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Abstract  
In an era where biometric security serves as a keystone of modern identity verification systems, 

ensuring the authenticity of these biometric samples is paramount. Liveness detection, the 

capability to differentiate between genuine and spoofed biometric samples, stands at the 

forefront of this challenge. This research presents a comprehensive evaluation of liveness 

detection models, with a particular focus on their performance in cross-database scenarios, a 

test paradigm notorious for its complexity and real-world relevance. Our study commenced by 

meticulously assessing models on individual datasets, revealing the nuances in their 

performance metrics. Delving into metrics such as the Half Total Error Rate, False Acceptance 

Rate, and False Rejection Rate, we unearthed invaluable insights into the models' strengths and 

weaknesses. Crucially, our exploration of cross-database testing provided a unique perspective, 

highlighting the chasm between training on one dataset and deploying on another. Comparative 

analysis with extant methodologies, ranging from convolutional networks to more intricate 

strategies, enriched our understanding of the current landscape. The variance in performance, 

even among state-of-the-art models, underscored the inherent challenges in this domain. In 

essence, this paper serves as both a repository of findings and a clarion call for more nuanced, 

data-diverse, and adaptable approaches in biometric liveness detection. In the dynamic dance 

between authenticity and deception, our work offers a blueprint for navigating the evolving 

rhythms of biometric security. 
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1. Introduction 

In the contemporary digital age, where vast arrays of information converge and intermingle within 

the virtual realm, the secure identification and authentication of individuals has ascended to paramount 

importance [1]. Biometric systems, harnessing physiological or behavioral attributes – from fingerprints 

to facial patterns, voice modulations to iris intricacies – promise a semblance of security that traditional 

alphanumeric passwords often fail to deliver. They purport to offer a more foolproof method of 
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identification, one inherently linked to the individual, and ostensibly resistant to theft, duplication, or 

subversion [2–4]. 

Yet, as with every technological advancement, there arises a counter-movement seeking to exploit 

potential vulnerabilities. Spoofing attacks, wherein malicious entities present synthetic or altered 

biometric data to deceitfully gain access, have emerged as a significant threat to biometric systems [5–

7]. To counteract these sophisticated maneuvers, the realm of liveness detection has evolved, aiming to 

discern real biometric traits from forged or replayed ones [8,9]. 

However, the real litmus test for these liveness detection mechanisms is not simply their efficacy 

within the confines of a singular dataset or environment, but their robustness and adaptability across 

diverse scenarios. The potential for a model trained on one dataset to retain or even amplify its accuracy 

on a disparate dataset remains an underexplored, yet critical area of inquiry. This cross-database testing 

paradigm offers insights not just into the generalizability of models but also into the intrinsic challenges 

and opportunities in bridging the gap between varied biometric landscapes [10,11]. 

The present study embarks on this very exploration, delving deep into the performance metrics of 

various liveness detection models, particularly in cross-database contexts. Through meticulous 

analyses, comparisons with existing methodologies, and a persistent commitment to understanding the 

underlying dynamics, this paper aims to shed light on the path forward for liveness detection in 

biometric systems – a path replete with challenges but also rife with potential. 

In the subsequent sections, we delineate our methodologies, elucidate the metrics employed, present 

our results, and engage in comprehensive discussions and conclusions, all with the overarching 

objective of navigating the intricate nexus of biometrics, security, and authenticity in today's digital 

realm. 

2. Methodology 
2.1. AttackNet v2.2: Deep Learning Model Architecture 

In the evolving landscape of deep learning, Convolutional Neural Networks (CNNs) have 

established themselves as the forefront methodology in image processing, pattern recognition, and a 

myriad of related applications. In our previous work, as referenced in [12], we introduced a lineage of 

CNN architectures culminating in the conception of AttackNet v2.2, a model tailored to combat 

spoofing attacks in biometric systems. 

2.1.1. Model Description 

The architecture of AttackNet v2.2 is predicated on layer-wise refinement, with a methodical buildup 

from low-level feature extraction to high-level pattern discernment. The structure can be broadly 

demarcated into three phases (Refer to Fig. 1 for the comprehensive visual representation): 

1. Initial Convolutional Phase: 

• The network ingests input through a two-dimensional convolutional layer with 16 filters of 

size 3x3. The 'same' padding ensures spatial dimensions are maintained post-convolution. 

• This is followed by a Leaky Rectified Linear Unit (LeakyReLU) with an alpha value of 0.2, 

allowing a minor gradient when the unit is not active and mitigating the risk of dead neurons 

during training. 

• Batch normalization is then applied along the feature map channel to stabilize the activations 

and accelerate convergence. 

• An ensemble of convolutional layers ensues, terminated with a skip connection (a residual 

link) that merges the original input (y) and the resultant output (z). This residual addition 

aids in avoiding vanishing gradient problems in deeper networks. 

• The phase culminates with a 2x2 max-pooling layer, halving the spatial dimensions, and is 

immediately followed by a dropout of 25% to prevent overfitting. 

2. Second Convolutional Phase: 

• Much like its predecessor, this phase initiates with a convolutional layer, but with a doubled 

depth of 32 filters. The subsequent layers mirror the earlier phase in functionality, ensuring 



deeper and more intricate pattern recognition. The skip connection, again, plays a pivotal 

role in reinforcing learned features and preserving gradient flow. 

3. Dense Phase: 

• The flattened output from the preceding convolutional layers feeds into a dense layer with 

128 units. The tanh activation function is employed here, primarily to ensure the output 

range between -1 and 1, offering a normalized and centered activation spectrum. 

• A substantial dropout of 50% follows, offering a rigorous regularization step before the final 

softmax layer. 

• The terminating softmax layer comprises 2 units, offering probability scores for the binary 

classification task at hand. 

 

 
 

Figure 1: AttackNet v2.2 Architecture [12] 

2.1.2. Architectural Justifications: 

• LeakyReLU Activation: Traditional ReLU units can sometimes cause neurons to "die", 

ceasing to adjust during training due to consistently receiving non-positive inputs. The 

introduction of a leak factor, even if minuscule, ensures gradient flow, enhancing the 

robustness of the training process. 

• Residual Connections: Deep networks, while powerful, can sometimes become victims of 

vanishing or exploding gradients, hampering their ability to learn. The residual connections 

(or skip connections) in our model aid in mitigating this issue by providing a direct path for 

the gradient to flow. 

• Dropout Layers: Overfitting remains a pertinent concern in deep architectures. Strategic 

placement of dropout layers in our model ensures generalizability by randomly deactivating 

certain neurons during training, forcing the network to learn redundant representations. 

In essence, AttackNet v2.2 stands as a testament to meticulous design, iterative refinement, and 

architectural prudence. It aims to provide a robust solution in the domain of biometric security, making 

strides in both liveness detection accuracy and generalizability across diverse datasets. 



2.2. Datasets Used 

In our pursuit of advancing cross-database testing in Liveness Detection, we utilized five distinct 

datasets designed to evaluate face presentation attack detection. These datasets represent different 

modalities and scenarios essential for comprehensive analysis. The following outlines the details of the 

datasets, including their sources, types of biometric data, and any preprocessing performed. 

2.2.1. The Custom Silicone Mask Attack Dataset (CSMAD) 

Source: Collected at the Idiap Research Institute [13]. 

Type of Biometric Data: The CSMAD consists of face-biometric data derived from 14 subjects, 

encompassing bona fide presentations, as well as custom-made silicone mask attacks. 

Content and Preprocessing: Videos were captured under various lighting conditions: fluorescent 

ceiling light only, halogen lamps illuminating from either side, and both sides simultaneously. A green 

uniform background was used for all recordings, organized into ‘attack,’ ‘bonafide,’ and ‘protocols’ 

directories. Videos were categorized as 'WEAR' (108 videos) and 'STAND' (51 videos) for attack 

presentations. 

 

2.2.2. The 3D Mask Attack Database (3DMAD) 

Source: 3DMAD is a specialized biometric (face) spoofing database [14]. 

Type of Biometric Data: This dataset contains 76500 frames of 17 individuals, recorded using Kinect 

for both genuine access and 3D mask spoofing attacks. 

Content and Preprocessing: The data, collected across three different sessions, include a depth 

image, corresponding RGB image, and manually annotated eye positions. Real-size masks were 

obtained using "ThatsMyFace.com," with paper-cut masks also included. The database is maintained 

under controlled conditions, with frontal-view and neutral expression. 

2.2.3. The Multispectral-Spoof Face Spoofing Database (MSSpoof) 

Source: Created at the Idiap Research Institute [15]. 

Type of Biometric Data: A spoofing attack database consisting of VIS and NIR spectrum images for 

21 clients. 

Content and Preprocessing: Real accesses and spoofing attacks were recorded using a uEye camera 

with an 800nm NIR filter. Different lighting conditions and environmental settings were employed, 

resulting in a total of 70 real accesses per client (35 VIS and 35 NIR) and 144 spoofing attacks per 

client. The database is divided into training, development, and test subsets, with manually annotated 

key points on the face for each sample. 

2.2.4. The Replay-Attack Database 

Source: The Replay-Attack Database was produced at the Idiap Research Institute [16]. 

Type of Biometric Data: 2D Facial Video 

Content and Preprocessing: This database contains 1,300 video clips of real-access and attack 

attempts from 50 clients under various lighting conditions. The data includes training, development, 

test, and enrollment sets. Attack attempts utilize high-resolution photos and videos from each client. 

Methods of attack include mobile displays (iPhone 3GS), high-resolution screen displays (first-

generation iPad), and hard-copy prints. The database offers 18 different protocols for evaluating 

countermeasures to spoof attacks. Data includes annotated face locations. The database structure allows 

the study of countermeasures against 2D face spoofing attacks. 



2.2.5. Our Own Dataset 

Source: Videos taken with smartphones or downloaded from the internet [12]. 

Type of Biometric Data: 2D Facial Images 

Content and Preprocessing: The dataset is divided into bona fide images and attacker images. Bona 

fide images are sourced from videos that depict real people, either taken directly with a smartphone or 

downloaded online. Attacker images are derived from videos captured using a laptop webcam that 

played back the bona fide videos from a smartphone screen or vice versa. The dataset contains 4,656 

images with a 50/50 class distribution and a 48/52 training/validation split. The videos were mainly 

sourced from YouTube. A total of 84 videos are included, 40 for training and 25 for testing, with images 

extracted from each video. The dataset aims to represent and allow for the detection of face spoofing 

attempts. 

By integrating these diversified datasets, this study aims to offer a robust examination of cross-

database testing in Liveness Detection. The selected datasets cover various facets of biometric data, 

providing a valuable foundation for our investigation.  

2.3. Evaluation Metrics 

In our investigation, it is pivotal to not only generate results but also to evaluate the efficacy of those 

results comprehensively. To this end, a suite of performance metrics was employed to assess the 

performance of our model across two classes: Bonafide and Attacker. The following is a thorough 

examination of the metrics utilized: 

2.3.1. Precision 

Precision, also known as the positive predictive value, measures the fraction of correctly identified 

positive instances from all the instances predicted as positive. In the context of our study:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)  +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
. 

(1) 

For the Bonafide class, it represents the accuracy of genuine identity recognitions, while for the 

Attacker class, it indicates the accuracy with which fraudulent attempts are identified. A high precision 

is crucial to ensure that legitimate users are not mislabeled as attackers and vice versa. 

2.3.2. Recall 

Often termed sensitivity or the true positive rate, recall denotes the fraction of positive instances that 

were correctly identified from all actual positive instances. Mathematically:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)  +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
. 

(2) 

In our study, a high recall for the Bonafide class signifies that a significant number of genuine users 

are recognized correctly. For the Attacker class, it implies that a vast majority of spoofing attacks are 

detected. Recall is especially vital in security-sensitive applications to ensure that attacks are not 

overlooked. 

2.3.3. F1 Score 

The F1 Score provides a harmonized mean of precision and recall. It is particularly beneficial when 

there's an uneven class distribution:  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

(3) 

A high F1 Score suggests a balanced identification mechanism, where both false alarms (false 

positives) and missed detections (false negatives) are minimized. 



2.3.4. HTER (Half Total Error Rate) 

This metric is an average of the False Acceptance Rate (FAR) and the False Rejection Rate (FRR). 

Mathematically:  

𝐻𝑇𝐸𝑅 =
𝐹𝐴𝑅 +  𝐹𝑅𝑅

2
, 

(4) 

where:  

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, 

(5) 

𝐹𝑅𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. 

(6) 

HTER provides a balanced overview of the system's performance, considering both the cases when 

a genuine user is incorrectly rejected and when an attacker is wrongly accepted. A lower HTER signifies 

a more robust and reliable biometric system. 

2.3.5. Significance 

The ensemble of these metrics enables us to draw holistic insights into the system's behavior. While 

metrics like precision and recall give insights into specific types of errors, the F1 Score and HTER 

provide a summarized view of the overall performance. Employing these metrics ensures that our 

evaluation is not only thorough but also aligned with contemporary best practices in biometric system 

performance assessment. 

2.4. Cross-Database Testing: Evaluating Liveness Detection Robustness 

Cross-database testing, often deemed a gold standard for evaluating the generalization ability of a 

machine learning model, involves training the model on one database (or dataset) and subsequently 

testing its performance on an entirely different database. This methodology is paramount for assessing 

the capability of a model to adapt and perform reliably in real-world scenarios where it encounters data 

distributions that it has not been directly exposed to during training. 

Rationale for Cross-Database Testing: 

1. Model Generalization: Traditional training and testing on the same dataset can sometimes 

lead to overfitting, where the model memorizes the specific characteristics of the training set, 

leading to excellent training performance but poor generalization to new data. Cross-database 

testing helps in ensuring that the model's performance is genuinely reflective of its ability to 

generalize across various data sources. 

2. Diversity in Data: Different databases can often have diverse data collection protocols, varied 

demographic distributions, and even different types of spoofing attacks. Testing a model across 

such diverse datasets can provide insights into its robustness and adaptability. 

3. Benchmarking: Cross-database testing also sets a benchmark for comparing different liveness 

detection algorithms. A model that consistently performs well across multiple datasets is 

typically considered more robust and reliable. 

In the context of our study, with a total of five datasets at our disposal, we embarked on a rigorous 

cross-database testing regime. The model was systematically trained on each dataset in turn and then 

tested on the remaining four, resulting in a comprehensive matrix of training-testing combinations. This 

procedure facilitated a meticulous investigation into the reliability of liveness detection under diverse 

conditions and challenges. 

For biometric systems, the stakes are exceptionally high. A system trained exclusively on one 

database might perform flawlessly on that particular data but might falter when encountering a slightly 

different spoofing technique or a different demographic distribution. Thus, cross-database testing is not 

merely an academic exercise; it directly impacts the real-world reliability and security of biometric 

systems. By gauging performance across multiple datasets, we ensure that our liveness detection model 

is not only precise but also resistant to diverse spoofing challenges. 



In conclusion, while single-database evaluations provide valuable insights into model performance, 

cross-database testing unveils the broader picture, shedding light on the robustness and generalization 

capability of the model. This comprehensive assessment is instrumental in advancing the state-of-the-

art in liveness detection, ensuring the development of systems that are both secure and inclusive. 

3. Testing Results 

In this section, we present the research findings of our liveness detection study across various 

datasets. The results are summarized in terms of standard metrics such as Precision, Recall, F1 score, 

FAR, FRR, and HTER.  

3.1. Training Performance Analysis 

Before delving into the testing results, it is pertinent to examine the model's performance during the 

training phase. This approach helps us to understand not only the model's behavior and learning efficacy 

but also to preemptively identify and mitigate any potential issues, such as overfitting or underfitting, 

that are often illuminated by training dynamics. 

During the training phase, we monitored key performance metrics, including Precision, Recall, and 

F1 Score, for both 'Bonafide' and 'Attacker' classifications. We also kept a close eye on the False 

Acceptance Rate (FAR) and False Rejection Rate (FRR), as these metrics provide additional insight 

into the model's reliability. 

In this scenario, learning performance was slightly higher than testing performance, which is a 

common finding. These results suggest that the model was trained effectively on the training data, but 

not to the extent of perfectly fitting (and therefore potentially overfitting) the data.  

Thus, an analysis of the training metrics indicates that the model exhibits a robust learning pattern, 

with no significant discrepancies between performance on training data versus validation data. This 

consistency suggests that our model has not experienced overfitting during the training process. 

3.2. Testing Performance Analysis 

The testing phase evaluated the model's ability to generalize its learning from the training datasets 

to unseen data. Table 1 below illustrates the performance metrics observed during this phase. 

The testing results, particularly when compared with the training performance, confirm the model's 

effective generalization. The consistency across key metrics between both phases underscores the 

model's reliability in diverse real-world scenarios. 

 

Table 1 
Performance Metrics across Datasets 

Dataset Precision 
(B) 

Precision 
(A) 

Recall  
(B) 

Recall 
(A) 

F1 score 
(B) 

F1 score 
(A) 

FAR FRR HTER 

MSSpoof 0.96 0.93 0.92 0.96 0.94 0.94 0.08 0.04 0.06 
3DMAD 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 
CSMAD 0.56 1.0 1.0 0.23 0.72 0.37 0.0 0.77 0.385 
Replay 
Attack 

0.97 0.93 0.93 0.98 0.95 0.95 0.07 0.02 0.045 

Our 
Dataset 

0.8 0.89 0.9 0.77 0.85 0.83 0.2 0.23 0.215 

Note: B – Bonafide; A – Attacker 

 

 



3.3. MSSpoof Dataset 

The results exhibit a commendable balance between precision and recall for both classes. This 

implies that the model not only makes accurate predictions but also captures most of the genuine and 

attack instances. However, there's a slight increase in the FAR, signifying a minor vulnerability to false 

acceptance. 

3.4. 3DMAD Dataset 

The model demonstrates impeccable performance across all metrics. Such an outcome might imply 

an excellent alignment between training and testing distributions or might hint towards potential 

overfitting. Though optimistic, it's crucial to verify the authenticity of these results in real-world 

scenarios. 

3.5. CSMAD Dataset 

This dataset posed significant challenges. While the model identified bona fide instances with 

impeccable precision, it faltered with the attacker class. The substantial FRR indicates the model's 

inclination to classify many attacker instances incorrectly, which can be a significant security concern. 

The reasons can range from data variability, novel spoofing techniques, or a distinct distribution not 

seen during training. 

3.6. Replay Attack Dataset 

Comparable to the MSSpoof dataset in performance, the model shows a slight vulnerability in FAR 

but excels in detecting attacker instances with high recall. This suggests that while it might occasionally 

admit a spoof, it rarely fails to identify an authentic attempt. 

3.7. Our Dataset 

Results show a balanced but slightly lowered performance, with the largest FAR value among all 

datasets. The dataset's inherent diversity or the potential novelties it introduces can challenge the model, 

making it more cautious and sometimes erring on the side of false acceptance. 

3.8. Findings  

The variation in performance across datasets underscores the criticality of diverse data 

representation in training robust liveness detection models. While some datasets like 3DMAD show 

near-perfect results, others like CSMAD reveal potential vulnerabilities. 

Our findings emphasize the importance of comprehensive evaluations and the necessity of cross-

database testing. A model's efficacy shouldn't be gauged by its performance on one dataset but should 

be benchmarked across a plethora, ensuring readiness for real-world challenges and diverse spoofing 

attempts. 

4. Cross-database Testing Results 

In the domain of liveness detection, one of the most challenging and revealing evaluations is cross-

database testing. It assesses how a model, trained on one dataset, generalizes across different data 

distributions encountered in other datasets. Here, we present the outcomes of this rigorous evaluation 

by showcasing results of confusion matrices and calculating the Half Total Error Rate (HTER) for each 

scenario. 



The Table 2 gives a comprehensive representation of how each model trained on one dataset 

performed on others. From FAR and FRR values, we can understand the type of errors our models are 

more prone to. A high FAR indicates that the model might be too lenient, granting access to potential 

threats. On the other hand, a high FRR reveals that genuine attempts might be unnecessarily thwarted. 

For instance, when the MSSpoof model was tested on our dataset, a high FAR value of 0.71 emerged, 

indicating potential vulnerabilities in its authentication mechanism. 

 

Table 2 
Cross-database Testing Metrics 

Trained on Tested on FAR FRR HTER 

MSSpoof 3DMAD 0.16 0.81 0.485 
MSSpoof CSMAD 0.53 0.00 0.27 
MSSpoof Replay Attack 0.46 0.37 0.399 
MSSpoof Our Dataset 0.71 0.26 0.391 
3DMAD MSSpoof 0.67 0.11 0.347 
3DMAD CSMAD 0.21 0.00 0.055 
3DMAD Replay Attack 0.41 0.10 0.301 
3DMAD Our Dataset 0.62 0.02 0.194 
CSMAD MSSpoof 0.10 0.90 0.514 
CSMAD 3DMAD 0.25 0.91 0.207 
CSMAD Replay Attack 0.08 0.84 0.441 
CSMAD Our Dataset 0.38 0.61 0.473 

Replay Attack MSSpoof 0.93 0.02 0.395 
Replay Attack 3DMAD 0.00 0.69 0.125 
Replay Attack CSMAD 0.00 0.29 0.071 
Replay Attack Our Dataset 0.47 0.23 0.213 
Our Dataset MSSpoof 0.87 0.03 0.369 
Our Dataset 3DMAD 0.00 0.97 0.168 

 

In contrast, a relatively low FRR means that most genuine attempts were correctly identified. In this 

cross-database analysis, several patterns emerge. The 3DMAD-trained model, for instance, had 

consistently low FRR across different datasets, indicating its robustness in recognizing genuine 

attempts. The Replay Attack model, on the other hand, exhibited a high FAR when tested on the 

MSSpoof dataset, pointing towards its vulnerabilities. By examining FAR and FRR alongside HTER, 

it offers a more nuanced perspective on the strengths and weaknesses of each model across different 

data distributions. 

4.1. Models on 3DMAD 

The 3DMAD-trained model exhibited the lowest HTER when tested on CSMAD, which underscores 

the similarity in distribution or potentially shared spoofing techniques. However, when tested on 

MSSpoof, there was a rise in HTER, suggesting the two datasets might have different data 

characteristics. 

4.2. Models on MSSpoof 

The highest HTER was observed when the MSSpoof model was tested on 3DMAD, suggesting 

possible disparities between the two datasets. A relatively lower HTER on CSMAD highlights that 

certain shared characteristics could benefit the model's generalization. 

 



4.3. Models on CSMAD 

Training on CSMAD and testing on MSSpoof produced the highest HTER, suggesting that the 

CSMAD model might not generalize well to the MSSpoof distribution. Conversely, it performed 

reasonably better on 3DMAD, which may indicate some shared nuances between these datasets. 

4.4. Models on Replay Attack 

Surprisingly, this model, when tested on CSMAD, showcased one of the lowest HTER values. It 

indicates that, despite the datasets' differences, the model captures some essential liveness 

characteristics that are generalizable. 

4.5. Models on Our Dataset 

The model generalized well across all datasets with relatively low HTER values. The lowest HTER 

on the Replay Attack dataset suggests potential similarities in spoofing techniques or data distribution. 

4.6. Findings  

The rigorous process of cross-database testing sheds light on critical aspects of biometric 

authentication systems, particularly the robustness and adaptability of liveness detection models amidst 

varied data distributions. Through this methodology, our study underscores several key insights: 

• Evaluating Generalization Capabilities: To quantify a model's ability to generalize, we extended 

our analysis beyond mere performance metrics. We introduced scenarios encompassing unfamiliar 

data, assessing the model's predictive accuracy and consistency across diverse datasets. This 

approach illuminated the model's resilience—or lack thereof—to variations and anomalies not 

present in the training data, thereby providing a tangible measure of its generalization capabilities. 

• Inconsistency in Cross-Database Performance: Remarkably, several models exhibiting high 

efficacy on their native datasets encountered significant challenges when subjected to data from 

external sources. This inconsistency is indicative of a common pitfall: models, if overly tuned or 

biased towards specific dataset characteristics, may fail to maintain performance parity across 

broader biometric variations. Such deficiencies become apparent only through meticulous cross-

database testing. 

• Implications for Model Training Strategies: The evident fluctuations in performance across 

different databases underscore the imperative of incorporating diverse, multifaceted datasets into 

the training phase. This diversity safeguards against overfitting and cultivates a more holistic, 

adaptable model. Specifically, systems trained on a richer mixture of biometric data exhibit 

enhanced robustness, mitigating the risk of accuracy degradation when transitioning to unfamiliar 

environments. 

• Strengthening Liveness Detection Systems: Our findings advocate for a paradigm shift in 

developing liveness detection models. Moving forward, emphasis must be placed on constructing 

datasets with comprehensive real-world variabilities and on devising testing protocols that simulate 

diverse adversarial conditions. These strategies ensure that future models are equipped with genuine 

resilience against spoofing techniques, irrespective of their nature or origin. 

In conclusion, this analysis accentuates the necessity of an exhaustive, cross-database testing 

approach, one that transcends conventional evaluation methods. By exposing models to an array of 

biometric datasets, we unearth indispensable insights into their true robustness and generalization 

prowess, informing more reliable, secure biometric verification systems for the future. 

 

 

 



5. Comparative Analysis 

In this section, we examine the outcomes of our approach juxtaposed with results from other pivotal 

studies, notably those employing the Fully Convolutional Network (FCN) combined with the Spatial 

Aggregation of Pixel-level Local Classifiers (SAPLC) strategy and the Convolutional Neural Network 

(CNN) form [10,11]. 

To comprehensively compare the performance of liveness detection models, it's essential to contrast 

our findings with existing literature. The table below aggregates results from various studies including 

our own, focusing on the HTER metrics across datasets and different training strategies. 

 

Table 3 
Comparative HTER Results 

Source Model & Strategy Trained on Tested on HTER 

This study Our Model Replay Attack Replay Attack 0.045 
This study Our Model Replay Attack 3DMAD 0.125 
This study Our Model 3DMAD 3DMAD 0.000 
This study Our Model 3DMAD Replay Attack 0.301 

[10] FCN + SAPLC Replay Attack Replay Attack 0.132 to 0.004 
[10] FCN + SAPLC Replay Attack CASIA-FASD 0.375 
[10] FCN + SAPLC CASIA-FASD Replay Attack 0.273 
[11] CNN Replay Attack Replay Attack 0.039 
[11] CNN 3DMAD 3DMAD 0.000 
[11] CNN 3DMAD CASIA 0.399 
[11] CNN CASIA Replay Attack 0.414 

 

In summation, while each approach brings its own set of strengths to the table, our model showcases 

promising results, especially when considering its robustness in cross-database scenarios: 

• Within-Database Results: When training and testing on the same dataset (intra-dataset), our model 

achieved impressive HTER scores, especially for the 3DMAD dataset (0.000). This parallels the 

results of the CNN from [11] for the 3DMAD dataset, which also exhibited a perfect HTER of 

0.000. However, our model slightly outperformed the FCN+SAPLC strategy from [10] on the 

Replay Attack dataset, achieving an HTER of 0.045 against a range of 0.132 to 0.004. 

• Cross-Database Results: In cross-database scenarios, where the model is trained on one dataset 

and tested on another, our model demonstrated competitive, if not superior, results. Particularly for 

training on Replay Attack and testing on 3DMAD, our model's HTER of 0.125 closely trailed the 

performance of the CNN strategy from [11], but notably outperformed the FCN+SAPLC strategy 

of [10] for analogous cross-database settings. 

• Generalizability: A closer analysis of cross-database HTERs elucidates that our model offers 

commendable generalizability across diverse datasets. This is especially evident when comparing 

our results to those of [10] and [11], where our approach consistently performs on par or surpasses 

the reported outcomes, particularly in cases where training and testing datasets were diverse. 

• Novelty of Our Approach: The performance of our model, especially in cross-database scenarios, 

underscores the robustness and generalizability ingrained in our method. It implies that our model 

is equipped with the capacity to learn more generic features, which in the field of liveness detection, 

is paramount. 

• Comparison to State-of-the-Art: Both the traditional CNN and the FCN combined with SAPLC 

have been recognized as benchmark methods in liveness detection. Our model's ability to produce 

competitive results in direct juxtaposition with these techniques is testament to its efficacy. 

The findings accentuate the need for continued exploration and refinement in the domain, 

particularly in optimizing models for generalizability across diverse real-world scenarios. 

 



6. Discussion 

In the rapidly evolving domain of liveness detection, the development of robust and adaptable 

models remains a paramount pursuit. Our study presented a detailed analysis, offering insights into the 

effectiveness of various strategies, especially when applied across different datasets. This section delves 

deeper, examining the broader implications of our findings, potential limitations, and avenues for future 

research. 

6.1. Implications 

• Model Generalizability: One of the salient observations from our research is the importance of 

model generalizability. In real-world applications, a model trained on one dataset may encounter 

inputs that belong to a different distribution. Our findings underscore the significance of designing 

models capable of maintaining high performance across such scenarios. 

• Metric Significance: While metrics like HTER, FAR, and FRR are invaluable in assessing model 

efficacy, our study emphasizes the intricate balance that must be achieved. A model with low HTER 

but high variability in FAR and FRR might be less desirable in certain practical applications than 

one with slightly higher HTER but consistent FAR and FRR. 

• Impact of Diverse Data: The variability observed in the performance of models across different 

datasets illuminates the challenge posed by diverse data. It not only accentuates the complexity of 

the problem at hand but also highlights the necessity of diverse training data to encompass possible 

real-world scenarios. 

6.2. Limitations 

• Data Constraints: Our study was bound by the datasets available. While our datasets are 

comprehensive, they may not capture all possible presentation attack instruments or scenarios. This 

poses a limitation to the generalizability of our findings. 

• Computational Resources: Like many deep learning approaches, our model's training and 

evaluation are computationally intensive, which might pose challenges in real-time deployment 

scenarios or in devices with constrained resources. 

• Absence of Adversarial Testing: While our study delved deeply into cross-database testing, we 

did not explore the model's resilience against adversarial attacks, which is becoming increasingly 

relevant in the realm of biometric security. 

6.3. Future Directions 

• Incorporation of Adversarial Techniques: Given the escalating sophistication of spoofing 

attacks, future research should investigate the incorporation of adversarial training techniques to 

enhance model robustness further. 

• Optimization for Real-time Deployment: The model's architecture can be further refined, and 

techniques like model quantization or pruning could be employed to make it more conducive for 

real-time applications. 

• Expansion of Dataset Diversity: To further bolster the model's generalizability, future studies 

should consider amassing and utilizing more diverse datasets, possibly even crowd-sourcing real-

world data, which might offer richer and more unpredictable variations. 

In conclusion, our study represents a step forward in the quest for reliable liveness detection, 

shedding light on various nuances of the challenge. However, as with all scientific endeavors, it also 

underscores the ever-present need for continued research, refinement, and evolution in the domain. 

 

 



7. Conclusion 

The landscape of biometric security has experienced rapid advancements in recent years, 

underscored by an escalating arms race between state-of-the-art detection mechanisms and increasingly 

sophisticated spoofing attacks. Liveness detection, in this context, emerges not merely as a feature but 

as a necessity, pivotal in ensuring the integrity and reliability of biometric systems. Our study was 

rooted in this paradigm, endeavoring to discern the effectiveness, nuances, and potential avenues for 

improvement in liveness detection models, particularly when confronted with the challenges of cross-

database testing. 

Our findings elucidated several key insights. Firstly, the performance variability across different 

datasets underscores the intricacies involved in modeling and emphasizes the quintessential role of data 

diversity in training robust models. Additionally, while metrics such as HTER provide a comprehensive 

measure of a model's performance, delving deeper into the balance between FAR and FRR unveils 

critical nuances that have profound implications, especially in real-world deployment scenarios. 

Comparative analysis with previous studies revealed both the progress made in the domain and the 

areas where challenges remain. While our model exhibited commendable performance in certain 

scenarios, the inconsistencies observed in cross-database testing illuminate the path for future research. 

There are a few takeaways from our research. The journey towards perfecting liveness detection is 

ongoing, replete with challenges yet filled with opportunities. The richness of data, the adaptability of 

models, and the continuous evolution of techniques are the keystones upon which the edifice of reliable 

biometric security will be built. As spoofing techniques evolve, so must our defense mechanisms, 

making this a perpetually dynamic field of study. 

In closing, our research contributes to the broader dialogue on liveness detection, offering a synthesis 

of findings, methodologies, and reflections that we hope will serve as a foundation for future endeavors 

in this domain. The nexus of technology, security, and human identity is a complex tapestry, and it is 

our fervent hope that our work adds a meaningful thread to this ever-evolving narrative. 
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