ethical committee. For the first experimenta-
tion we tested the effectiveness and solidity of the English
generation system in a similar way as Mazzei et al. [1] and
for the second experiment the effectiveness and usability
of the SDS. In Experiment 1 we recruited two blind native
Italian speakers proficient in English with an excellent
maths knowledge that participated freely and without
compensation. We retrieved from a calculus textbook
[30] 10 mathematical expressions of different length and
difficulty (Table 2 and Table 3), and we represented them
in CMML. The difficulty of a formula is related to the
number of parentheses and the number of nodes in its
CMML representation. Then, we used SDS to synthesize
the expressions. Using the same experimental setting of
Mazzei et al. [1], we obtained 25 audios (10 easy ones gen-
erated using different synthesizers, i.e. eSpeak and Polly,
and 15 difficult ones generated with different strategies
for generating pauses, e.g. for parentheses). We uploaded
the audio files to Youtube and provided them to the users
along with a questionnaire8 (on Google Form, because
it is accessible) containing profiling questions and the
request to write down the expressions in the audio files
in an unambiguous notation.

We evaluated the written expressions with two metrics:
Exact Match (EM) and SPICE [31]. EM is 1 if the original
CMML and the one obtained by the user are the same,
and 0 otherwise. SPICE is obtained by calculating the
F-score of the overlapping between the original CMML
tree and the one obtained from the user. The overlapping
is measured by decomposing the CMML trees in typed
elementary substructures, which are operands, operators
and their relations. Experiment 1 results (Table 4) show
that the generation system seems to be effective since the
users obtained a good understanding of the expressions.

8https://docs.google.com/forms/d/e/1FAIpQLSc93-1NAIWy_
SXQaTJH2tAnHKg9PHSysurOSzf3xbSvtKG7Ig/formResponse?
pli=1

LATEX Formula Nodes

𝑛
√
𝑥 = 𝑥1/𝑛 10

𝑥 > 𝑏 =⇒ |𝑓(𝑥)| < 𝑀 10

𝑔−1(𝑦) = 𝑓−1 ((𝑦 − 𝑏)/𝑎) 13∫︁ 𝑐

𝑏

𝑎 d𝑥 = 𝑎(𝑐− 𝑏) 14

𝐴×𝐵 = {(𝑥, 𝑦) | 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} 15

Table 2
Easy expressions - Few parenthesises and nodes - Experiment
1

LATEX Formula Nodes

lim

(︂
1 +

1

𝑛

)︂𝑛

= 𝑒 10∫︁
1

√
𝑚2 − 𝑥2

d𝑥 = arcsin
𝑥

𝑚
+ 𝑐 20

𝑦 = 𝑓(𝑎) +
𝑓(𝑏)− 𝑓(𝑎)

𝑏− 𝑎
(𝑥− 𝑎) 21

𝑛∑︁
𝑘=0

𝑓 (𝑘)(𝑥0)

𝑘!
(𝑥− 𝑥0)

𝑘 28

lim
𝑥→𝑥0

{︂
𝑓(𝑥)− 𝑓(𝑥0)

𝑥− 𝑥0
− 𝑓 ′(𝑥0)

}︂
= 0 31

Table 3
Difficult expressions - More parenthesises and nodes - Experi-
ment 1

User Metrics Tot. (25) Easy (10) Difficult (15)

1
EM 0.92 1.00 0.87

SPICE 0.98 1.00 0.97

2
EM 1.00 1.00 1.00

SPICE 1.00 1.00 1.00

avg EM 0.96 1.00 0.93
SPICE 0.99 1.00 0.99

Table 4
EM and SPICE - Experiment 1

In Experiment 2 we recruited five blind native Italian
speakers that declared a good maths knowledge and pro-
ficiency in English; however, one of the users dropped
out because of their low competency. The users partici-
pated freely and without compensation. In Experiment 2
the users connected via Google Meet to a client running
the SDS. This modality has been decided on the basis
of COVID-19 restrictions still in force at that time. A

https://docs.google.com/forms/d/e/1FAIpQLSc93-1NAIWy_SXQaTJH2tAnHKg9PHSysurOSzf3xbSvtKG7Ig/formResponse?pli=1
https://docs.google.com/forms/d/e/1FAIpQLSc93-1NAIWy_SXQaTJH2tAnHKg9PHSysurOSzf3xbSvtKG7Ig/formResponse?pli=1
https://docs.google.com/forms/d/e/1FAIpQLSc93-1NAIWy_SXQaTJH2tAnHKg9PHSysurOSzf3xbSvtKG7Ig/formResponse?pli=1

facilitator established the Google Meet connection, pre-
sented the experimental protocol (see the instructions
presented to the users in Fig. 2), and observed the user
interactions while remaining neutral. After a short time
(about 30 minutes) when they could practice with the
SDS, the users were presented with 3 easy and 3 difficult
expressions chosen among the 10 expressions of Exper-
iment 1 (Table 5 and Table 6). The SDS used Polly for
the speech synthesis. The users interacted autonomously
with the SDS and they could interrupt the system and ask
questions. Finally, the users were asked to write down
the expressions questionnaire similarly to Experiment 1.

Figure 2: Instructions for testers - Experiment 2

LATEX Formula Nodes

𝑛
√
𝑥 = 𝑥1/𝑛 10

𝑔−1(𝑦) = 𝑓−1 ((𝑦 − 𝑏)/𝑎) 13∫︁ 𝑐

𝑏

𝑎 d𝑥 = 𝑎(𝑐− 𝑏) 14

Table 5
Easy expressions - Few parenthesises and nodes - Experiment
2

LATEX Formula Nodes∫︁
1

√
𝑚2 − 𝑥2

d𝑥 = arcsin
𝑥

𝑚
+ 𝑐 20

𝑦 = 𝑓(𝑎) +
𝑓(𝑏)− 𝑓(𝑎)

𝑏− 𝑎
(𝑥− 𝑎) 21

lim
𝑥→𝑥0

{︂
𝑓(𝑥)− 𝑓(𝑥0)

𝑥− 𝑥0
− 𝑓 ′(𝑥0)

}︂
= 0 31

Table 6
Difficult expressions - More parenthesises and nodes - Experi-
ment 2

As in Experiment 1, we used EM and SPICE as evalu-
ation measures. Moreover, the users also compiled the
User Experience Questionnaire (UEQ) [32] to evaluate
their experience in terms of attractiveness, perspicuity,
efficiency, dependability, stimulation and novelty9.

The scores for Experiment 2 are worse than the ones
of Experiment 1 both on EM and on SPICE (cf. Table 7).
This could be explained by the complexity of the setting,
because users had to learn how to use a new tool in
a short time, whereas the users in Experiment 1 were
familiar with the linear fruition of a Youtube audio. We
observed that the performance of the users improved
over the time of the experiment, which can be due to an
acquired familiarity of the tool.

In Table 8 we present the results of the UEQ along dif-
ferent attributes. For each attribute we report the score of
the attribute on a scale between −3 and +3 and compare
it with a benchmark provided by UEQ [32] that includes
a dataset with 468 products evaluated by 21, 175 users.
It is worth noting that the SDS scored high over stimula-
tion, novelty and attractiveness and fair over perspicuity,
efficiency and dependability. The scores over efficiency

9https://www.ueq-online.org/

User Metrics Tot. (6) Easy (3) Difficult (3)

1
EM 0.50 0.67 0.33

SPICE 0.86 0.89 0.87

2
EM 1.00 1.00 1.00

SPICE 1.00 1.00 1.00

3
EM 0.33 0.33 0.67

SPICE 0.66 0.98 0.82

4
EM 0.33 0.00 0.67

SPICE 0.80 0.95 0.89

avg
EM 0.54 0.50 0.67

SPICE 0.83 0.95 0.89

Table 7
EM and SPICE - Experiment 2

Attribute Score Comparison to benchmark

Attractiveness 1.83 between 75% and 90%
Perspicuity 1.28 between 50% and 75%
Efficiency 1.33 between 50% and 75%
Dependability 1.33 between 50% and 75%
Stimulation 1.75 above 90%
Novelty 1.92 above 90%

Table 8
UEQ Benchmark

and novelty are consistent with the hypothesis that users
would benefit from a longer training time to become pro-
ficient with this new tool, that they however deem stim-
ulating and attractive. These preliminary experiments
seem to be promising, nevertheless it would be beneficial
to enlarge the pool of users. However, it is known in
accessibility studies [33] that involving visually impaired
people in experiments is significantly hard and several
studies tend to engage only sighted people.

5. Conclusion
In this paper we described a SDS designed for allowing
visually impaired people to access mathematical expres-
sions. In Experiment 1 we focused on the understanding
of the mathematical sentences generator for English (i.e.
using EM and SPICE measures), replicating the good
results obtained for Italian in Mazzei et al. [1, 2]. In Ex-
periment 2, we tested the complete SDS allowing user
to ask for repetition. With respect to expressions un-
derstanding, the results of this experimentation are less
encouraging than Experiment 1, but we speculate that
this is a consequence of the complexity of the experi-
mental setting due to the necessity of online interaction.
However, the UEQ showed that the users really appreci-
ated the interaction with the SDS. In the future we want
to improve the SDS by adding new intents. Moreover,
we want to define a new SDS designed for diagrams and
other visual structures, creating accurate descriptions
and making them navigable.

6. Limitations
The SDS developed in this paper has two main limitations.
The design interaction is limited to repetition request con-
cerning a subpart of the expression. A better interaction
could consider the possibility to ask for mathematical
clarification on the role of a subpart (e.g. “what is x?”).
The evaluation has two aspects that could be improved:
1. the limited number of testers, and 2. no native English
speakers participated.

References
[1] A. Mazzei, M. Monticone, C. Bernareggi, Using NLG

for speech synthesis of mathematical sentences, in:
Proceedings of the 12th International Conference
on Natural Language Generation, Association for
Computational Linguistics, Tokyo, Japan, 2019, pp.
463–472. URL: https://aclanthology.org/W19-8658.
doi:10.18653/v1/W19-8658.

[2] A. Mazzei, M. Monticone, C. Bernareggi, Evaluat-
ing speech synthesis on mathematical sentences,
in: Proceedings of the Sixth Italian Conference on
Computational Linguistics, Bari, Italy, November
13-15, 2019, 2019, pp. 1–7. URL: http://ceur-ws.org/
Vol-2481/paper46.pdf.

[3] L. A. Chang, Handbook for Spoken Mathematics,
The Regent of the University of California, 1983.

[4] T. Armano, A. Capietto, S. Coriasco, N. Murru,
A. Ruighi, E. Taranto, An automatized method
based on latex for the realization of accessible pdf
documents containing formulae, in: International
Conference on Computers Helping People with Spe-
cial Needs, Springer, 2018, pp. 583–589.

[5] D. Ahmetovic, T. Armano, C. Bernareggi, A. Capi-
etto, S. Coriasco, D. Boris, K. Alexandr, N. Murru,
et al., Automatic tagging of formulae in pdf doc-
uments and assistive technologies for visually im-
paired people: the latex package axessibility 3.0,
in: ICCHP 2020 17th International Conference on
Computers Helping People with Special Needs, vol-
ume 1, ICCHP, 2020, pp. 69–73.

[6] D. Ahmetovic, T. Armano, C. Bernareggi, M. Berra,
A. Capietto, S. Coriasco, N. Murru, A. Ruighi,
E. Taranto, Axessibility: A latex package for mathe-
matical formulae accessibility in pdf documents, in:
Proceedings of the 20th International ACM SIGAC-
CESS Conference on Computers and Accessibility,
2018, pp. 352–354.

[7] D. Ahmetovic, T. Armano, C. Bernareggi, A. Capi-
etto, S. Coriasco, N. Murru, et al., Axessibility 2.0:
creating tagged pdf documents with accessible for-
mulae, Ars Texnica (2019) 138–145.

[8] N. Soiffer, Browser-independent accessible math,
in: Proceedings of the 12th International Web for
All Conference, 2015, pp. 1–3.

[9] D. Cervone, P. Krautzberger, V. Sorge, Employing
semantic analysis for enhanced accessibility fea-
tures in mathjax, in: 2016 13th IEEE Annual Con-
sumer Communications & Networking Conference
(CCNC), IEEE, 2016, pp. 1129–1134.

[10] V. Sorge, C. Chen, T. Raman, D. Tseng, Towards
making mathematics a first class citizen in general
screen readers, in: Proceedings of the 11th Web for
All Conference, 2014, pp. 1–10.

[11] R. Chauhan, I. Murray, R. Koul, Audio rendering

https://aclanthology.org/W19-8658
http://dx.doi.org/10.18653/v1/W19-8658
http://ceur-ws.org/Vol-2481/paper46.pdf
http://ceur-ws.org/Vol-2481/paper46.pdf

of mathematical expressions for blind students: a
comparative study between mathml and latex, in:
2019 IEEE International Conference on Engineering,
Technology and Education (TALE), IEEE, 2019, pp.
1–5.

[12] A. Bansal, M. Balakrishnan, V. Sorge, Com-
prehensive accessibility of equations by visually
impaired, ACM SIGACCESS Access. Comput.
126 (2020) 1. URL: https://doi.org/10.1145/3386280.
3386281. doi:10.1145/3386280.3386281.

[13] J. Seo, S. McCurry, A. Team, Latex is not easy: Cre-
ating accessible scientific documents with r mark-
down, Journal on Technology and Persons with
Disabilities 7 (2019) 157–171.

[14] S. Arooj, S. Zulfiqar, M. Qasim Hunain, S. Shahid,
A. Karim, Web-alap: A web-based latex editor for
blind individuals, in: The 22nd International ACM
SIGACCESS Conference on Computers and Acces-
sibility, volume 28, 2020, pp. 1–6.

[15] V. Sorge, Supporting visual impaired learners in
editing mathematics, in: Proceedings of the 18th In-
ternational ACM SIGACCESS Conference on Com-
puters and Accessibility, 2016, pp. 323–324.

[16] C. Bernareggi, Non-sequential mathematical nota-
tions in the lambda system, in: ICCHP, Springer,
2010, pp. 389–395.

[17] A. Gerino, N. Alabastro, C. Bernareggi, D. Ahme-
tovic, S. Mascetti, Mathmelodies: inclusive design
of a didactic game to practice mathematics, in:
International Conference on Computers for Handi-
capped Persons, Springer, 2014, pp. 564–571.

[18] A. Wigmore, G. Hunter, E. Pflügel, J. Denholm-
Price, V. Binelli, Using automatic speech recogni-
tion to dictate mathematical expressions: The devel-
opment of the “talkmaths” application at kingston
university., Journal of Computers in Mathematics
and Science Teaching 28 (2009) 177–189.

[19] A. M. Wigmore, E. Pflugel, G. J. Hunter, J. Denholm-
Price, M. Colbert, Talkmaths better! evaluating
and improving an intelligent interface for creat-
ing and editing mathematical text, in: 6th Inter-
national Conference on Intelligent Environments,
IEEE, 2010, pp. 307–310.

[20] C. Elliott, J. Bilmes, Computer based mathematics
using continuous speech recognition, Vocal Inter-
action in Assistive Technologies, Games and More
(2007).

[21] S. N. Batlouni, H. S. Karaki, F. A. Zaraket, F. N.
Karameh, Mathifier—speech recognition of math
equations, in: 18th International Conference on
Electronics, Circuits, and Systems, IEEE, 2011, pp.
301–304.

[22] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh,
E. Gouvea, P. Wolf, J. Woelfel, Sphinx-4: A flexi-
ble open source framework for speech recognition,

2004.
[23] K. Jokinen, M. McTear, Spoken Dialogue Systems,

Synthesis lectures on human language technologies,
Morgan & Claypool Publishers, 2010. URL: https:
//books.google.it/books?id=ualwulnD020C.

[24] E. Reiter, R. Dale, Building Natural Lan-
guage Generation Systems, Natural Lan-
guage Processing, Cambridge University
Press, 2000. URL: http://prp.contentdirections.
com/mr/cupress.jsp/doi=10.2277/052102451X.
doi:DOI:10.2277/052102451X.

[25] B. Miller, Latexml: A LaTeX to XML converter,
https://math.nist.gov/~BMiller/LaTeXML, 2007.

[26] A. Gatt, E. Reiter, SimpleNLG: A realisation en-
gine for practical applications, in: Proceedings of
the 12th European Workshop on Natural Language
Generation (ENLG 2009), 2009, pp. 90–93.

[27] Y. Wang, Wake word detection and its applications,
Johns Hopkins University, 2021.

[28] Picovoice, Benchmarking a Wake Word
Detection Engine, https://picovoice.ai/blog/
benchmarking-a-wake-word-detection-engine/,
2018.

[29] Picovoice, Picovoice Console — Rhino Speech-
to-Intent Engine, https://picovoice.ai/docs/
quick-start/console-rhino/, 2018.

[30] L. Pandolfi, ANALISI MATEMATICA 1, Diparti-
mento di Scienze Matematiche “Giuseppe Luigi La-
grange”, Politecnico di Torino, 2013.

[31] P. Anderson, B. Fernando, M. Johnson, S. Gould,
SPICE: semantic propositional image caption eval-
uation, CoRR, abs/1607.08822, 2016.

[32] M. Schrepp, User experience questionnaire hand-
book. all you need to know to apply the ueq success-
fully in your project, https://www.ueq-online.org/,
2015.

[33] E. Brulé, B. J. Tomlinson, O. Metatla, C. Jouffrais,
M. Serrano, Review of quantitative empirical evalu-
ations of technology for people with visual impair-
ments, in: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, 2020, pp.
1–14.

https://doi.org/10.1145/3386280.3386281
https://doi.org/10.1145/3386280.3386281
http://dx.doi.org/10.1145/3386280.3386281
https://books.google.it/books?id=ualwulnD020C
https://books.google.it/books?id=ualwulnD020C
http://prp.contentdirections.com/mr/cupress.jsp/doi=10.2277/052102451X
http://prp.contentdirections.com/mr/cupress.jsp/doi=10.2277/052102451X
http://dx.doi.org/DOI: 10.2277/052102451X
https://picovoice.ai/blog/benchmarking-a-wake-word-detection-engine/
https://picovoice.ai/blog/benchmarking-a-wake-word-detection-engine/
https://picovoice.ai/docs/quick-start/console-rhino/
https://picovoice.ai/docs/quick-start/console-rhino/
https://www.ueq-online.org/

	1 Introduction
	2 Related Work
	2.1 Access to mathematics by people with visual impariments
	2.2 Speech-to-text solutions for entering maths expressions

	3 Spoken Dialogue System
	3.1 Response Generator and Text-to-Speech
	3.2 Speech Recognition, Language Understanding and Dialogue Management

	4 Evaluation
	5 Conclusion
	6 Limitations

