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Abstract	
The	paper	presents	the	general	lines	of	a	technology	aimed	to	decipher	old	Romanian	documents	in	the	
form	of	uncials	and	prints,	from	the	Cyrillic	into	the	Latin	script.	The	focus	is	on	two	final	modules	of	the	
pipeline	that	assembles	this	technology,	one	recognizing	character	shapes	and	the	other	sequencing	
characters	which	are	placed	in-between	lines	by	the	copyists.	The	endeavor	is	motivated	by	the	huge	
collection	of	old	documents	existing	in	libraries,	only	very	few	of	them	having	received	the	attention	of	
expert	linguists.		
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Introduction	

We	present	in	this	paper	an	approach	towards	building	a	technology	that	would	help	to	recover	
a	treasure	trove	of	Romanian	culture,	still	largely	unknown	to	the	general	public,	and	also	to	offer	
to	researchers	of	the	language	an	intelligent	tool	for	dealing	more	easily	with	old	documents.	The	
main	purpose	of	this	technology	is	to	interpret	old	Romanian	writings	written	in	the	Cyrillic	script	
into	the	Latin	script.	We	believe	that	our	approach,	although	specifically	directed	for	deciphering	
Old	Romanian	documents,	could	be	easily	adapted	for	other	languages.	
We	explain	the	motivation	for	this	endeavor	and	the	difficulties	of	the	task	in	this	introductory	

section.	In	section	2	we	present	a	quick	review	of	the	technological	line	envisioned,	then	some	
approaches	we	consider	rather	close	to	ours,	and	what	data	we	have	used	to	support	the	training	
of	the	modules.	Section	3	presents	in	more	details	how	are	characters	identified,	recognized	and	
linearized	and	our	evaluations	referring	to	the	last	steps.	Some	conclusions	and	discussions	are	
given	in	the	end.	

1.1	Motivation	

The	 period	 of	 Cyrillic	 writing	 in	 regions	 of	 Romania	 is	 subject	 to	 historical	 and	 political	
circumstances,	the	use	of	Cyrillic	in	writing	Romanian	coinciding	with	the	use	of	Slavonic	as	an	
official	language	in	the	royal	courts	of	Moldavia	and	Wallachia,	but	also	as	a	language	of	orthodox	
worship	 in	 all	 areas	 inhabited	 by	 Romanians,	 therefore	 including	 also	 the	 province	 of	
Transylvania.	A	precise	moment	when	this	has	happened	is	controversial	[1]	[2],	but	this	type	of	
writing	was	in	use	at	least	between	the	XIIIth	century	and	the	half	of	the	XIXth	century.	The	works	
were	mostly	church	texts,	circulating	in	manuscript	form	and,	only	much	later,	as	prints.	The	lack	
of	 rules	 to	 impose	 the	 grammar	 and	 the	 phonology,	 as	 well	 as	 the	 vast	 territory	 on	 which	
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Romanian	 was	 used	 and	 the	 documents	 were	 produced,	 with	 peculiarities	 of	 regional	
pronunciation	and	foreign	influences	(mostly	Hungarian	and	Polish)	that	dictated	the	spellings,	
issued	a	vast	diversity	of	word	forms.		
Libraries,	museums	and	personal	collections	include	thousands	of	documents,	mostly	books,	

only	rather	 few	of	 them	having	received	the	attention	of	 linguists	 for	being	transliterated	and	
studied.	All	this	configures	a	strong	need	for	a	technology	able	to	help	the	interpretation	of	old	
Cyrillic	 Romanian	 documents,	 a	 technology	 to	 be	 put	 in	 the	 hands	 of	 scholars	 (linguists,	
historians,	theologists,	geographers),	of	students,	editors	and	the	general	public	–	a	category	to	
whom	the	old	writings	are	now	inaccessible.	

1.2	The	Difficulties	of	the	Enterprise	

Since	our	work	is	focused	on	old	Romanian	texts	which	are	not	publicly	available,	we	had	to	
start	 by	putting	up	a	 consistent	 collection	of	 documents,	 part	 of	 them	annotated,	 to	 form	 the	
ground	truth	and	experimenting	data.	There	were	no	readily-available	corpora	that	we	could	use.	
Since	our	data	was	bimodal	(images	of	pages	and	textual	transcripts)	and	it	requires	fast	access	
and	updates,	we	had	to	develop	a	hybrid	storage	solution	to	accommodate	the	entire	data	set	[3].		
Annotations	on	Romanian	documents	at	the	level	of	Cyrillic	letters	were	acquired	through	a	

dedicated	web	application2,	in	close	cooperation	with	linguists,	whose	hints	and	corrections	have	
been	used	as	design	parameters.	In	some	cases,	the	data	has	been	double	checked,	but	seeing	the	
complexity	of	the	annotation	task,	we	have	mainly	relied	on	the	high	dedication	of	our	colleagues	
to	eliminate	the	need	for	multiplying	the	annotation	and	performing	inter-annotator	agreement.	
Our	collection	of	scanned	pages3	proved	to	have	varying	sources	and	to	be	of	varying	qualities,	

covering	three	centuries	and	a	half	(from	the	XVIth	to	the	middle	of	the	XIXth),	originating	from	all	
Romanian	 provinces,	 including	 pages	 with	 defects	 such	 as	 spots,	 damages	 or	 differences	 of	
illumination,	including	palimpsests	on	which	remains	of	an	original	writing	was	still	visible,	pages	
scanned	at	various	angles	or	displaying	skews	due	 to	 thick	book	spines,	 including	 large	 titles,	
frontispieces,	ornaments	and	drawn	first	letters	in	paragraphs,	including	marginal	writing	and	
interlinear	characters,	with	a	wide	variation	of	forms	for	similar	characters	and	a	wide	variation	
of	 letter	 sizes,	 including	 manuscripts	 as	 well	 as	 prints,	 and	 displaying	 varying	 densities	 of	
characters	per	page.	

2. A Birds-Eye View of the Technology	

2.1	Related	Work		

We	mention	only	a	few	systems	displaying	similarities	with	our	work.	The	μDoc.tS	project	[4]	
[5]	is	trained	to	decode	Greek,	English,	German	and	Finnish.	Monk4	is	a	tool	able	to	transcribe	
lines	for	speeding	up	the	process	of	indexing	a	documentation,	being	used	to	process,	apart	from	
Dutch,	also	Chinese	and	Arabic	characters.	Transkribus5	is	an	ABBYY	AI-based	system	offering	
online	and	desktop	transcribing	services	for	historical	documents.	It	decodes	handwriting,	even	
scripta	continua,	but	the	documentation	does	not	put	in	evidence	the	capacity	to	recuperate	and	
place	in	sequence	interlinear	writing.	To	the	best	of	the	author's	knowledge,	while	some	attempts	
to	 interpret	 old	 Romanian	 texts	 are	 reported	 [6],	 they	 are	 based	 on	 using	 semi-proprietary	
technologies.	Teiresias	[7]	is	a	classification	model	that	associates	written	archaic	Greek	symbols	
to	modern	 Greek	 letters.	 Both	 Teiresias	 and	 our	 system	 use	 classification	models	 built	 from	
scratch	using	convolutional	layers	spliced	with	max	pooling	layers,	which	are	then	followed	by	
dense	layers.	However,	our	model	has	a	smaller	number	of	layers,	namely	8	whereas	Teiresias	
uses	18	layers.	
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2.2	Methodology		

In	our	vision,	the	process	of	interpretation	of	old	Romanian	uncials	and	prints	that	include	
interlinear	 writing	 is	 a	 pipeline	 having	 five	 layers:	 (i)	 preprocessing	 of	 scanned	 pages,	 (ii)	
character	detection,	(iii)	character	labelling,	(iv)	character	linearization	and	(v)	words	formation.		
Preprocessing	means	to	prepare	the	image	of	a	page	that	is	received	in	input	by	passing	it	

through	a	sequence	of	 transformations	 intended	to	augment	 the	clarity,	making	 the	 following	
steps	 easier,	 while	 also	 squeezing	 the	 volume	 of	 stored	 data:	 binarization,	 filtering	 and	
deskewing.	Binarization	drastically	reduces	the	storage	space	of	an	image,	by	getting	down	the	
memory	used	to	store	each	pixel	from	three	bytes	of	memory	(colors	in	the	RGB	convention),	to	
just	one	bit	(with	the	meaning	of	white	versus	black).	Then,	to	reduce	noise	and	enhance	contrast,	
a	Gaussian	blur	filter	is	applied,	followed	by	a	correction	operation	that	reduces	the	curvatures	
of	 pages.	 The	 character	 detection	 step	 aims	 to	 identify	 all	 characters	 in	 the	 image,	 thus	
separating	them	from	other	types	of	visual	objects.	Character	labelling	is	a	classification	process,	
in	which	the	objects	identified	in	the	page	as	characters	receive	labels	from	the	set	of	Latin	letters.	
In	the	linearization	step	the	character	boxes	identified	in	the	page,	those	clearly	placed	in	lines	
of	text	as	well	as	those	written	in-between	lines,	are	linearly	ordered,	according	to	the	positions	
of	their	bounding	boxes	in	the	original	image.	Then,	a	string	of	Latin	letters	is	formed	by	picking	
their	transcribed	labels.	Finally,	in	the	obtained	string	word	boundaries	are	placed,	by	exploiting	
either	 linear	 distances	 between	 the	 original	 boxes	 (where	 they	 are)	 or	 linguistic	 criteria	
(occurrence	in	a	dictionary)	or	both.	

2.3	Collecting	Data	in	Support	of	our	Approach	

The	dataset	we	used	for	this	work	make	up	a	corpus	of	52	Cyrillic	Romanian	historical	texts,	
totaling	16,864	images	of	original	pages	(both	in	print	and	uncial	form)	over	a	span	of	three	and	
a	half	centuries.	This	collection,	called	the	Romanian	Old	Cyrillic	Corpus	(ROCC)	 [3],	has	been	
organized	into	a	database,	in	which	the	documents	also	contain	metadata	and	annotations.	The	
metadata	includes	information	such	as:	title,	author,	genre,	place	of	publication,	year,	and	quality	
of	the	original	and	scanned	copy.	The	inclusion	of	metadata	significantly	increased	the	value	of	
the	 dataset	 by	 providing	 contextual	 information	 that,	 at	 later	 steps,	 could	 help	 in	 the	
interpretation	 and	 deciphering	 of	 the	 documents.	 Having	 access	 to	 actual	 pages	 from	 old	
documents	 (see	 Figure	 1	 for	 some	 examples),	 as	 opposed	 to	 simulated	 data	 or	 modern	
transcriptions,	allows	us	to	address	real-world	challenges	such	as	variations	in	script	styles,	text	
degradation	over	time,	and	scan	quality	effects.	It	provides	an	opportunity	to	design	solutions	
that	are	robust	and	versatile,	able	to	cope	with	a	wide	range	of	conditions.	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	1:	Examples	of	pages	from	the	ROCC	dataset	



	 ROCC	also	includes	annotations	operated	manually	by	members	of	the	DeLORo	project.	
At	the	moment	of	this	article,	the	statistics	displayed	by	the	online	annotation	frontend	shows	
191,622	characters,	7182	rows	of	text,	5810	modifiers,	1972	letters	outside	rows	and	186	titles.	

3. The Main Steps of the Technology 

3.1	Binarization	

Binarization	is	the	preprocessing	technique	that	converts	a	color	image	into	a	black	and	white	
one,	effectively	removing	noise	and	other	extraneous	details	and	facilitating	further	processing	
by	machine	learning	models	(see	Figure	2).	This	is	done	in	two	steps:	filtering	followed	by	the	
effective	binarization.	In	the	filtering	phase	the	value	of	a	central	pixel	is	recomputed	to	take	in	
consideration	the	neighboring	ones,	while	in	the	adaptive	binarization	step	a	context-dependent	
threshold	value	 is	 fixed	and	all	pixels	below	this	threshold	are	turned	black	(representing	the	
text)	and	all	pixels	above	the	threshold	–	white	(representing	the	background).	
The	adaptive	type	of	binarization	we	have	used	accounts	for	local	illumination	conditions	in	

different	regions	of	the	page,	thus	helping	the	model	to	focus	more	easily	on	text	characters	and	
to	recognize	them.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	2:	Example	of	applying	binarization	to	a	page:	original	(left)	and	the	result	(right)	
	

3.2	Deskewing	Page	Curvatures	

In	the	field	of	digital	transformation,	a	recurring	challenge	that	arises	when	trying	to	digitize	
physical	 documents,	 especially	 books	 that	 have	 a	 thick	 book	 spine,	 is	 the	 appearance	 of	
distortions	 introduced	 during	 the	 scanning	 process.	 In	 most	 cases,	 these	 distortions	 are	
manifested	 as	 curved	 lines	 of	 text,	 actually	 lines	 deviating	 from	 the	 parallelism	 they	 should	
normally	have	with	the	top	and	bottom	edges	of	the	pages.	The	motivation	for	removing	page	
curvatures	comes	from	the	goal	we	have,	which	is	to	obtain	sequences	of	deciphered	letters	that	
could	be	read	linearly.	Since	the	linearization	process	should	finally	follow	the	lines	of	text,	one	
important	 step	 is	 the	 detection	 of	 the	 text	 rows.	 These	 are	 horizontal	 geometrical	 lines	
approximating	the	maximum	density	of	pixels.	It	follows	that	it	is	stringent	that	the	lines	of	text	
be	straight	and	horizontal.		

The	deskewing	process	has	been	thoroughly	described	in	[8]	and	consists	of	two	major	steps:	
detecting	the	curved	lines	of	text	in	the	input	image	and	rectifying	the	image	to	make	these	lines	



straight	 and	 horizontal6.	 For	 detecting	 lines,	 on	 the	 inverted	 image,	 a	 Gaussian	 2D	 low-pass	
filtering	is	first	applied,	with	a	kernel	much	more	aggressive	on	the	horizontal	direction,	to	exploit	
the	a-priori	expectation	that	text	lines	are	oriented	more	or	less	horizontally;	then	the	line	blobs	
are	detected	by	using	a	 ridge	 following	 strategy	 to	obtain	 a	 set	 of	 connected	 small	 segments,	
which	approximately	indicate	the	middle	of	the	text	lines.	In	the	image	rectification	phase,	the	
image	is	warped	in	such	a	way	as	to	transform	the	detected	connected	segments	into	horizontal	
lines,	by	aligning	horizontally	the	segments	that	approximate	the	highest	density	of	pixels	in	lines,	
with	 the	 regions	 of	 pixels	 around	 them	 being	 deformed	 accordingly.	 For	 the	 actual	 image	
dewarping,	a	mesh	decomposition	with	spline	transformation	has	been	applied.	An	illustrative	
example	of	a	fragment	of	a	page,	before,	in	the	middle	of	the	process	and	after	deskewing	is	shown	
in	Figure	3.	

	
	
	
	
	
	
	
	
	

																											(a)																																																												(b)																																																											(c)		
Figure	3:	The	deskewing	process:	a	fragment	of	a	page	on	the	initial	scan	(a);	the	mesh	
decomposition	(b);	after	deskewing	(c)	–	from	[8]	

3.3	Detecting	Characters	in	Pages	

In	the	DeLORo	project	[3],	more	types	of	graphical	objects	have	been	manually	annotated	on	
the	original	collection	of	scanned	pages	and	included	in	ROCC:	lines	of	text,	letters	(characters),	
drawn	initial	letters,	titles,	frontispieces,	modifiers,	marginal	letters,	interlinear	letters,	reference	
marks,	accolades,	ornaments,	etc.).	Out	of	all	these	categories	of	graphical	objects,	in	this	paper	
we	are	concentrated	solely	on	characters,	being	them	in	lines	or	in-between	lines.	The	process	
goes	 through	 two	 steps:	 letter	 detection	 (also	 called	 identification)	 and	 labelling	 (also	 called	
recognition).		

In	the	letter	identification	phase,	each	letter	is	delimited	by	a	rectangular	box.	This	is	defined	
by	the	horizontal	and	vertical	coordinates	of	the	upper-left	corner,	a	width	and	a	height.	This	way,	
each	letter	is	isolated	and	prepared	for	the	next	step	which	involves	classification.		

In	order	to	achieve	character	detection,	we	opted	to	segment	the	page	image	into	numerous	
windows	that,	on	one	side,	overlap	and,	on	the	other,	span	the	entire	size	of	the	image.	In	[8]	the	
character	detection	performance	of	a	YOLOv5	model	[9]	trained	on	whole	pages	was	compared	
with	 one	 trained	 on	 squared	 windows	 cut	 down	 from	 pages.	 The	 windows	 segmentation	
approach	 showed	 a	 significant	 improvement,	 with	 the	 average	 mean	 precision	 (mAP)	 at	 an	
intersection-over-union	(IoU)	threshold	of	0.5	increasing	from	0.82	(for	full	images)	to	0.99	(for	
segmented	images).		

The	window	segmentation	methodology,	proposed	in	[10],	divides	images	into	windows	of	
size	500	by	500	pixels.	The	training	set	consisted	of	1,000	windows	containing	140,324	annotated	
character	boxes,	while	the	validation	set	included	500	windows,	with	48,359	annotated	character	
boxes.	By	making	the	windows	to	slightly	overlap	we	capture	information	(characters)	that	might	
otherwise	be	split	or	clipped	at	 the	windows’	edges,	ensuring	thus	 that	no	characters	are	 lost	
during	this	process.		

Each	of	the	windows	produced	by	the	segmentation	process	is	then	processed	independently	
for	character	detection.	Once	recognized	in	the	windows,	the	characters	detected	are	recomposed	
to	 form	an	integral	page,	preserving	 their	spatial	positions	 in	the	original	 image.	To	eliminate	
																																																													

6	https://github.com/nikcleju/RowRectification	



fragmented	 characters	 and	 remove	 duplicates,	 the	 detected	 boxes	 are	 then	passed	 through	 a	
purging	algorithm,	which	eliminates	duplicates	and	maintains	the	most	reliable	detections	(best	
candidates)	for	each	character	(see	Figure	4a).	
	
	
	
	
	
	
	
	
	
	
	
	

	
																											(a)																																																												(b)																																																											(c)		
	
Figure	4:	Characters	isolated	in	boxes:	on	a	fragment	of	a	page	(a);	on	a	whole	page,	before	
running	the	pruning	and	consolidation	processes	(b);	and	after	(c)	
	

Duplicate detections in separate windows are eliminated by comparing the sizes of 
intersecting bounding boxes and their confidence scores, as assigned by the YOLOv5 model 
to each detected character. This confidence score reflects the model's certainty in detection, 
with higher scores indicating greater confidence. Then, after going through more heuristics to 
decide the best candidates for retaining, while pruning the rest, our experiments highlighted 
the following behavior: when two detections totally intersect (one bounding box is included 
into another) or their intersection is partial but significant (the IoU metric is above a threshold), 
they are considered to be duplicates and the one displaying the highest product between the 
area and the confidence score is retained; when the IoU is under the threshold, we implemented 
a consolidation process, which ensures that the intersecting characters are recognized as 
separate entities, by considering factors such as character detection model confidence, 
bounding box sizes, and spatial relationships between detected boxes; see Figure 4 (b) and (c). 
The	process	of	recombining	the	segmented	image	and	reconciling	the	results	from	overlapping	

windows,	although	complicated,	is	vital	for	accounting	the	success	of	the	next	steps.		

3.4	Classifying	Characters	

The	 following	step	 focuses	on	 the	 transliteration	of	 identified	Cyrillic	 characters	 into	 their	
Latin	equivalents.	Character	classification	consists	of	assigning	a	label	to	each	box.	The	label	is	
represented	by	 a	Latin	 letter	 or	 a	number,	 if	 the	 object	 is	 clearly	 recognizable.	An	 additional	
dimension	of	complexity	is	linked	to	the	fact	that	some	characters	can	be	drawn	in	more	than	one	
way	(see	Figure	5	for	some	examples),	depending	on	the	region	of	the	author	and	the	historical	
period.	The	many-to-one	choices	are	solved	by	assigning	one	Latin	label	to	more	Cyrillic	character	
shapes.	Inversely,	the	one-to-many	choices	are	usually	nuanced	by	the	context.	In	the	situation	
when	the	character	is	not	recognized	or	there	is	uncertainty	about	its	identity,	the	character	will	
be	 labelled	 with	 the	 $	 symbol.	 The	 approach	 presented	 in	 the	 present	 work	 involved	
implementing	several	deep	learning	models	designed	to	handle	these	complexities	efficiently,	as	
well	as	adjusting	a	pre-trained	model	to	suit	our	case.	In	our	experiments,	we	tested	several	model	
architectures	and	data	pre-processing	techniques,	finally	opting	for	a	model	that	demonstrated	
the	best	results.	
Our	first	implementation	is	a	variation	of	a	Convolutional	Neural	Network	(CNN),	a	class	of	

deep	 learning	models	 particularly	 effective	 in	 image	 recognition	 tasks,	 consisting	 of	multiple	



layers	of	convolutional	filters	that	learn	hierarchical	representations	of	input	data	and	extract	
meaningful	features	from	images,	capturing	spatial	patterns	at	different	scales.	
Our	data	set	comprised	approximately	28,000	images,	each	representing	a	character	written	

by	hand	(in	uncial	writing)	or	a	printed	one.	The	output	should	decide	one	(or	more)	out	of	24	
distinct	 character	 classes,	 the	 training	 set	 containing	 approximately	 an	 equal	 number	 of	
instances,	thus	ensuring	that	the	model	does	not	favor	any	particular	decisions.	The	images	in	the	
dataset,	collected	manually	in	DeLORo,	are	split	as	such:	40%	training	set,	40%	validation	set	and	
20%	test	set.	Moreover,	each	character	box	is	normalized	to	a	square	of	28x28	pixels.															
	
	
	
	
	
	
	

           (a)      (b) 
Figure	5:	Letters	having	different	forms:	letter	i	(a)	and	letter	ă	(b)		
 
Inspired	by	LeNet-5	[11]	[12],	our	first	architecture	incorporates	convolutional	and	pooling	

layers	to	capture	relevant	spatial	features	from	the	input	image.	We	use	two	convolutional	layers	
with	filter	sizes	of	3x3	and	2x2	and	a	2x2	max-pooling	layer	after	each	convolutional	layer.		
Another	direction	to	improve	the	results	has	been	to	implement	a	range	of	strategies	(data	

augmentation,	early	stopping,	hyperparameter	 tuning),	which	not	only	optimized	 the	 learning	
process	and	increased	the	model's	ability	to	generalize,	but	also	effectively	prevented	overfitting.	
The	implementation	of	these	changes	marked	a	key	achievement:	breaking	the	0.95	threshold	for	
model	precision	for	the	first	time.	
As	said	already,	the	character	identification	phase	places	bounding	boxes	around	characters	

and	this	process	uses	a	binarized	image,	by	applying	adaptive	thresholding,	which	exploits	the	
variations	in	quality	and	illumination	in	different	regions	of	the	page.	Once	the	characters	have	
been	identified	on	the	whole	page,	to	effectively	classify	the	shapes	inside	boxes,	we	could	come	
back	to	the	original	image	and	apply	binarization	at	this	local	level.	The	experiments	to	gain	more	
precision	 went	 on	 in	 two	 directions:	 choosing	 different	 types	 of	 binarization	 methods	 and	
applying	variations	in	hyperparameters,	such	as	the	batch	size,	the	number	of	epochs,	and	the	
learning	rates.	Table	1	shows	the	results	for	four	types	of	binarization	methods.	As	can	be	seen,	
the	best	results	(0.9565)	are	obtained	with	a	grayscale	binarization.		
 
Table	1:	CNN	experiments	(precision)	

 Grayscale Fixed 
threshold 

Otsu’s 
method 

Adaptive 
threshold 

Different filter sizes 0,9555 0.9171 0.954 0.9491 
Add conv. layer 128 
filters 3x3 kernels  

0.9461 0.9096 0.9368 0.9385 

Initial architecture 0.9565 0.9279 0.943 0.9526 
 
Then,	using	the	best	model,	we	have	considered	a	different	division	for	the	three	components	

of	the	dataset	(80/10/10	instead	of	40/40/20),	which	yielded	a	slight	improvement	over	the	96%	
threshold	for	precision:	0.9645.		
To	further	raise	the	quality	of	the	classifier,	we	also	explored	an	alternative	approach,	by	fine-

tuning	a	pre-trained	model.	Fine-tuning	means	taking	a	pre-existing	model,	 trained	on	a	large	
data	set,	often	for	a	different	task,	and	adapting	it	to	our	specific	problem.	This	approach	uses	the	
knowledge	and	feature	extraction	capabilities	already	learned	by	the	pretrained	model,	which	
can	lead	to	improved	performance	and	reduced	training	time.		



ResNet,	short	for	Residual	Network,	is	a	deep	convolutional	neural	network	architecture	that	
has	 gained	 significant	 popularity	 in	 computer	 vision	 tasks.	 It	 was	 introduced	 to	 address	 the	
vanishing	 gradient	 problem	 encountered	 when	 training	 very	 deep	 networks	 [13].	 ResNet	
introduces	 residual	 connections,	 or	skip	 connections	 that	 allow	 the	network	 to	 learn	 residual	
functions,	i.e.,	the	difference	between	the	input	and	the	output	of	a	layer.	This	helps	to	address	
the	problem	of	degradation	caused	by	increasing	network	depth.		
To	tune	ResNet	for	our	character	classification	task,	we	used	the	ResNet50	variant7.	The	model	

was	pre-trained	on	the	ImageNet	dataset	[14],	which	contains	a	large	number	of	images	from	a	
wide	range	of	classes.	In	our	implementation,	we	replaced	the	final	layers	of	the	model	to	suit	our	
classification	problem.	We	added	a	flatten	layer,	a	dense	layer	with	ReLU	activation	function	and	
a	 final	 dense	 layer	 with	 softmax	 activation	 for	 the	 output,	 while	 the	 pooling	 layer	 helps	 to	
summarize	the	most	essential	features	learned	from	the	previous	layers.	We	compiled	the	model	
with	 the	 'categorical	 cross-entropy'	 loss	 function	 and	 the	 Adam	 optimizer,	which	 has	proven	
effective	for	many	deep	learning	tasks	[15].	By	using	the	ResNet50	variant,	initially	trained	on	the	
ImageNet	 dataset,	 we	 took	 advantage	 of	 a	 wealth	 of	 diverse	 visual	 knowledge	 that	 proved	
beneficial	in	improving	the	overall	feature	extraction	capabilities	in	our	specific	task.	
The	fine-tuned	ResNet50	model	not	only	that	matched	well	on	our	classification	problem,	but	

also	significantly	outperformed	other	architectures	we	have	used	during	the	experiments.	With	
ResNet50	the	classification	accuracy	performance	exceeds	 the	0.97	threshold	(0.9714)	 for	the	
first	time,	highlighting	the	substantial	 improvement	in	the	model's	ability	to	correctly	identify	
and	transliterate	a	wide	range	of	Cyrillic	characters.	
Finally,	in	a	last	experiment	we	adopted	the	VGG	network	(short	for	Visual	Geometry	Group)	

–	a	convolutional	neural	network	architecture	well	known	for	its	efficiency	in	computer	vision	
tasks.	Like	ResNet,	VGG	was	designed	to	combat	the	vanishing	gradient	problem	[16].	It	includes	
two	convolutional	layers	with	increasing	filter	sizes	(32	and	64),	a	choice	which	allows	the	model	
to	progressively	capture	more	and	more	complex	traits	and	patterns	present	in	the	characters.	
The	VGG	architecture	is	notable	for	using	small	and	dense	convolutional	filters,	especially	3x3	
filters,	which	allow	the	network	to	learn	complex	patterns	with	a	small	number	of	parameters.	In	
addition,	VGG	uses	pooling	to	reduce	the	spatial	dimension	of	the	input	volume	while	increasing	
the	depth,	helping	to	extract	meaningful	features.	
	
	
	
	
	
	
	
	
	
	

Figure	6:	A	fragment	of	a	decoded	page	
	
For	our	problem,	we	chose	to	use	the	VGG16	model,	a	variant	of	the	16-layer	VGG	architecture,	

due	to	its	efficiency	in	image	recognition	tasks.	The	model	was	pre-trained	on	the	same	ImageNet	
dataset	 used	 by	 us	 to	 pre-train	 the	 ResNet50	 model.	 To	 adapt	 VGG16	 to	 our	 character	
classification	task,	we	modified	the	upper	layers	of	the	model	to	suit	our	needs.	Following	the	
convolutional	layers	of	the	base	model,	we	added	again	a	flatten	layer,	which	transforms	the	input	
tensor	into	a	one-dimensional	vector,	thus	allowing	connections	with	the	dense	layer	placed	in	
its	tail:	a	dense	layer	with	256	nodes.	A	ReLU	activation	function	was	also	added	to	introduce	non-
linearity,	helping	to	learn	complex	patterns	[17].	Finally,	we	added	a	final	dense	layer	with	the	
number	of	nodes	equal	to	the	number	of	classes	and	a	softmax	activation	to	generate	classification	
probabilities.	We	compiled	the	model	with	the	same	categorical	cross-entropy	loss	function	and	
																																																													

7		https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758	(accessed:	17	April	2023)	



the	 Adam	 optimizer.	 The	 VGG16	 model	 performed	 impressively	 in	 character	 recognition,	
achieving	an	accuracy	of	0.9722,	thus	surpassing	for	the	second	time	the	threshold	of	0.97	and	
proving	 once	 again	 the	 high	 potential	 of	 pre-trained	models.	 Figure	 6	 shows	 a	 fragment	 of	 a	
decoded	 page	 in	 which	 the	 optimum	 architecture/parameters	 have	 been	 used.	 The	 Cyrillic	
character	boxes	are	marked	with	letters	in	the	Latin	alphabet.	
Up	to	this	point	in	our	research,	as	seen,	the	best	results	obtained	for	the	precision	of	character	

recognition	shows	an	error	rate	of	less	than	3%,	which	means	that	one	character	out	of	33	could	
still	be	erroneous.	If	this	would	be	the	only	source	of	errors,	considering	an	average	length	of	a	
word	of	5	characters,	this	result	means	that	one	word	out	of	6	could	possibly	be	misspelt.		
In	the	following,	starting	from	the	results	obtained	thus	far,	we	foresee	two	ways	to	continue	

to	 raise	 the	 quality	 of	 the	 character	 recognition	 task:	 by	 improving	 the	 CNN	model	 (making	
modification	 to	 the	 architecture	 and	playing	with	hyperparameters)	 and	 by	 adopting	 a	 post-
processing	phase	that	would	use	geometric	and	lexical	information	to	form	words	and	correct	
them.	About	this	type	of	processing	we	will	talk	in	the	next	subsection.			

3.5	Putting	Characters	in	Order	

In	old	documents,	especially	in	manuscripts	as	those	with	uncial	writing,	characters	are	often	
placed	 interlineally.	 This	 reflects	 the	 copyists’	 acts	 of	 successive	 corrections	 applied	 to	 the	
original	hand	written	document.	A	linearization	algorithm	was	proposed	that	arranges	the	boxes	
in	 a	 left-to-right	 sequence	 based	 on	 their	 position	 with	 respect	 to	 the	 rows	 of	 text	 and	 the	
sequence	of	rows	within	the	page.	Any	box	that	is	positioned	between	rows	(an	interlined	box)	
should	be	placed	in	one	of	the	adjacent	rows.	The	evident	assignment	is	for	characters	placed	
above	the	first	row	and	under	the	last	one.		
The	 idea	 of	 this	 processing	 phase	 is	 to	 assemble	 sequences	 of	 letters	 from	 the	 geometric	

arrangements	of	characters,	once	identified	and	recognized	in	the	page.	Most	of	the	time,	boxes	
of	characters	have	an	evident	location	inside	rows,	but,	when	placed	interlineally,	the	technology	
should	correctly	find	where	to	insert	them	in	rows.	
First,	the	position	of	text	rows	must	be	determined	on	a	vertical	axis	of	the	image.	As	in	the	

previous	phases,	 the	binarized	 image	helps	a	 lot	 to	distinguish	between	text	and	background.	
Then,	like	in	the	deskewing	operation,	a	Gaussian	filter	with	a	horizontal	elliptical	mask	is	applied	
to	 smooth	 the	 image	 of	 the	 text,	 and	 the	 horizontally	 projected	 histogram	 of	 the	 pixels	 is	
calculated	on	a	 vertical	 up-down	axis,	 this	 giving	a	 graphical	 representation	of	 the	density	of	
pixels	in	the	image.	Finally,	the	peaks	in	the	histogram	(local	maxima)	are	considered	to	indicate	
the	positions	of	the	rows.	Figure	7	shows	different	phases	of	this	process.	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure	7:	Detecting	the	position	of	lines	in	a	page.	(a)	-	the	page	is	inverted	and	a	horizontal	
Gaussian	filter	is	applied;	(b)	-	the	vertical	positions	of	rows	are	considered	to	be	in	the	local	
maxima	of	a	horizontally	projected	histogram	



	
Character	sequencing	in	a	page	depends	on	three	decisions:	(1)	the	sequencing	of	the	rows	on	

the	vertical	axis	of	the	page;	(2)	the	row	each	character’s	box	should	be	assigned;	(3)	the	relative	
positions	of	character	boxes	in	a	row.	
The	answer	to	question	(1)	is	simple:	as	given	by	the	vertical	coordinates	of	the	histogram	

maxima.	
After	trying	more	solutions,	the	answer	to	(2)	is,	for	the	time	being,	implemented	as	a	simple	

heuristic	in	which	more	space	is	left	above	the	rows	then	under	them	(in	a	ratio	0.65/0.35,	which	
means	 that	 0.65	 of	 the	 distance	 between	 two	 rows	 is	 allocated	 for	 boxes	 whose	 vertical	
coordinates	of	their	geometric	centers	are	above	the	vertical	coordinate	of	a	line,	and	0.35	–	for	
boxes	placed	under	–	see	Figure	8).	We	are	aware	that	this	solution	has	its	drawbacks.	A	more	
advanced	solution,	to	be	tried	in	the	future,	would	be	to	assign	boxes	to	rows	based	on	the	centers	
of	gravity	of	the	pixels	inside	boxes	and	not	to	their	geometric	centers.		
To	answer	(3),	the	simplest	approach	would	be	to	sort	boxes	by	the	horizontal	coordinates	of	

their	geometrical	centers.	In	reality,	a	simple	geometric	sequencing	could	be	misleading	in	many	
cases	of	 interlineally	placed	characters.	For	 this	reason,	 to	which	can	be	added	complications	
triggered	by	imperfections	in	the	pipeline	described	so	far	(characters	not	identified	or	identified	
with	a	low	confidence,	false	characters	induced	by	spots	or	trails	of	large	characters,	which	have	
misled	the	segmenter),	it	became	evident	that	the	final	decision	on	the	output	should	be	let	on	the	
shoulders	of	a	module	applying	lexical	criteria.	Indeed,	the	final	output	of	our	technology	cannot	
be	a	sequence	of	characters,	but	a	sequence	of	words.	The	same	type	of	linguistic	knowledge	that	
we	invoke	here	acts	in	the	mind	of	a	human	expert	when	deciphering	an	old	text.	It	is	common	
knowledge	that	knowing	the	language	helps	enormously	in	deciphering	a	text.	Within	the	same	
paradigm	should	be	treated	issues	introduced	by	missing	or	false	white	spaces,	abbreviations,	
obsolete	word	forms	or	totally	unknown	words.	
 
 
 
 
 
 
 
 
 
Figure	8:	The	heuristics	for	attachment	of	character	boxes	to	lines	
 
Till	now,	we	have	only	tested	the	baseline	heuristic	of	ordering	characters	in	lines	based	on	

the	horizontal	coordinates	of	boxes’	centers.	To	eliminate	the	errors	caused	by	the	previous	steps	
(character	segmentation	and	labelling)	 the	evaluation	should	use	ground	truth	 in	which	 these	
previous	steps	are	not	present.	The	lack	of	this	kind	of	manually	annotated	data	obliged	us	to	
execute	tests	on	only	a	few	pages,	segmented	and	labelled	ad-hoc,	for	which	we	also	had	expert	
Latin-script	transcriptions.	After	withdrawing	white	spaces	from	the	transcription	(for	evident	
reasons,	 as	spaces	 are	not	noticed	by	 the	 character	 segmenter),	 the	 evaluation	 computed	 the	
BLEU	score	[18]	–	adapted	to	count	characters	instead	of	tokens.	We	report	here	the	best	value	
obtained:	0.933999.		

4. Conclusions and Further Steps 

We	 have	 discussed	 in	 this	 paper	 the	 main	 solutions	 that	 compose	 the	 technology	 of	
automatically	transcribing	old	Cyrillic	Romanian	documents,	handwritten	in	uncials	or	printed,	
in	the	Latin	script.	Part	of	the	solutions	proposed	are	tested,	others	remain	to	be	implemented.	
Overall,	the	technology	composes	a	pipeline	of	interchangeable	modules	that	will	receive	scanned	
pages	of	old	Cyrillic	Romanian	documents	and	will	output	sequences	of	words	drafted	in	the	Latin	



script.	The	vision	is	that	all	modules	be	replaceable,	allowing	for	improvements,	either	induced	
by	changes	in	their	internal	structure	or	by	the	addition	of	more	training	data.		
However,	important	issues	yet	remain	to	be	treated.	We	enumerate	here	only	some:		

• some	Cyrillic	glyphs	have	more	Latin	interpretations;	therefore,	their	transliteration	should	
be	linked	to	the	context	of	occurrence.	The	issue	(known	as	interpretative	transcription)	has	
been	theoretically	treated	[6],	but	a	reliable	technology	that	implements	it	is	yet	to	come;	

• we	still	lack	a	global	evaluation	of	the	pipeline;	this	could	be	obtained	by	deciphering	pages	
for	which	an	expert	transcription	already	exists,	as	are	the	critical	editions.	As	suggested	in	
the	previous	 section,	 the	BLUE	 score	 could	be	used	 for	 that,	 comparing	 the	output	of	 the	
pipeline	against	the	transcribed	texts;		

• we	also	foresee	the	possibility	that	the	pipeline	will	need	to	process	documents	written	in	the	
transition	alphabet,	used	in	the	middle	of	the	XIX	century	on	the	Romanian	territory,	which	is	
a	mixture	of	both	Latin	and	Cyrillic	characters.	There	are	studies	showing	how	to	discriminate	
between	different	 scripts	used	 in	 a	document,	 e.	 g.	 [19].	 In	 a	 future	development	we	will	
certainly	 have	 to	 adopt	 such	 techniques	 capable	 of	 classifying	 individual	 characters	
regardless	of	whether	they	are	Latin	or	Cyrillic.	Having	developed	such	a	model	will	allow	us	
to	make	 the	processing	pipeline	 generic,	 thus,	 at	 the	 expense	of	more	processing	 cost,	 to	
abstract	the	language	it	is	able	to	decode.	
A	number	of	applications	could	be	issued	from	the	technology	described	here.	Here	are	some:	

(a)	a	tool	capable	to	search	the	scanned	pages	of	an	old	document	by	answering	to	a	keyword	
inputted	 by	 the	 user,	 without	 decoding	 the	 whole	 document;	 this	 would	 involve	 a	 back	
transliteration	from	Latin	Romanian	(of	the	input	keyword)	into	Cyrillic	Romanian	and	an	ad-hoc	
generation	of	character	shapes	that	copy	the	writing	style	or	the	print	of	the	document;	then,	a	
number	of	forms	thus	produced	would	be	compared	against	the	document	in	search	for	visual	
matches;	 (b)	 digitization	 of	 old	 documents	 could	 be	 paired	 with	 their	 transcription	 and	 the	
automatic	recuperation	of	the	word	forms	contained;	this,	in	time,	would	help	to	inventory	the	
old	language	diachronically	(on	periods	of	50	years,	for	example)	and	synchronically	(on	regions	
and	provinces	of	the	actual	Romanian	territory).		
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