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Abstract  
Damage to the retina and other eye blood vessels is the result of diabetes, a condition known 
as diabetic retinopathy (DR). Affected individuals may have retinal clots, lesions, or 
hemorrhaging. Exudates and lesions in the retina may cause visual loss in people with diabetic 
retinopathy. Diabetic retinopathy identification is essential for effective patient care. This 
research proposes a federated version of an enhanced DenseNet  deep learning model for use 
in the detection and classification of Diabetic Retinopathy in retinal fundus pictures. With the 
dense blocks performing concatenation, the upgraded DenseNet  model improves the feature 
utilization efficiency. The model is trained using federated learning algorithm. Federated 
learning enables distributed training of the model using remotely hosted datasets without the 
need to gather data and, subsequently, damage it. This overcomes the limitations posed by the 
data silos and makes full advantage of the existing medical data. The proposed model improves 
the performance and ensures patient privacy by not gathering the data at a central dataset. The 
federated average learning algorithm is used to train the model. The model uses Maximum 
Probability Based Cross Entropy (MPCE) loss function. The proposed method's outcomes are 
evaluated and contrasted with those of similar approaches. The results of this comparison 
demonstrate that the suggested technique is superior to the others in terms of accuracy, 
precision, and recall when applied to the categorization of retinal pictures. 
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1. Introduction 

Use Deep learning has emerged as a promising strategy for automated clinical diagnosis. The most 
prevalent complications of diabetes are well-known to the general population. Many incidences of 
avoidable blindness are caused by diabetic retinopathy, an eye condition that diabetics are prone to, but 
which is not as well-recognized as other diabetes consequences. Diabetic retinopathy affects around 
60% of people with type 2 diabetes and over 100% of those with type 1. The illness progresses through 
four distinct phases, with the first two being the most manageable thanks to early detection and 
subsequent preventive care. High blood sugar levels may damage blood vessels in the retina, leading to 
diabetic retinopathy, an eye condition, as described by the American Academy of Ophthalmology. 
There is a risk of a blockage and subsequent lack of blood flow if the afflicted blood vessels expand 
and leak or seal up completely. Diabetic retinopathy may be very damaging to a person's eyes if left 
untreated, thus finding it early is crucial. Possessing a reliable method for early detection of the illness 
is crucial. The hazards associated with each stage of diabetic retinopathy are discussed here, as well as 
the symptoms experienced at each stage and the medicinal interventions available to prevent further 
progression of the disease. To diagnose and treat diabetic retinopathy in its earliest stages, it is essential 
to take preventative measures, such as arranging yearly diabetic retinal exams.  
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These vital retinal examinations may discover hazardous problems before they cause significant 
vision loss, giving the patient and their doctors the time to devise a treatment strategy. Patients and 
doctors may use this action plan as a road map to better comprehend and address the far-reaching effects 
of diabetes on a person's health. Photos of a healthy eye and a DR-affected eye are shown side-by-side 
in Figure 1. 

 
 
Figure 1: Eye structure and presence of DR [Image credit https://www.eyeops.com/] 
Thus, to enable early detection of diabetic retinopathy computer aided methods are being widely 
developed. In this paper, a federated deep learning model is proposed to detect DR using retinal 
images. The use of Artificial Intelligence to help radiologists with computer-assisted patient 
diagnosis has been generally successful, it is still difficult to create robust models with tiny datasets 
at specific locations. The Early Treatment Diabetic Retinopathy Study (ETDRS) is only one of 
many widely used diabetic retinopathy grading systems [1]. ETDRS uses a multi-tiered system to 
categorize the finer, more nuanced aspects of DR. All seven fovea of the retinal fundus are 
evaluated in this manner (FOV). The ETDRS is the standard, although the International Clinical 
Diabetic Retinopathy (ICDR) [2] scale is employed instead because of its acceptance in both 
clinical and CAD contexts [3]. This is because the ETDRS is hard to execute and has technological 
limitations. There are less field-of-view (FOV) requirements for the ICDR scale, which specifies 5 
severity levels and 4 levels for Diabetic Macular Edema (DME). It has been shown that 
convolutional neural networks are effective in detecting and classifying DR [4]. Transfer learning 
was used with CNN to significantly increase the performance of these networks [5]. The retinal 
pictures in the medical image collection may be used to fine-tune the pretrained models using 
transfer learning. These models were shown to be more precise than the standard CNN [6]. 
Ensemble approaches, which take the best features of several classifiers and combine them, have 
been suggested by several academics. There is a greater information gain in the ensemble models 
since they include the results of several individual models. Many different ensembling methods 
exist for integrating complementary model data. For the DR issue, several ensemble classifiers have 
been described and published in the literature [7-9]. 

The limited medical data availability is a major challenge for deep learning models. Collaboration 
across several hospital is important to attain excellent algorithm performance when the number of 
medical data samples is constrained. Due to technical, regulatory, or ethical issues, sharing patient 
data frequently has restrictions. A neural network model with small sample size of biomedical 
images could not be very generalizable. A multi hospital study could be used to overcome the 
difficulties because it can greatly expand the sample size and sample variety. 

Conventionally, the algorithm is trained on all patient data at a central location. But this strategy 
has some drawbacks. First, sharing patient data that requires a lot of storage space (such as high-
resolution photographs) may be difficult. Second, legal, or ethical constraints prevent sharing part 
or all patient data.  Third, patient data is precious, thus institutions may not share it. Instead of 
sharing data to central location, Federated learning based deep learning model may be more useful 
and accurate.  

With federated learning the repeated analysis of many databases and the exchange of 
mathematical parameters (metadata) rather than real data that may disclose possible patient 
identifiers is utilized [10]. Early applications of federated learning methods saw more uptake in 
image classification and the improvement of wireless communication systems. Predictions on 
healthcare outcomes such as mortality, ICU stay-time, hospitalization for cardiac events, dyspnea, 



adverse medication responses, and more have recently been included into federated learning models 
in the healthcare domain [11]. However, most applications of federated learning in healthcare 
outcome prediction used relatively small datasets and partitioned the data theoretically (randomly) 
to simulate the properties of actual data. In this research, we apply our framework to the Health Facts 
data by using the information provided by the healthcare systems for each individual patient. 

Most healthcare federated learning applications employed classification methods such logistic 
regression, artificial neural network, multi-layer perceptron, support vector machines, and random 
forest to construct federated predictive models. Existing methods for predicting complications from 
diabetes, such as retinopathy (eye disease), neuropathy (peripheral nerve disorder), and nephropathy 
(kidney disease), rely on centralized machine learning algorithms trained on small-size datasets from 
the US population, which contain fewer than ideal numbers of cases of complications and less than 
ideal patient information. In this research, we used a federated learning architecture to develop three 
different machine learning models for binary classification of the occurrence of three different 
diabetes-related complications: those affecting the eyes, the kidneys, and the peripheral nerves. 

The existing deep learning and machine learning models have several limitations. These include 
limited medical data availability, patient privacy issues and training overhead at a centralized 
location. Therefore, in this paper a modified federated learning DenseNet model is proposed for the 
classification if diabetic retinopathy. In this architecture, several sites may work together to train a 
single global model. With federated learning, a global model is built by combining training results 
from many locations without the need to share datasets. The confidentiality of the patients is 
protected in this way. The global model's detection skills are further enhanced by the additional 
supervision received from the findings of collaborating locations. When training AI models with 
little data, this solves the problem of inadequate supervision. Thus, in this paper the above-
mentioned limitations are removed with the proposed Federated Learning Dense net model. The 
initial model on the central server is initialized and the parameters are shared with the connected 
devices. The results are simulated using tensorflow federated learning module. More than 5,000 
retinal pictures from the third biggest dataset APTOS19 are segmented for use in virtual testing. The 
DenseNet model used overcomes the vanishing gradient problem and strengthens the feature 
propagation as features are concatenated at each stage. 

This paper is organized into five sections in the first section the introduction to the problem and 
literature review is discussed. The second section discusses the proposed methodology followed by 
results and discussion section. The last section gives the overall conclusion of the work presented in 
this paper. 

2. Proposed Method 

The traditional machine learning models that are trained centrally on one device pose some serious 
challenges when used for healthcare applications. The limited availability of data due to multiple 
constraints of data privacy and sharing is a major issue. Therefore, in this paper a DenseNet  model 
with federated learning approach is presented. Data privacy, data security, data access rights, and access 
to heterogeneous data may all be addressed by using federated learning, which allows several hospitals 
to construct a shared, robust machine learning model without sharing data. Therefore, federated 
learning models may collect data from several sources (e.g., hospitals, electronic health record 
databases) to give more diverse data. In this section the steps involved in the proposed methodology 
are discussed in detail. In figure 2 the proposed methodology is shown. The central model is trained 
using N connected devices. Each device uses its own dataset for training and transmits the updates in 
the model weights. 



 
Figure 2: Proposed Methodology 

 
The general training mechanism is shown in figure 3. 
 

 
Figure 3:  Training at central and connected devices 
 

1. Initial Model Configuration : The DenseNet  model [12] is initialized at the central server device. 
The training of the central model is done using the APTOS2019 dataset. The initial parameters of the 
model are then transmitted to each of the connected devices. 

2. Training at connected devices: A copy of the model is available at each of the connected and it uses 
the parameters broadcasted by the server. The following steps are followed at each connected device. 

3. Input Retinal Images:  The retinal pictures are fundus images captured under a variety of lighting 
and camera angles. A doctor assigns a score from zero to four for five categories to each picture, 
reflecting the severity of diabetic retinopathy. The model is tested and trained using these pictures. 

4. Pre-processing of images: The photos are shot in a variety of environments with varying levels of 
illumination. Before they may be utilized for model training, these photos need preprocessing. Due to 
the lack of contrast in retinal pictures, CLAHE is used to equalize the histograms [13]. The CLAHE 
histogram equalization is computed as follows: 

                        𝑋!"# =	$!"#%$!$%
$&

                                                              (1) 



The proposed deep learning network receives its input data from the pre-processed images acquired in this 
stage. 

5. Image Resizing:  As the images at different connected devices are of different size and thus, they need 
to be resized before feeding to the deep network. Thus, all images are resized to 224 × 224 pixels. 

6. Image Standardization: Image standardization is a data transformation technique. Standardization 
rescales the image features so that the mean is 0 and standard deviation is 1. This improves the 
optimization and consequently the accuracy of the model. 

𝑋&' =	$%	)'
*'

                                                                               (2) 
where 𝜇𝑋 is the mean and 𝜎𝑋 is the standard deviation. 

7. DenseNet Model: A DenseNet model is used for the classification of the retinal images for 
identification of diabetic retinopathy. Using Dense Blocks, in which we directly link all layers (with 
matching feature-map sizes) with each other, a DenseNet is a sort of convolutional neural network that 
makes use of dense connections between layers. To maintain the feed-forward structure, each layer 
pulls in data from the layers below it and sends its own feature maps to the layers above it. DenseNet 
s have outperformed traditional CNNs and ResNets on a wide variety of benchmark datasets, and their 
smaller model size is a consequence of both factors.The architecture of the DenseNet 121 used is as 
follows: 

 
Figure 4:  Model Architecture for the proposed method 
 

In each layer the feature maps of the preceding layers are concatenated as input. Due to concatenation 
the features are not repeated, and redundant features are removed. Each lth layer receives the feature 
maps of the previous layers.  

𝑥+ =	𝐻+([𝑥,, 𝑥-, … . , 𝑥+%-])               (3) 
where [ ] denotes concatenation operation and 𝐻𝑙 is a composite function. It comprises of batch 
normalization (BN), a rectified linear unit (ReLU) and a convolution (Conv). 
DenseBlocks are the building blocks of DenseNet; the size of the feature maps stay the same inside a 
block, but the number of filters varies. By removing one layer of transition between each block, we 
may cut the total number of channels in half. 
The amount of information to be added in each layer is controlled by the growth rate (k) of DenseNet. 
Thus, in lth layer the amount of information added can be computed as: 

         𝑘+ = 𝑘. + 𝑘 ∗ (𝑙 − 1)                                                         (4) 
where 𝑘0 is the number of channels in the input layer. 

8. Maximum probability based cross entropy loss: For the sake of fine-tuning the model-learning 
process an MPCE loss function is implemented [20]. Because of this, the convergence is accelerated, 
and the back propagation error is minimised. MPCE may be expressed mathematically as in eq (5). 
 

𝑓'(𝑊) = 	−∑ 𝑦/0𝑙𝑜𝑔(𝑦/)1
/2-  = −∑ (𝑦134 −	𝑦5)𝑦69𝑙𝑜𝑔(𝑦/)	1

/2-                        (5) 
 



where,  𝑦𝑚𝑎𝑥 where the real class, 𝑢𝑡ℎ among m classes, is the largest. If 𝑦! is a vector of real classes, 
then the uth coordinate is 1, and 𝑦! is the vector of uth coordinates. The i-th coordinate of the vector 𝑦′ 
is denoted by 𝑦𝑖

′ . 
 

9. Adam Optimization: In order to maximise efficiency, the adam optimizer combines the benefits of 
both the Momentum and Root Mean Square propagation methods [14]. When the gradient hits its 
global minimum, ADAM slows the pace of descent such that there is little oscillation. 

𝑚' =	𝛽-𝑚'%- + (1 − 𝛽-) <
78
7#(

= 𝑣' =	𝛽9𝑣'%- + (1 − 𝛽9) <
78
7#(

=
9
         (6) 

 
10. Federated averaging Learning: Federated averaging algorithm uses an averaging method to combine 

the updates at the central server [15]. A network of N devices available at N different hospitals, indexed 
𝑖	 ∈ {1,2, … ,𝑁}. Each device or hospital has its own dataset consisting of retinal images denoted by 
𝐷𝑘. Each 𝐷𝑘 comprises of an input vector 𝑥𝑑 and an outcome variable 𝑦𝑑. The model will be trained 
using this network of devices. Thus, 

                          𝑔# = 𝑥: → 𝑦:@                                                 (7) 
𝑥𝑑 is the input feature vector and 𝑦𝑑" is the predicted output using vector w and loss function. 
The local loss at each device can be computed as, 

     𝐹;(𝑤) = 	 (1 |𝐷;|⁄ )∑ 𝑙::<=&                                     (8) 
The assumption in this problem is , 
 

|𝐷𝑖| = $𝐷𝑗$	∀𝑖, 𝑗	                                                                    (9) 
 

Thus, the optimization is the average over the  𝐹𝑘(𝑤). The objective is to find w that minimizes 𝑓(𝑤) 
over the data 𝐷 =	𝑈.𝐷. 

 
min
𝑤 𝑓(𝑤), 𝑤ℎ𝑒𝑟𝑒	𝑓(𝑤) ≔ -

>
∑ 𝐹;(𝑤)>
;2-                    (10) 

In case |𝐷𝑖| ≠ $𝐷𝑗$ then 1
𝑁

 can be replaced with 𝑝𝑘 = |𝐷𝑘| |𝐷|⁄   
The complete algorithm for the training process is as follows: 
 

Algorithm: FedDDR  learning 
Input: K [Number of Hospitals/Devices],T[epochs],𝒘𝟎[Initial weight vector],𝜶 
[learning rate of client], 𝜸[Learning rate of server] 
Start 

Server broadcasts 𝒘𝟎 to K devices. 
For t-0,…T-1 
For each device 𝒌 = 	𝟏,… ,𝑲 computes 𝒘𝒌

𝒕+𝟏  
Each devices sends the 𝒘𝒌

𝒕+𝟏 back to the server 
Server averages and updates the w as 
 𝒘𝒕+𝟏	 = 𝒘𝒕 +	 𝟏

𝑲
∑ 𝒘𝒌

𝒕+𝟏𝑲
𝒌=𝟏  

Output the final model parameters 𝒘𝒕𝒓𝒂𝒊𝒏𝒆𝒅 
 
 

11. Termination Condition: The training is terminated when the number of iterations is complete, or the 
model has converged to the optimal solution. 

12. Grad Cam Visualization: The Gradient based Class Activation Map (Grad-CAM) is an example of 
a class-discriminative localization map that draws attention to important parts of an image by 
calculating the gradient of the class score yc for class c relative to the activations Ak of a convolutional 
layer's feature map ∂yc /∂Ak. ack is the result of a global-average-pooled backflow of these gradients, 
which is used to derive the significance of neuronal weights [16]. 

 



∝;?=	
-
@
∑ ∑ 	A/
NOPOQ                                                           (11) 

Grad-CAM is basically a weighted combination of forward activation maps followed by ReLU 
operation as follows: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀𝑐 = 𝑅𝑒𝐿𝑈 F∑ ∝𝑘𝑐𝑘 𝐴𝑘H                 (12) 
 

  With the help of the Grad-CAM visualisation heatmap, we can see how the three categories our model predicts 
for test photos are distributed among a set of representative examples. Grad-heatmap CAM's depiction draws 
attention to the key pixel clusters used by the model's last convolution layer to make class distinctions. Here, we 
see how the GRAD-CAM visualisation system distinguishes between standard and DR photos by highlighting 
them in a variety of ways. Class activation maps for both normal and DR photos show that the centre of the image 
is emphasised more strongly in the former instance, while the top part of the image is illuminated more densely 
in the latter. Important visual features utilised by the model to make the concept prediction are highlighted in the 
class activation map. Figure 5 displays several example gradcam representations of retinal images. 

 

   
Figure 5: GradCam visualizations of Retinal images 

3. Experiments 

The proposed method is tested and its performance is measured by implementing it in Python. The dataset is 
large and thus GPU acceleration is used for the simulation purpose. Keras module in Python is used for developing 
the deep network and Tensorflow Federated Learning for training. The initial base model is trained using the 
following datasets. Thereafter, each client uses its own dataset. For simulation purpose the dataset was divided 
into different clients. The dataset used is from APTOS 2019, a dataset on diabetic retinopathy 
(https://www.kaggle.com/c/aptos2019-blindness-detection). Aravind Eye Hospital collects the data in rural India 
so that it may be used to create AI for DR detection. All the images fall into one of five categories: No DR, Mild, 
Moderate, severe and Proliferative DR. The severity, location, and frequency are taken into account when 
assigning a grade from 0 to 4. 

 
The dataset comprises of a total of 3662 images. For experiments the images are split into training and testing 

in the ratio of 80:20. Thus, 2930 images are used for training and 732 images are used for testing. The sample 
images from the database are shown in figure 6. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
(e) 

Figure 6:  Retinal images for (a) Normal (b) Mild DR (c) Moderate DR (d) Severe DR (e) Proliferative DR 
 
We use these metrics to measure how well the suggested technique performs. Specifically, these indicators are 

employed: 
The number of incorrect predictions is the standard measure of accuracy, or precision. You can figure this out 

by 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 LM

LMNOM
               (13) 

 
For each given model, recall indicates how many true positives it generates. In eq.(14), we see the formula for 

calculating the recall: 

https://www.kaggle.com/c/aptos2019-blindness-detection


 
                                                     𝑅𝑒𝑐𝑎𝑙𝑙 = 	 LM

LMNO>
                                                                   (14) 

Total accuracy is calculated using the same method. 
 

                          𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 LMNL>
LMNL>NOMN	O>

                                                             (15) 
where TP, FP	and FN	represents the true positive, false positive and false negative, respectively.  
F1-score can be computed using eq.(16) 
 

                                         𝐹1 = 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙                                                                           (16) 

4. Results and Discussion 

In this section the results obtained from the proposed method and a comparative analysis is presented. The 
results are obtained by performing simulations and the data was split amongst different clients to observe the 
results. Federated data set, i.e., a collection of data from multiple users is required for demonstrating the proposed 
method. Thus, to facilitate experimentation, the data set was split amongst five users. Due to individual 
differences in data consumption behaviors [21, 22], federated data is often not identically distributed among users. 
Due to data scarcity on the device, some customers may have fewer training instances than others, while other 
clients may have more than enough. Because this is a simulated environment, we have access to all the data 
required to do such a comprehensive examination of a client's data. In a fully operational federated setting, it is 
impossible to see the data of a single client. 

 
Table 1:  
Data Splitting for five devices 

Dataset Splitting for 5 devices 
Grade D1 D2 D3 D4 D5 Total Images  
0 -No DR 144 360 285 304 351 1444 
1 – Mild 40 56 62 66 72 296 
2-Moderate 125 184 116 196 178 799 
3- Severe 20 45 44 34 34 155 
4- Proliferative 110 54 57 42 32 236 

 
An extremely large number of user devices may be involved in a typical federated training scenario, yet only a 

subset of these devices may be accessible for training at any one moment. For instance, when the client devices 
are mobile phones, they can only take part in the training when they are fully charged, not using the network, and 
not being charged. Since this is a simulation, all the information we need is already on-hand. So, when we 
conducted simulations, we would usually choose a new group of customers to train with each time. 

The parameters used for simulating the federated learning environment is as follows: 
 

Table 2:  
Parameters Used for Simulation 

Number of Clients 5 
 

Client Optimizer (Local model Updates) Adam Optimization 
Server Optimizer (averaged update to the global model 
at the server) 

Adam Optimization 

Learning Rate (Client) 0.001 
Learning Rate (Server) 0.001 
epochs (Server) 60 
 



All DR pictures in the dataset fall into one of five categories, labelled with the digits 0-4. 
0 – No DR (NDR)  
1: Mild  

2: Moderate  
3: Severe 

4: Proliferative DR (PDR) 

 
732 test photos from a range of grading levels were used in the analysis. Table 4 displays the distribution of 

photos by grade level. 
 

Table 3:  
Testing image distribution 

 The five-class confusion matrix is shown in table 6. 
Grade Testing images 

0 -No DR(NDR) 353 
1 – Mild 87 
2-Moderate 205 
3- Severe 40 
4- Proliferative (PDR) 48 
Total 733 

 
 
Table 4 
Confusion Matrix for five classes 

Predicted 

Ac
tu

al
 

 NDR Mild Moderate Severe PDR 
NDR 344 2 3 1 3 
Mild 3 76 4 2 2 

Moderate 3 2 195 3 2 
Severe 2 1 1 35 1 

PDR 1 2 2 3 41 

 
Based on the confusion matrix the following metrics are computed 
 
Table 5 
Metrics computed from Confusion matrix 

Class Precision (%) Accuracy (%) Recall 
(%) 

F1 Score 

NDR 97 97.54 97 97 
Mild 87 97.68 93 90 
Moderate 95 97.27 95 95 
Severe 88 98.09 80 83 
PDR 85 97.95 84 85 
Overall Accuracy 94.27% 

  
The resulting findings are compared to those of other cutting-edge approaches. Table 8 displays the outcomes 

of the various approaches used across the five categories. 
 



Table 6 
Results Comparison five classes 

Method Precision (%) Recall (%) Accuracy (%) 
DRISTI (VGG16 + Capsule) [17] 91 88 82.06 

EfficientNet-B3 [18] 59 66 84.86 

Resnet50 + Capsule [19]  59 69 76.80 

FedDDR (Proposed Method) 89 90 94.27 

5. Conclusion and Future work 

In this paper, a federated deep learning model for detection of diabetic retinopathy from retinal images. The 
retinal fundus images are classified into five classes. A modified DenseNet  model with federated learning 
approach is proposed in this work. The federated learning makes the training process distributed and hence 
improving the overall performance of the classifier. The patient privacy is also intact as their data remains on 
their device. Also, the limitation of limited medical data for training is overcome as the data is used from multiple 
devices. The simulations are done using tensorflow federated learning module. The results show that the proposed 
method achieves 94.275 overall accuracy and class wise accuracy is also high. The comparison with other state 
of the art methods reveal that the proposed method outperforms the existing state of the art methods. 
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