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Abstract
This paper describes a deepfake algorithm recognition system submitted to the Audio Deep Synthesis Detection (ADD)
Challenge Track 3, which aiming to recognize the algorithms of the deepfake utterances. Given the complex noise present
in the testing data and the existence of unknown deepfake algorithms, we propose a manifold-based multi-model fusion
approach for open-set recognition. This approach constructs a manifold space to fuse the deep embedding features extracted
by different models and computes the geodesic distance between the manifold spaces of different deepfake algorithms to
distinguish unknown deepfake methods. Experimental results demonstrate the effectiveness of the proposed strategy in
multi-model fusion. The proposed system obtained the F1-score of 0.7934 in ADD Track 3 testing.
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1. Introduction
Currently, the naturalness and similarity of synthetic
speech are continuously improving, and in some con-
ditions, they are comparable to those of human speech
[1, 2]. While speech generation technology provides con-
venience for intelligent applications, it also brings threats
to information cognition and social security. To safely
cope with generative audio, fake audio detection has be-
come one of the hot research spots [3]. Meanwhile, it is
necessary to trace the source of fake audio.

In the field of audio genuine/fake recognition, feature
and classifier design have always been hot topics. From
the perspective of scheme structure, they can be mainly
divided into three types of architectures: handcrafted
features with classifiers, end-to-end classifiers, and pre-
trained feature extractors with classifiers. Handcrafted
features such as constant-Q cepstral coefficients (CQCC)
and linear frequency cepstral coefficients (LFCC) are fre-
quently employed in this field [4]. Additionally, residual
networks [5] and LCNN [6] are common classifiers uti-
lized for this purpose. End-to-end networks, such as
rawnet2 [7], and pre-trained models, such as Wav2Vec
2.0 and WavLM Large [8], are also employed in this area
of research. Different models extract information from
different perspectives, and model fusion is a way to im-
prove overall performance. However, there is not only
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complementary information between different models,
but also information redundancy and interference, and an
improper fusion strategy can instead degrade the overall
performance [9].

Given the rapidly changing means of speech genera-
tion driven by market demand, it is difficult to include
all generation means during the training phase of trace-
ability models, which leading to an open-set recognition
problem. Literature [10] provides an overview of current
open-set recognition methods. Overall, these methods
have their own characteristics, and their effectiveness
needs to be comprehensively evaluated based on the ac-
tual application scenarios.

To address these problems, considering the specific
needs in ADD 2023 Track 3, we propose a multi-model
fusion method. Inspired by OpenMax [11] and manifold
space used in recognition tasks [12], we regard the inputs
of the classifier layer as the extracted discriminative fea-
tures, and achieve fusion by constructing the manifold
spaces of different labels and calculating the geodesic
distances between the manifold spaces.

The main contributions of this study can be summa-
rized as follows:

(1) We propose a manifold-based multi-model fusion
approach. It achieved 0.7352 in F1-score, ranking 5th on
track 3 in ADD 2023 during competition, and so far it
reached 0.7934 in F1-score, ranking 3rd on the competi-
tion results list.

(2) We explore three strategies for model fusion, and
demonstrate the effectiveness of manifold-based feature-
level fusion and score-level fusion by inference augmen-
tation.

(3) We describe and discuss the proposed method as
well as the problems encountered in the competition and
the ideas to solve them.
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The rest of this paper is organized as follows: Section
2 describes the task. Section 3 presents the related work
and illustrates our proposed method. Results and dis-
cussions are reported in Section 4. Finally, the paper is
concluded in Section 5.

2. Task description and data
The Audio Deep Synthesis Detection (ADD) Challenge
Track 3 [13] aims to recognize the algorithms of the deep-
fake utterances. The testing dataset includes known and
unknown algorithms of the fake ones. The training and
developing sets include 7 classes (1 real and 6 counter-
feit), the 7 categories are labeled 0, 1, 2, 3, 4, 5, 6. The
testing set includes 8 classes (the 7 classes included in the
training and developing sets + 1 unknown counterfeit).

There are 22,400 training data, 8,400 developing data,
and 79,490 testing data. In addition to containing un-
known categories, the noise of the testing data is much
more complex than the training data. It is clear that
this challenge is focused on improving the generalization
ability of the model based on limited training data.

Metrics for this track is the macro-average precision,
recall, and F1-score.

3. System description
In order to improve the performance of the system on the
testing set, some measures have been taken in terms of
the data layer, feature layer, model layer and finally the
score calculation, which are described in detail below.

3.1. Data augmentation
First, by observing the training data, we found that the
audio were sampled at 16 or 24 kHz, and the volume of
the audio varies relatively widely. Thus, the whole audio
were uniformly resampled to 16 kHz and normalized.

Then, by examining the testing data, compared to the
relatively clean training and developing data, the noise
interference in the test data was more complicated, then
data augmentation was performed on training and devel-
oping data with MUSAN [14] dataset. And the SNR was
set randomly among 15 30dB.

Finally, some completely silent segments with zero-
volume were found in these datasets. Although this may
be a characteristic of some deepfake methods, the silent
segments that appear at the beginning and the end of
the audio were cropped out considering the generalized
application of the model.

3.2. Features
To handle the complexity of the testing data, we explored
three categories of features: raw waveform, hand-crafted
features, and pre-trained features. Our expectation was
that a combination of these features would be able to
capture the divergences among different deepfake algo-
rithms.

Based on the findings in literature [8], it has been
demonstrated that anti-spoofing systems can achieve
good performance by using raw waveforms with an end-
to-end network architecture. In our work, a unified audio
duration of 3s was applied in subsequent processing with
truncation or padding.

Hand-crafted features are extracted based on specific
knowledge, in contrast to raw waveforms. Several fea-
tures are widely used in anti-spoofing, such as constant-Q
cepstral coefficients (CQCC), linear frequency cepstral
coefficients (LFCC), and log power magnitude spectro-
gram (Spec) [4]. While these features have demonstrated
utility in anti-spoofing, we chosed to use LFCC as the
hand-crafted feature in track 3 based on our previous
tests with the ASVSpoof2019 dataset.

Due to the complexity of the testing data and the
scarcity of available training data, we utilized a pre-
trained model to extract essential speech features. Re-
cently, some pre-trained speech models, including
Wav2vec 2.0 [15], HuBERT [16] and WavLM [17], have
demonstrated significant performance improvements in
downstream tasks such as Automatic Speech Recogni-
tion, Text-to-speech and Voice Conversation. As some
experiments have shown that HuBERT performs compa-
rably or better than the current leading Wav2vec 2.0 on
various benchmarks, we utilized a HuBERT model as a
feature extractor and fed raw waveform as input to the
model.

3.3. Deep recognition network
In our work, we utilized three different deep networks:
rawnet2, SE-Res2Net50, and HuBERT.

rawnet2 [18] is an end-to-end network that is trained
on raw audio and consists of one sinc layer, six residual
blocks with attention mechanism, gate recurrent units
(GRU), and two fully-connected layers. In our work, a
softmax function was added to the output layer to pro-
duce seven-class predictions corresponding to the cate-
gories in the training dataset. The model was trained for
100 epochs with a batch size of 32 and a learning rate of
0.0001.

SE-Res2Net50 [19] is an improved version of the
ResNet [20] model that combines squeeze-and-excitation
(SE) with Res2Block. We trained the model using LFCC
features with cross-entropy as the loss function and
Adam as the optimizer with default parameters. The
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model was trained for 40 epochs with a batch size of 48
and a learning rate of 0.0002.

HuBERT is a self-supervised learning pre-trained
model and is available in several versions. We utilized
the chinese-hubert-large [21] model, which was trained
using the WenetSpeech train L subset. Following the
final layer of the model, we added two fully-connected
layers and a softmax function to generate predictions.
To mitigate the limitation of computing resources, we
trained the model with a batch size of 24 for 40 epochs.

To ensure the best performance, we selected the final
model for testing from the above mentioned models with
the highest F1-score in the developing dataset.

3.4. Manifold space and distance
To classify the categories of deepfake audio and iden-
tify unknown deepfake means, we adopted the manifold
space and manifold distance. Firstly, the manifold space
of each deepfake category was constructed using the
ONPE method [22]. Then, the spatial geodesic distance
[23] between different manifold spaces was calculated
using equation (1) and inverted to serve as a similarity
indicator. Finally, the softmax value was calculated using
equation (2)-(4) as the final decision score.

𝑑(𝑆1, 𝑆2) = ‖Θ‖2, ‖Θ‖2 = [𝜃1, 𝜃2, . . . , 𝜃𝑚], (1)

where the geodesic distance 𝑑(𝑆1, 𝑆2) was calculated
based on the principal angles [𝜃1, 𝜃2, . . . , 𝜃𝑚] between
spaces (𝑆1, 𝑆2), which were obtained from the orthonor-
mal basis matrix (obtained by ONPE) and singular value
decomposition.

𝑠𝑐𝑜𝑟𝑒(𝑥,𝑖) =
𝑒𝑥𝑝(𝑑(𝑥,𝑖) − 𝑑𝑚𝑎𝑥)∑︀6
𝑗=0(𝑑(𝑥,𝑗) − 𝑑𝑚𝑎𝑥)

, (2)

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑑(𝑥,0), 𝑑(𝑥,1), . . . , 𝑑(𝑥,6)), (3)

𝑑(𝑥,𝑖) = −𝑑(𝑆𝑥, 𝑆𝑖), (4)

where 𝑠𝑐𝑜𝑟𝑒(𝑥,𝑖) represents the similarity score between
the testing data 𝑥 and the deepfake category 𝑖, while
𝑑(𝑥,𝑖)(𝑖 = 0, 1, . . . , 6) represents the negative of the
geodesic distance between the testing data manifold
space 𝑆𝑥 and the deepfake method 𝑖 manifold space 𝑆𝑖.

3.5. Model fusion
To effectively improve the final recognition results, we
conducted model fusion at three levels.

3.5.1. Fusion on label layer

First is the label layer fusion. In the output scores of
rawnet2, SE-Res2Net50 and HuBERT models, the index
corresponding to the maximum score was set to be the

Figure 1: Score distribution for model0 and model1 (left:
before inference augmentation, right: after inference augmen-
tation).

output label. A threshold was set for open-set recogni-
tion based on model training and validation. The output
labels were secondary adjusted and those with scores less
than the threshold were considered as unknown label 7.
Finally, three sets of recognition label values were thus
obtained for the testing data. The mode of the three sets
of labels was used as the fused label. When all three sets
of labels were different, the result from HuBERT model
was chosen as the fused result because it had the best
performance.

3.5.2. Fusion on score layer

Next is the score-level fusion. A common score fusion
method is conducted by calculating the mean of multiple
sets of scores. As discussed in literature [9], when the
scores showed a clear polarization in the histogram, it
would be hard to perform score fusion, and the fusion
results maybe degraded. In our work, the scores we
obtained of the testing data showed a polarization in the
histograms, as shown in Figure 1 (left). Although this
phenomenon is not as prominent as in the literature [9],
we had taken a measure of inference augmentation to
alleviate it. As we know, if a model is trained well on the
training set, the Softmax function will be likely to get
extreme values (0 or 1). To make the outputs of softmax
less close to 0 or 1, we first set a bound of (-20,20) and then
added a constant multiplier of 0.1 to the inputs of softmax.
The score distribution after inference augmentation is
shown in Figure1 (right). Then the index corresponding
to the maximum score was set to be the output label.

3.5.3. Fusion on feature layer

Finally, feature-level fusion is performed, as shown in Fig-
ure 2. For different models, the 256-dimensional output
of the penultimate layer was connected as the embedding
features, and then used to construct the manifold space
for each class, and the spatial distance was calculated as
the similarity score.
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Figure 2: Overall framework of the fusion on feature layer.

Specifically, 𝑁 training data for each deepfake method
𝑖 were input to the 𝐾 trained models to obtain 𝑁 ×
256×𝐾 feature matrices. The feature matrices were then
processed by ONPE to obtain the manifold space of the
deepfake method. Next, the testing data were segmented
into segments of length 3𝑠 with a shift of 1𝑠, and 𝑀
audio segments were obtained. The segments were input
to the three trained models to obtain 𝑀 × 256 × 𝐾
feature matrices. The feature matrices were processed
by ONPE to obtain the manifold space of the testing
data. The geodesic distance and softmax score between
manifold space of training data and manifold space of
testing data were calculated as the final fusion score. If
the maximum score was higher than the threshold, the
index corresponding to the maximum score was set to
be the output label, otherwise the label was set to 7 as a
new label, and the threshold was fine-tuned by testing
data.

4. Results and discussion
Table 1 shows the results of our proposed methods on
ADD 2023 Track 3. We can find the following observa-
tions.

Firstly, the model of HuBERT works better than
rawnet2 and Se-Res2Net50 with LFCC. The used chinese-
hubert-large model is trained on large datasets, which
truly helping reduce overfitting and improving the ro-
bustness of recognition results. Although at the begin-
ning we thought rawnet2 should be able to achieve better

Figure 3: A t-SNE visual of different models. The dots of
different colors represent different classes.

results, in fact it was less effective than the approach of
Se-Res2Net50 with LFCC, probably because the model
was relatively simple and overfitting was more serious.
Maybe we should match the model with appropriate sub-
sequent classification networks so as to train a model
with excellent discriminative ability. To visualize the
effectiveness of the proposed method, we also used t-
SNE [24] to visualize the embedding features of the three
models on developing data, as shown in Figure 3. It can
be seen that the distinguishability of rawnet2 was better
than that of Se-Res2Net50 on developing data, which also
indicated that the trained rawnet2 model was over-fitted
from another perspective.

Secondly, in terms of fusion strategies, it can be seen
that manifold-based feature-level fusion got the best
performance, while the score-level fusion by inference
augmentation performed better than common score fu-
sion method (shown as F21 vs F22 and F41 vs F42). As
our trained rawnet2 model got poor performance and it
pulled down the overall performance in label-level fu-
sion with the other two models (shown as F1), it was
not considered in the subsequent score-level fusion and
feature-level fusion.

According to the results of score-level fusion and
feature-level fusion, it indicated that there was comple-
mentary information among the different models, and
by constructing the manifold space and measuring the
geodesic distance, further discriminative information was
extracted, thus enhancing the overall recognition perfor-
mance.

Thirdly, in data augmentation, shown as B11 to B22,
due to the variability of background noise between the
training and testing data, by adding noise to the training
data was effective in improving the model performance.
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Table 1
The results of F1-score for our proposed different methods on
ADD 2023 Track3 (DA: data augmentation, FT: fine-tuned, LF:
label fusion, SF: score fusion, IA: inference augmentation, FF:
feature fusion)

NO. Method Add F1-score

B11 Raw wave+rawnet2 - 0.5674
B12 Raw wave+rawnet3 DA 0.6470
B21 LFCC+Se-Res2Net50 - 0.6332
B22 LFCC+Se-Res2Net50 DA 0.7202
B31 HuBERT - 0.7581
B32 HuBERT DA 0.7238
F1 B12+B22+B32-LF - 0.7121
F21 B22+B32-SF FT 0.7280
F22 B22+B32-SF IA+FT 0.7302
F3 B22+B32-FF FT 0.7352
F41 B22+B31-SF FT 0.7477
F42 B22+B31-SF IA+FT 0.7608
F5 B22+B31-FF FT 0.7934

However, unexpectedly, the performance of the HuBERT
model trained on the augmented data was not as good
as that of the HuBERT model trained on the original
training data (shown as B31 vs B32). One possible rea-
son was that the training data of the pre-trained models
already contain rich noisy data, which itself can shield
the effect of noise on speech. In addition, due to the time
constraint of the competition, all models were obtained
by training a set of parameters and no parameter tuning
was performed, which may also be a reason.

Finally, it should be noted that, F3 in Table 1 with a
F1-score of 0.7352, was the best result we submitted to
ADD Track 3 during the competition and is ranked 5th.
After the competition, when we conduct supplementary
experiments on data augmentation, a better result was
found as B31. Then we conduct relevant fusion experi-
ments and obtained results shown as F4 and F5, with the
best result up to 0.7934, which so far can rank 3rd in the
competition. Despite this, the conclusion that feature-
level fusion was better than fractional-level fusion was
consistent.

5. Conclusion
The existing fake audio recognition systems often rely
on three types of architectures: handcrafted features
with classifiers, end-to-end classification models, and
pre-trained feature extractors with classifiers. In ADD
Track 3, we explored three models and three multi-model
fusion strategies. Experiments demonstrated the effec-
tiveness of the proposed manifold-based feature-level
fusion strategy. And the proposed score-level fusion by
inference augmentation provided an attempt to solve the

fusion of models with an overfitting tendency. In addi-
tion, we experimented the effect of data augmentation on
model performance enhancement. Finally, the proposed
model fusion method obtained the F1-score of 0.7934 in
ADD Track3 testing.
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