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Abstract  
Applying deep learning techniques, such as convolutional or recurrent neural networks, to 

process gene expression data for developing complex disease diagnostic systems is one of 

modern bioinformatics's current focuses. Deep learning algorithms can identify specific 

patterns in the hierarchical representation of data and craft distinct functions that allow for 

precise identification of the subjects being studied. In this paper, we present our research 

findings on applying a convolutional neural network (CNN) in diagnosing various types of 

cancer based on gene expression data. The experimental data were sourced from The Cancer 

Genome Atlas (TCGA) and comprised 3269 samples. These samples can be categorized into 

nine classes based on the type of cancer. We introduced an ordered search-by-grid algorithm 

to pinpoint the optimal set of hyperparameters for the CNN. We assessed the model's efficacy 

using classification quality metrics, considering type I and II errors. Furthermore, we 

introduced an integrated F1-score index, drawing from the Harrington desirability function. 

The obtained results demonstrate the high efficacy of our proposed approach in diagnosing 

cancer based on gene expression data. The simulation results have shown that the single-layer 

CNN is more efficient for this type of data by all classification quality criteria. The number of 

correctly identified samples was 955 out of 981. The classification accuracy was 97.3%. 
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1. Introduction and literature review 

The appropriateness of using deep learning methods for gene expression data processing is 

determined by the structure of the experimental data and its large volume. Typically, experimental data 

contains thousands of objects and more than ten thousand attributes. One of the primary advantages of 

deep learning methods is their ability to process complex and unstructured data. Deep learning 

algorithms can identify specific patterns in the hierarchical representation of data and formulate 

functions that allow for high-precision identification of the objects under investigation. Another 

significant advantage of models based on deep learning methods is their high accuracy and efficiency. 

Moreover, models based on deep learning can formulate appropriate functions directly from raw data, 

enabling the discovery of hidden patterns and intricate relationships in the data that are challenging to 

uncover using traditional methods. Deep learning-based models possess a scalability feature. This 

means these models can be efficiently scaled to process large volumes of data, benefiting from parallel 

or distributed computing architectures, significantly accelerating training and inference processes. In 
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the case of gene expression data, the correct application of deep learning methods enhances the 

effectiveness of diagnostic systems for complex objects due to the higher accuracy in identifying the 

studied objects on the one hand and increasing objectivity in determining the state of an object through 

parallel data processing on the other hand. All the above points highlight the relevance of the current 

research. 

At present, there are several deep learning (DL) methods that can be applied to gene expression data 

to extract hidden patterns and make predictions regarding the state of the respective object [1]. Figure 

1 illustrates a block diagram of the most common deep learning methods focused on processing gene 

expression data and analyzing genomic sequences, as well as possible directions for their application. 

 

 
Figure 1: Block diagram of existing deep learning methods and their application directions for 
analyzing gene expression data and genomic sequences 

As can be seen from Figure 1, the main deep learning (DL) methods can be listed as follows: 

1. Convolutional Neural Networks (CNN) [2-4]. They are used for analyzing gene expression data 

that can be represented as a vector (one-dimensional CNNs) or as images or heat maps (two-

dimensional CNNs). Among the advantages of CNNs are their ability to detect hidden 

dependencies and to form a vector of useful features from genomic data. Depending on the 

problem formulation, the following application directions for CNNs can be distinguished: 

analysis of genomic sequences, analysis of gene expression heat maps, disease diagnosis, 

identification of genetic markers, and reconstruction and modelling of gene regulatory networks 

(GRN). 

2. Recurrent Neural Networks (RNN) [5,6]. They are a powerful tool for analyzing and processing 

gene expression data, including time series of gene expression values. Typically, when using 

gene expression data, RNNs are used for solving the following tasks: time series analysis, disease 

prediction, and generating new sequences. 

3. Graph Convolutional Networks (GCN) [7,8]. GCN is a method for processing gene expression 

data represented in the form of graphs, where genes are represented as nodes and relationships 

between genes (such as expression interconnections or regulatory interactions) are depicted as 

edges. In this case, the following application directions for GCNs are possible: predicting gene 

functions, imputing missing gene expression values, reconstructing gene regulatory networks, 

clustering, and community detection, and predicting drug responses. 

4. Variational Autoencoders (VAE) [9,10]: VAEs are generative models that are capable of 

discerning patterns of gene interactions based on the low-dimensional representation of gene 

expression data and generating new samples with similar expression profiles. In the context of 



gene expression data processing, VAEs can be applied to address the following tasks: data 

dimensionality reducing, generation of new samples, the discovery of latent structures, and 

interpolation and modification of expression profiles. 

5. Deep Belief Network (DBN) [11,12]: DBNs consist of several layers of Restricted Boltzmann 

Machines (RBMs) and can represent the distribution of gene expression data in the form of a 

hierarchical structure. The potential applications of DBNs in this context may include data 

dimensionality reduction, clustering and classification, generation of new samples, and 

identifying the nature of interactions between genes. 

Within the framework of current research, the problem of improving the efficiency of diagnostic 

systems of complex diseases based on gene expression data is being addressed. The solution to this 

problem involves identifying co-expressed genes in the first stage and classifying objects based on the 

formed subsets of gene expression profiles in the second stage. This fact limits the number of deep 

learning (DL) methods that can be applied to solve the stated problem. For instance, classifying objects 

based on gene expression data can be solved using convolutional or recurrent neural networks. In this 

case, there is a challenge in determining the optimal network structure and hyperparameter vector that 

govern the network's performance. Identifying subsets of co-expressed gene expression profiles is 

possible using a deep belief network. Still, in addition to determining the optimal structure and network 

hyperparameters, there's a challenge in proving its advantage compared to classic gene expression 

profile clustering algorithms currently used in this domain. Graph convolutional neural networks can 

also be used in classification systems. However, their application requires a gene regulatory network 

reconstruction process in the preliminary stage to represent it as a graph. This, in turn, requires 

identifying a subset of co-expressed gene expression profiles by applying a clustering procedure to the 

gene expression data. Implementing this process is possible through model hybridization by using 

different DL methods at relevant data processing stages. This requires thorough research to assess the 

efficiency of the appropriate method and determine the optimal network structure and hyperparameter 

vector. 

The choice of CNN for gene expression data processing is determined by their ability to 

automatically and adaptively learn spatial hierarchies of features from input data. CNNs can capture 

complex patterns and interactions between genes, aiding in tasks such as classification, clustering, and 

prediction of gene functions or disease associations. This ability to learn and generalize from the data 

makes CNNs a powerful tool for extracting meaningful insights from gene expression datasets, 

potentially leading to new biological discoveries and advancements in personalized medicine. 

Numerous studies have focused on utilizing CNNs for diagnosing various objects. For instance, in 

[13], the authors introduced a fault diagnosis model for rolling bearings based on a multi-dimensional 

input convolutional neural network (MDI-CNN). The model presented by the authors featured multiple 

input layers. This design enabled them to combine both original and processed signals, leveraging the 

strengths of the CNN to automatically learn the characteristics of the original signal. This, in turn, 

enhanced the recognition accuracy and anti-jamming capability. In [14], the authors shared research 

findings on predicting cancer types using hybrid CNN + BiLSTM models, which analyzed microarray 

gene expressions. This approach enabled them to distinguish between different forms of cancers. The 

results they obtained surpassed those of existing CNN and RNN classifiers in terms of classification 

quality criteria. 

However, it's worth noting that while there are certain advantages in this field, the challenge of 

effectively implementing deep learning techniques for gene expression data remains unresolved. A 

primary issue is the objective selection of hyperparameters for specific deep learning models, 

considering the relevant quality criteria. In this study, we build upon previous research on gene 

expression data processing [15,16] and the use of CNNs for disease diagnosis based on such data 

[17,18]. 

The primary objective of our research is to devise a method for determining the optimal list of 

hyperparameters for CNN when analyzing gene expression data. 

2. Convolutional neural network 



The general architecture of the multilayer CNN is depicted in Figure 2 [13]. Usually, it includes the 

following main components: 

1. Input layer: Accepts input data, which can be represented as a one-dimensional data vector (a 

vector of gene expression values that define the state of the object) or a two-dimensional matrix 

(a heatmap of gene expression values, images, etc.). Depending on the type of input data, one-

dimensional (1D) or two-dimensional (2D) convolutional layers are formed. 

2. Convolutional layers: Used to detect local features in the input data. Each convolutional layer 

consists of a set of filters that perform the convolution operation on the input data. Convolution 

is the basic operation in CNN. Typically, in the convolutional layer, the feature map of the 

previous layer is a convolution using convolutional kernels, and the nonlinear activation 

function creates the output feature map. The computational process in this case can be expressed 

as follows [13]: 

𝑋𝑗
𝑙 = 𝑓 ( ∑ 𝑋𝑖

𝑙−1 ∗ 𝜔𝑖𝑗
𝑙 + 𝑏𝑗

𝑙

𝑖∈𝑀𝑖

) 

 

(1) 

where: 𝑋𝑗
𝑙 and 𝑋𝑖

𝑙−1) are the j-th and i-th features of the data at levels l and l-1 respectively; 𝑀𝑖  

is the set of input feature maps (determined by the filter applied to the input data at the 

corresponding convolutional level); 𝜔𝑖𝑗
𝑙  is the convolutional kernel connecting the i-th feature 

map of input data with the j-th feature map at the convolution level l; 𝑏𝑗
𝑙  is the bias; f(∙) is a 

nonlinear activation function, ∗ stands for the convolution operation. 

 
Figure 2: The general architecture of the multilayer convolutional neural network 

 

3. Pooling layers: These are used to reduce the spatial dimensions of the feature vector or matrix 

to decrease the number of parameters. The max pooling layer transforms the data vector or 

matrix into a single value equal to the maximum value from that region. 

4. Fully Connected Layers: The data is passed to the fully connected layers after several 

convolutional and pooling layers. Every neuron in a fully connected layer is connected to every 

neuron of the previous layer. The fully connected layers are used for classification or regression 

based on the features obtained. They take the features from the flattened layers and generate an 

output vector that can be presented as the model's output. 

5. Activation Functions: After each convolutional layer, an activation function is applied. In most 

cases, these are nonlinear, allowing the network to detect complex dependencies in the data 

during the learning process. The most common activation functions are ReLU (Rectified Linear 

Unit), sigmoid, and hyperbolic tangent (tanh). 

6. Loss Function: It determines the difference between the predicted and expected values. The 

derivatives of the loss function are used to update the weights and biases in the network during 

the backpropagation of the error. This allows the model to assess its accuracy and adjust its 

weights during training. 



As mentioned above, the hyperparameters of CNN determine the network's architecture and training 

parameters. They are set during the initialization of the network and affect its learning and 

generalization capabilities. Some of the key hyperparameters of a CNN include: 

• Number of Convolutional Layers: It defines the number of layers where convolutional filters 

detect features in the input data. Having more layers can help the model learn more complex 

dependencies, but it can also lead to greater complexity, longer training times and overfitting of 

the network. Overfitting can be determined by evaluating the convergence of accuracy values 

and the loss function calculated on the training and validation data during network training. 

• Size of Convolutional Filters: It determines the size (width and height) of the filters that move 

over the input data to perform convolution. Larger filters can detect larger patterns but may also 

lead to increased computational load. 

• Number of Filters in Convolutional Layer: It determines the number of filters applied to the input 

data in each convolutional layer. Each filter generates a feature map corresponding to a specific 

feature. Typically, the number of filters increases with each subsequent convolutional layer. 

• Size of Pooling Window: This refers to the window size (width and height) that moves across 

the feature map to perform pooling operations. 

• Activation Function: This is the function used to introduce non-linearity in the network after each 

layer. Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and 

Hyperbolic Tangent (tanh). 

• Number of Fully Connected Layers: This determines the number of fully connected layers that 

should be added after the convolutional and pooling layers. These layers connect every neuron 

in one layer to every neuron in the next layer. They are typically used for classification or 

regression based on the features extracted by the preceding layers. 

Within the framework of the current research, the optimal combination of CNN hyperparameters 

was determined using the ordered empirical grid search method by evaluating all possible combinations 

of hyperparameter values within predefined ranges.  

The implementation of this procedure involves the following stages: 

1. Definition of the range of hyperparameter values variation that are subject to optimization. 

2. Determination of the metric for evaluating the efficiency of a particular combination of 

hyperparameter values during their sequential enumeration. Since the current research involved 

classifying objects based on gene expression data, metrics based on the assessment of type I and 

type II errors were applied [14]: 

• Classification Accuracy – determines the proportion of the total number of samples that are 

correctly identified: 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

(2) 

• F1-score is a measure to identify the correctness of the samples distribution into the relevant class 

and is calculated as the harmonic mean of precision (PR) and recall (RC): 

𝐹1 =  
2 ∙ 𝑃𝑅 ∙ 𝑅𝐶

𝑃𝑅 + 𝑅𝐶
 

 

(3) 

where: precision is defined as the probability of correctly identifying samples of the relevant 

class and is calculated as the ratio of correctly identified samples in the relevant class to the total 

number of samples in this class: 

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(4) 

Recall is defined as the probability of correctly identifying true positive cases of the relevant 

class and is calculated as the ratio of correctly identified samples in the relevant class to the total 

number of samples that really belong to that class: 

𝑅𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(5) 



In the hereinbefore presented formulas, TP (True Positive) and TN (True Negative) represent the 

number of objects correctly classified to their respective classes, while FP (False Positive) and 

FN (False Negative) represent the number of objects misclassified. It's obvious that the maximum 

value of criteria (2) and (3) is equal to 1, corresponding to the perfect classification. It should be 

noted that when solving a multi-class problem, criterion (2) defines the overall accuracy of 

sample classification among classes, while criterion (3) defines the accuracy of sample 

classification in each class individually. 

3. Creation of a grid of all possible combinations of hyperparameters within the range specified in 

item 1. Each cell of this grid structure represents a unique combination of the model's 

hyperparameters. 

4. For each combination of hyperparameters: 

4.1. Construct a neural network model, the architecture and parameters of which correspond to the 

current combination of hyperparameters. 

4.2. Training, validation, and testing of the model. 

4.3. Calculation of the quality criteria for sample identification according to formulas (2) and (3). 

5. Analysis of the values of the obtained quality criteria for sample classification. Selection of the 

combination of hyperparameters that corresponds to the maximum values of the sample 

classification quality criteria. 

It should be noted that a drawback of the empirical grid search method is the significant 

computational time it requires. However, it ensures systematic exploration of the hyperparameter space. 

It helps to choose the optimal combination for the neural network model, considering both the research 

objective and the type of experimental data. 

3. Experiment, results, and discussion 

The modeling process was carried out using gene expression data from patients who were studied 

for various types of cancer diseases. The data is freely available in The Cancer Genome Atlas (TCGA) 

[19]. Gene expression data obtained on the Illumina platform [20] was used by applying the method of 

RNA molecules genomic sequencing, and for each sample, the number of respective genes determining 

the state of the sample under study was identified. In the initial state, the experimental data contained 

3269 samples and 19947 genes. The structure of the experimental data was the following: 

• Adrenocortical carcinoma – ACC (79 samples). 

• Glioblastoma multiforme – GB (169 samples). 

• Sarcoma – SARC (263 samples). 

• Lung squamous cell carcinoma – LUSC (502 samples). 

• Lung adenocarcinoma – LUAD (541 samples). 

• Stomach adenocarcinoma – STAD (415 samples). 

• Kidney renal clear cell carcinoma – KIRC (542 samples). 

• Brain Lower Grade Glioma – LGG (534 samples). 

• Cancer is not identified – Normal (224 samples). 

According to the methodology presented in [17,21], in the first stage, the absolute values of the 

number of genes were transformed into a range more convenient for further processing (Count Per 

Million – CPM) according to the formula: 

𝐶𝑃𝑀𝑝𝑠 =
𝑐𝑜𝑢𝑛𝑡𝑝𝑠

∑ 𝑐𝑜𝑢𝑛𝑡𝑝𝑠
𝑚
𝑠=1

⋅ 106 
 

(6) 

where: 𝑐𝑜𝑢𝑛𝑡𝑝𝑠 is the count of the s-th type of gene corresponding for the p-th sample; m is the total 

number of different types of genes studied during the experiment performing. 

The implementation of this step significantly reduced the range of absolute values variation 

determining the expression (activity level) of respective genes. In the second stage, data normalization 

was carried out by applying the 𝑙𝑜𝑔2(𝐶𝑃𝑀) function to all values. In the third stage, non-expressed 

genes were removed according to the condition 𝑙𝑜𝑔2(𝐶𝑃𝑀) ≤ 0 for all samples under study. The 

number of genes at this stage was reduced by 682, and the matrix of experimental gene expression data 



took the form: 𝐸 = (3269 × 19265). In the final stage, negative gene expression values were replaced 

with zeros, representing non-expressed genes for some samples. For proper initialization of CNN filters, 

the number of gene expression profiles was increased to 19,300 by supplementing with profiles with 

zero expression. 

Figure 3 depicts the flowchart of a 1-D single-layer CNN with relevant hyperparameters at different 

stages of the neural network's operation. To determine the optimal combination of hyperparameters 

within the grid search concept, a heuristic search algorithm was proposed. The heuristic functions used 

were data classification accuracy across all classes (a coarse estimate) and the precision of sample 

distribution across individual classes by calculating the F1-score for each class (detailed analysis). 

Considering that when dealing with a large number of classes, analyzing the corresponding F1-score 

values to choose the optimal alternative from the hyperparameter list can be problematic, an integrated 

F1-score value was calculated based on the previously obtained values using Harrington's desirability 

method, which is one of the effective methods for solving multi-criteria problems and is currently 

successfully used in various fields of scientific research [22]. 

 
Figure 3: Flowchart of a 1-D single-layer CNN for determining the optimal hyperparameter vector 
of the neural network 

The algorithm for implementing this procedure involves the following steps: 

Step 1: Initialization. 

1.1. Representation of F1-score values in the form of a matrix where rows are classes and columns 

are hyperparameter values, the combination of which is being studied at this stage. 

Step 2. Calculation of private desirabilities. 

2.1. Determination of the minimum and maximum values of the F1-score at the corresponding stage 

of the CNN operation (when applying the corresponding combination of hyperparameters). 

2.2. Transformation of F1-score value scales into a linear scale of the dimensionless indicator Y, 

considering the boundary values of the F1-score determined in the previous step (the value of 

the parameter Y according to the desirability method varies in the range from -2 to 5). In this 

case, during the first step, the coefficients of the linear equation are calculated as follows: 

𝑌𝑚𝑖𝑛 = 𝑎 + 𝑏 ∙ 𝐹1𝑚𝑖𝑛 

𝑌𝑚𝑎𝑥 = 𝑎 + 𝑏 ∙ 𝐹1𝑚𝑎𝑥 

(7) 

       Then, a direct transformation of F1-score values into Y values is carried out: 

𝑌 = 𝑎 + 𝑏 ∙ 𝐹1 (8) 

2.3. Calculation of private desirabilities d for each F1-score value: 

𝑑 = exp (−exp (−𝑌)) (9) 



Step 3. Calculation of the integrated F1-score value. 

3.1. For each column of the matrix obtained in step 2, calculate the integrated F1-score value as the 

geometric average of all private desirabilities: 

𝐹1𝑖𝑛𝑡
𝑗

= √∏ 𝑑𝑖𝑗

9

𝑖=1

9

 

 

(10) 

      where j denotes the corresponding column of the matrix of private desirabilities. 

Step 4. Analysis of the obtained results. 

4.1. Creation of a diagram showing the dependency of the integrated F1-score value on the 

corresponding hyperparameter values. Selection of the optimal hyperparameter value 

corresponding to the maximum of the integrated F1-score. 

During the simulation process, the following activation functions were applied to the output layer of 

neurons: softmax, softplus, softsign, and swish. For the fully connected inner layer of neurons, the elu, 

gelu, linear, relu, and selu activation functions were sequentially applied. Other activation functions 

applied to this layer showed unsatisfactory results. The following activation functions were applied to 

the inner convolutional layer: elu, gelu, sigmoid, linear, relu, and selu. In the initial data preprocessing 

stage, the data was split into two subsets in a 0.7/0.3 ratio (2288/981 samples). The first subset (2288 

samples) was further divided into two subsets in a 0.8/0.2 ratio (1830/458). 1830 samples were used for 

training the network, 458 for validating the model during its training, and 981 samples were used for 

testing the model. The model's quality assessment was based on the analysis of the loss function value 

calculated during the model's validation, the classification accuracy, and the F1-score value calculated 

when applying the test data. The simulation results for determining the optimal activation function of 

the neurons' output layer are shown in Figure 4. 

 
Figure 4: Distribution diagrams of classification quality criteria when determining the optimal 
activation function for the output layer of neurons in the neural network model (CNN) 

As seen from Figure 4, the use of the softmax function allows obtaining the best classification results 

for samples in terms of accuracy, which was calculated on the test data subset, and in terms of the loss 

function, which was calculated on the validation data. When using the softplus function, the 

classification results are slightly worse. When using other functions, the classification results are 

unsatisfactory. These conclusions are confirmed by the analysis of F1-score values calculated for each 

of the nine classes. Due to the clear results obtained, the diagrams showing the dependence of the F1-

score values on the type of activation function used are not shown.  

In Figure 5, the simulation results are presented concerning determining the optimal activation 

function for the CNN's neurons for the dense layer. The analysis of the simulation results allows 

concluding that in terms of sample classification accuracy (Figure 5a) and loss function value (Figure 

5b), the optimal activation functions are elu and selu, which to some extent does not match the results 

based on the analysis of F1-score values (Figure 5c, d). The analysis of the integrated F1-score criterion 

values (Figure 5d) allows concluding that the highest values of this criterion correspond to relu and 

gelu methods. Slightly lower values are achieved when using the selu method. The analysis of the 



distribution character of the F1-score values for individual clusters (Figure 5c) confirms this conclusion. 

Thus, based on the analysis of the values of all the criteria, the selu method was determined as optimal 

at this stage of research. 

In Figure 6, the simulation results for the selection of the optimal activation function for the neurons 

of the convolutional layer are shown.  

 
Figure 5: Simulation results regarding determining the optimal activation function for the CNN's 
dense layer neurons 

 
Figure 6: Simulation results for determining the optimal activation function for the neurons of the 
convolutional layer of the CNN model 

 



As can be seen, in terms of sample classification accuracy and the integrated value of the F1-score, 

the sigmoidal (sigmoid) and linear (linear) activation functions are optimal. However, in terms of the 

loss function value, the sigmoidal function is more preferable. 

In Figures 7-10, similar results are depicted for determining other types of CNN's optimal 

hyperparameters. The analysis of the obtained results suggests that in terms of the classification 

accuracy of the samples (Figure 7a) and the integrated value of the F1-measure (Figure 7d), the optimal 

value of the hyperparameter maximal pooling could be 2 or 3. However, in terms of the loss function 

value, 2 corresponds to better results.  

 
Figure 7: Results of simulation to determine the optimal value of maximal pooling for neurons of 
the convolutional layer 

 
Figure 8: Results of simulation to determine the optimal kernel size for the dense layer neurons 
(dense kernel) 

 



The analysis of the diagrams, which depict the dependence of classification quality criteria on the 

size of the kernel function for neurons of the dense layer (dense kernel), shown in Figure 8, indicates 

that choosing the optimal kernel size based on the F1-score is problematic since the results are almost 

indistinguishable for values 32, 64, 128, and 256 (Figure 8d). In terms of classification accuracy, 

optimal values are 64 and 128 (Figure 8a). In terms of the loss function value, 64, in this case, appears 

to be more attractive (Figure 8b). 

 
Figure 9: Results of simulation to determine the optimal kernel size for the convolutional layer 
neurons (kernel size) 

 
Figure 10: Results of simulation to determine the optimal number of filters for the convolutional 
layer neurons 

The analysis of simulation results, as shown in Figure 9, suggests that, by all quality criteria of 

sample classification, the optimal kernel size for the functions of convolutional layer neurons is 3. 



Analysis of the distribution diagrams of quality criteria for classification at different values of the 

number of convolutional layer filters (Figure 10) indicates that according to the accuracy criterion, the 

optimal options are 8 and 32 filters. The loss value when using 32 filters is slightly less. The integrated 

F1-score value suggests a slightly higher attractiveness of using eight filters. In this case, a compromise 

decision was made to use 32 filters, as reducing the number of filters can lead to a decrease in the 

sensitivity of the CNN, which is not acceptable within the current research framework. 

The obtained simulation results allowed us to compile a list of optimal hyperparameters for a 1D 

single-layer CNN, the values of which are presented in Table 1. The next step in the simulation process 

is to compare the efficiency of a 1D single-layer, two-layer, and three-layer CNN when using the 

hyperparameters determined in the previous simulation stage. On the first convolutional layer, a filter 

(100 × 193) was applied to the gene expression value vector, on the second (50 × 386), and on the 

third (25 × 772).  

 

Table 1 
Optimal hyperparameters values for a 1D single-layer CNN 

Number of 

filters 

Kernel size  Dense 

kernel 

Maximal 

pooling 

Activation 

function of 

convolutional 

layer 

Activation 

function of 

dense layer 

Activation 

function of 

output layer 

32 3 64 2 sigmoid selu softmax 

 
The simulation results are presented in Figure 11. The training time for the model was almost the 

same in all cases, approximately 83 seconds. 

 
Figure 11: Simulation results for determining the number of convolutional layers in 1D CNN 

 

Figure 11a also displays the total number of samples that made up the test data subset and the number 

of samples correctly identified in each case. An analysis of the results allows us to conclude that, by all 

criteria, the single-layer CNN is more efficient for this type of data. The number of correctly identified 

samples is 955 out of 981. The classification accuracy is 97.3%. The F1-score values, calculated for all 

classes using a single-layer network, are also higher than the two- and three-layer networks. The loss 

function value, computed using the validation data in this case, is also the lowest. 

 

 



4. Conclusions 

In the paper, we have presented the research results on applying a convolutional neural network 

(CNN) for the classification of samples based on gene expression data. Various architectures of one-

dimensional CNNs are considered. As optimization hyperparameters, the following were studied: 

activation functions of output, convolutional and dense layers, the number of filters, the kernel size of 

neurons of convolutional and dense layers, and max pooling. As criteria for evaluating the quality of 

the corresponding model, the classification accuracy of samples (Accuracy), the loss function value 

calculated on the data subset for model validation, and the F1-score, which includes errors of the first 

and second kind (sensitivity and specificity) as components and is one of the effective criteria for the 

quality of sample distribution into separate classes. An integrated F1-score criterion has been proposed, 

the calculation of which involves applying Harrington's desirability function to partial F1-score values 

calculated for individual classes. The simulation results regarding applying different CNN architectures 

for the classification of gene expression data are presented. The experimental data used were gene 

expression data from patients who were studied for various types of cancer and contained eight classes 

of samples taken from patients with the corresponding type of cancer. The ninth group included samples 

from patients in whom no cancer was detected. According to the simulation results, a single-layer CNN 

demonstrated higher effectiveness across a set of quality criteria. When using the ordered grid search 

algorithm, the following hyperparameters were identified as optimal: softmax activation function for 

the output layer neurons, selu activation function for dense layer neurons, sigmoid activation function 

for convolutional layer neurons, max pooling of 2, kernel size for dense layer neurons of 64, kernel size 

for convolutional layer neurons of 3, and the number of filters in the convolutional layer of 32. 

Future directions for the authors' research include exploring alternative algorithms for neural 

network hyperparameter optimization and incorporating other deep learning methods within the 

complex object diagnosis system. 
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