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Abstract
Thanks to Deep Learning models able to learn from Internet-scale corpora, we observed tremendous advances in both

text-only and multi-modal tasks such as question answering and image captioning. However, real-world tasks require agents

that are embodied in the environment and can collaborate with humans by following language instructions. In this work, we

focus on ALFRED, a large-scale instruction-following dataset proposed to develop artificial agents that can execute both

navigation and manipulation actions in 3D simulated environments. We present a new Natural Language Understanding

component for Embodied Agents as well as an in-depth error analysis of the model failures for this challenge, going beyond

the success-rate performance that has been driving progress on this benchmark. Furthermore, we provide the research

community with important directions for future work in this field which are essential to develop collaborative embodied

agents.
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1. Introduction
In recent years, we experienced tremendous improve-

ments in Natural Language Understanding (NLU) tasks

thanks to powerful Large Language Models (e.g., [1, 2, 3]).

These models are trained by leveraging internet-scale tex-

tual data. However, by having access to text only, they

leverage only a part of the rich multi-modal training data

that can be derived from interaction with the world and

with other agents [4]. Embodied Artificial Intelligence

(EAI) is the field of AI that aims at developing agents that

can perceive the environment via multi-modal inputs,

and that can execute actions in the world.

Many benchmarks have been proposed so far in EAI.

For instance, Vision+Language Navigation [5] aims at

studying the capabilities of EAI agents to follow natu-

ral language instruction in 3D simulated environments.

However, the agent can only output navigation actions

limiting the richness of concepts that the agent can learn.

To simulate a scenario that is closer to the real-world

usage of these systems, Shridhar et al. [6] proposes AL-

FRED, a new instruction-following benchmark that facil-
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itates the study of both situated language understanding

as well as visual memory, commonsense reasoning, as

well as long-term action planning.

So far, progress on ALFRED has been driven by

accuracy-based metrics on the official leaderboard (e.g.,

[7, 8, 9, 10]). However, considering that the success rate

on this benchmark is still below production-level per-

formance (∼40%), this calls for a more in-depth analysis

of model failures. In this paper, we provide two main

contributions: 1) we train a novel Natural Language Un-

derstanding component for an EAI agent trained using

multi-task learning that has a 0.117 error rate on the

validation unseen of ALFRED, an improvement over the

one proposed by Min et al.[7]; 2) we provide an in-depth

analysis of our model’s failures highlighting lack of im-

portant situated language understanding capabilities that

are key for an EAI agent such as referential expression

resolution, and conversational grounding [11].

2. The ALFRED dataset
In this study, we use ALFRED [6], a benchmark aimed

at assessing the ability of embodied agents to learn from

natural language instructions and egocentric vision to

generate sequences of actions for household tasks. The

ALFRED dataset comprises 25,743 human-annotated lan-

guage directives corresponding to 8,055 expert demon-

stration episodes. Each directive includes a high-level

goal and a set of step-by-step instructions. Directives fall

under one of the following seven tasks parameterised
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Figure 1: Comparison between our model and the one proposed in the FILM paper.

by 84 object classes in 120 scenes: pick and place, stack

and place, pick two and place, clean and place, heat and

place, cool and place, and examine in light. In addition to

the task category, for each instruction, the dataset also

provides a few relevant annotations: 1) target object:
the principal object involved in the interaction; 2) parent
object: the final destination of the target object (sink,

counter, and similar); 3) movable receptacle: a movable

object containing the target one, e.g. a spoon in a mug;

4) slicing action: true or false respectively if the target

object must be cut or not; 5) toggle target, indicating an

object to toggle on/off (oven, microwave, etc.).

To better estimate the models’ capability to generalise

to new environments, the validation set is composed of

two subsets called seen and unseen, respectively. In the

former, the agent has to complete tasks in rooms/scenar-

ios that have already been seen during training, while the

latter provides examples in unseen scenarios to assess

the ability of the agent to generalise.

3. Baseline model and error
analysis

We implemented the solution proposed in the FILM paper

[7] which is the base approach for many of the state-of-

the-art models for ALFRED (e.g., [8]). FILM is a modular

architecture that is composed of a trained natural lan-

guage component that derives a semantic representation

represented in terms of intents and slot values akin to con-

ventional NLU systems (e.g., [12]). This representation

is in turn converted into an action plan by a rule-based

component.

In this paper, we focus on improving the language un-

derstanding component of FILM, which is essential for

instruction interpretation. Concretely, the FILM imple-

mentation casts instruction understanding as a classifica-

tion task and fine-tunes one BERT-based model [13] for

each of the following tasks: 1) task classification: the

instruction sequence is classified into one of the seven

task categories; 2) target classification: the instruc-

tion sequence is classified into one of the allowed target

objects; 3) movable receptacle classification: the in-

struction sequence is classified into one of the allowed

movable receptacle objects; 4) parent classification: the

instruction sequence is classified into one of the allowed

parent objects; 5) slicing classification: the instruction

sequence is binary classified to be a slicing/non-slicing

action.

However, training five different models each one hav-

ing its own BERT encoder can be suboptimal because 1)

it has a high computational cost, and 2) it does not con-

sider the semantic relationships between a task and the

objects required to solve that task. To take advantage of

these relationships, we implemented a multi-task model

by fine-tuning a single BERT encoder on all the tasks [14]

(see Figure 1). As shown in Table 2, thanks to this multi-

task setup, our model obtains an improvement in the

overall language understanding performance measured

using the error rate which we define as the proportion of

examples for which no mistakes are made (i.e., neither on

the high-level task nor on the single slots). Additionally,

we report in Table 1, our model performance on specific

high-level tasks measured using F1-score.

Despite the superior performance of our multitask

model, the capabilities of this model were still limited.

Therefore, we performed a manual error analysis based

on 821 instructions from the validation unseen split of

the ALFRED dataset. Particularly, as shown in Table 3,

the most common errors are about a wrong object classi-

fication and, even if the object was correctly classified, a



Class Ours F1-score FILM F1-score
look_at_obj_in_light 0.994 1
pick_and_place_simple 0.985 0.91
pick_and_place_with_movable_recep 0.991 0.94
pick_clean_then_place_in_recep 0.991 0.98
pick_cool_then_place_in_recep 1 0.93
pick_heat_then_place_in_recep 0.996 0.97
pick_two_obj_and_place 0.988 0.9

Table 1
Comparison between our model scores and FILM’s model
scores in task classification on unseen validation set.

Model Language processing error rate
FILM 0.196
Ours 0.117

Table 2
Comparison between our model error rate and FILM’s model
error rate on all language processing tasks on unseen valida-
tion set.

Error type Subtype Rate

Referential ambiguity
Mismatching 40/821
Underspecification 24/821
Others 32/821

Target object search
Object not visible 171/821
Spatial understanding 106/821

Others interaction errors 218/821

Table 3
Error rate for each error type derived from our error analysis.

failure to find it in the environment. Specifically, we can

categorise errors in two main classes namely referen-

tial ambiguity, and target object search, which we

further divide into the following classes:

mismatching object reference: the user refers to an

object with a non-conventional name or a particular lin-

guistic form due to visual ambiguity (brown ball or potato
instead of egg).

underspecified object reference: the user refers to an

object using a name which could be ambiguous because

not precise enough (typically “soap" is used to refer to a

soap bar or a soap bottle).

object not found because not visible: this can happen

when the target object is contained in other objects (e.g.,

spoons are contained in drawers).

spatial understanding: the user gives nuanced spatial

references for the object but the system does not under-

stand them (e.g., pick up the salt which is inside the cabinet
under the coffee machine).

Finally, we use a third class (others) which includes

other interaction errors that do not depend on the lan-

guage understanding component.

4. Challenges for embodied
instruction following

Thanks to our error analysis, we derive that an embod-

ied agent faces several challenges when fusing multiple

modalities. Moreover, it must take care of the basic con-

cepts of human-to-human communication [11].

In this context, the agent’s reasoning can be seen as a

sequential process in which it implements a set of strate-

gies to follow the current language instruction. An em-

bodied agent must rely on visual context, commonsense

knowledge, and interactive skills. For instance, when

the user asks for an object, e.g., soap, the agent must

be able to understand that “soap", “soap bar" and “soap

bottle" share enough features to define them as similar

objects. Additionally, it should take advantage of the

visual context to resolve ambiguities (if the only soap

in the agent’s field of view is a soap bar, this should be

the target). Therefore, multi-modal information becomes

crucial to understanding visually grounded instructions,

going from spatial language instructions to multi-modal

input ones [15]. Finally, if no other strategy resulted in a

solution, it should ask for human intervention, e.g. us-

ing clarification strategies [16]. Furthermore, integrating

commonsense knowledge can result in better interpreta-

tion (e.g., by leveraging knowledge graphs [17]) as well

as better action plans by reasoning over pre-conditions

and post-conditions of the actions.

In collaborative tasks [18, 19, 20], agents have to build

common ground to successfully complete their tasks

and adapt to new situations [11]. Therefore, negotiat-

ing meanings becomes a fundamental skill that allows

the agent to learn how the user refers to the environ-

ment, and understand user preferences which will lead

to a more effective interaction.

5. Conclusion
In this work, we used the ALFRED dataset as a benchmark

to investigate the language understanding abilities of

state-of-the-art EAI models. We started by improving the

model originally proposed by Min et al. [7] by training

using multi-task learning and we showed that even by

using the new model several issues remain unsolved.

We categorised these problems into different classes to

facilitate our analysis. This classification led us to the

conclusion that an EAI agent must leverage multi-modal

signals, commonsense knowledge, and interaction with

the user to solve embodied problems in an effective way.

According to Schlangen [21], situated interaction is a
direct, purposeful encounter of free and independent but
similar agents. Following this definition, in the ALFRED

tasks there are two different agents: a follower and a

leader. The leader is intended as an oracle that provides



instructions in one go without conversing with the fol-

lower. Moreover, the leader assumes that the follower

has perfect capabilities to follow the provided instruc-

tions without considering the notion of uncertainty or

potential mistakes. Finally, there is no concept of conver-

sational grounding intended as a joint activity in which

the two agents have to negotiate meanings that are re-

quired to solve the task effectively and efficiently. In this

sense, even if the ALFRED dataset still represents a chal-

lenging task, it is far from providing a benchmark that

can be used to develop artificial agents able to collabora-

tively solve tasks using natural language.
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