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Abstract  
Breast cancer is a significant global health problem that predominantly affects women and 

requires effective screening methods. Mammography, the primary screening approach, 

presents challenges such as radiologist workload and associated costs. Recent advances in deep 

learning hold promise for improving breast cancer diagnosis. This paper focuses on early breast 

cancer detection using deep learning to assist radiologists, reduce their workload and costs. We 

employed the CBIS-DDSM dataset and various CNN models, including YOLO versions V5, 

V7, and V8 for mass detection, and transformer-based (nested) models inspired by ViT for 

mass segmentation. Our diverse approach aims to address the complexity of breast cancer 

detection and segmentation from medical images. 

Our results show promise, with a 59% mAP50 for cancer mass detection and an impressive 

90.15% Dice coefficient for semantic segmentation. These findings highlight the potential of 

deep learning to enhance breast cancer diagnosis, paving the way for more efficient and 

accurate early detection methods. 
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1. Introduction 

Breast cancer remains one of the most prevalent diseases among women globally and stands as a 

leading cause of mortality in gynecological cancers. Across the world, the situation is indeed dire, with 

one in ten women affected by this disease during their lifetime. It ranks second in overall cancer 

incidence, following prostate cancer, affecting individuals of all genders. Despite considerable efforts 

in the form of screening programs aimed at prevention and early detection, there is an urgent need to 

enhance methods for analyzing mammography images. 

Mammography represents the unquestionable gold standard for breast exploration, offering 

unmatched performance in breast cancer surveillance and early detection. Each year, millions of 

mammograms are produced worldwide for the early screening of breast cancer or to establish a 

diagnosis to guide therapeutic interventions. However, the interpretation of these images remains a 

major challenge for healthcare professionals, as they provide complex radiological information that is 

challenging to fully exploit through human expertise, which relies on visual interpretation and 

experience. 

Confronted with this challenge, the development of dedicated software for mammography image 

analysis becomes imperative to optimize their utilization for the benefit of both patients and physicians. 

A more suitable method of interpretation is required to enable earlier detection and more effective 

management of the disease. 
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Deep Learning (DL) has revolutionized various real-world domains by providing accurate and 

powerful solutions. In the medical field, it also offers promising solutions for the interpretation of 

medical images, allowing for highly precise analysis. This paper project focuses on applying Deep 

Learning using a range of models and techniques, including transformers, with the goal of detecting 

breast cancer in mammograms. To achieve this objective, we integrate the YOLO (You Only Look 

Once) model [1] for precise detection of regions of interest (ROI) in mammographic images. Once the 

regions of interest are identified, we employ SegNest, an adaptation of the ViT Nest model [2] for 

semantic segmentation to perform semantic segmentation of tumors. 

In this paper, our primary objective is to push the boundaries of early breast cancer detection by 

harnessing the advancements in Deep Learning and computer vision. To achieve this goal, we will apply 

techniques of object detection and semantic segmentation to effectively localize and characterize mass 

breast cancer in real mammography images. Moreover, we will explore a hybrid approach that combines 

transformers (ViT) with CNN to leverage their respective strengths in breast cancer detection. 

The paper is structured as follows: In Section 2, we delve into the related work in the field, providing 

a thorough review of existing literature to establish the context and significance of our research. Section 

3 outlines our proposed approach, elucidating the methodology and techniques employed in our study. 

The heart of our contribution lies in Section 4, where we present our results and engage in an in-depth 

discussion, offering insights and interpretations of the data. Finally, in Section 5, we draw our 

conclusions, summarizing the key findings, their implications, and potential avenues for future research. 

2. Related works 

In this section, we present an overview of recent studies in the field of breast cancer detection and 

tumor segmentation using deep learning techniques. 

For the breast cancer detection, the authors of [3] proposed a two-step method using high-resolution 

mammograms. They achieved a significant improvement over Faster R-CNN in terms of detection 

accuracy for BI-RADS categories.  Hamed Aly et al. [4] applied YOLO-V3 for automated breast mass 

detection, achieving a mass detection rate of 89.4\% and high precision for classifying malignant and 

benign masses. Prinzi et al. [5] presents an approach to automated breast cancer detection using YoloV5 

architecture, which reached an mAP50 of 49.8% on CBIS-DDSM dataset. 

For Breast Tumor Segmentation, Soltani et al. [6] employed Mask R-CNN, reporting a promising 

performance with high precision of 0.75%, recall of 0.80%, and F1 score of 0.825%. Yu et al. [7] 

introduced Dense-Mask R-CNN, which surpassed the original Mask R-CNN in breast mass detection 

on the CBIS-DDSM dataset, with an average precision (AP) of 0.65.  

Among the approaches based on transformers we cite the work of Liu et al. [8] introduced TrEnD, 

an encoder-decoder model based on transformers for mammography mass segmentation. They applied 

superpixel-based adaptive patch embedding and achieved improved Dice and Intersection over Union 

(IoU) scores on the CBIS-DDSM and INBreast datasets. Su et al. [9] developed a YOLO-LOGO model 

for breast mass detection and segmentation in digital mammograms. Their model effectively combined 

mass detection and segmentation using YOLOV5L6 and a Vision Transformer (ViT), showing 

promising results that outperformed other segmentation models. They trained their model on CBIS-

DDSM dataset and they achieved a dice score of 84.49%. 

Prezi et al . [5] proposed an approach for breast cancer detection in CBIS-DDSM mammograms. 

The study compares various YOLO architectures namely YOLO V3 YOLO V5 and YOLOV5-

Transformer. Within this architecture, the Transformer block was incorporated into the second-to-last 

layer of the backbone network, specifically positioned among the trio of convolutional layers that 

precede the spatial pyramid pooling layer. The small YOLOV5 model outperforms others with a mAP 

of 0.621. 

As summary of this related works, the hybridization of YOLO with Vision Transformer (ViT) 

represents a promising avenue for breast cancer detection and tumor segmentation, as evidenced by the 

compelling results obtained in the existing literature. This fusion of YOLO and ViT architectures has 

consistently demonstrated superior performance in various studies, underscoring its potential to 

enhance both mass detection and segmentation tasks.  



3. Proposed approach 

In this section, we describe our proposed approach of the detection and diagnosis of breast cancer, 

based on deep learning. The proposed approach focuses specifically on the detection of breast masses 

within the context of breast cancer. It is a holistic approach that combines mass detection stage  using 

YOLO architecture and segmentation stage using SegNesT architecture. By integrating these two stages 

(see Figure 1), this approach seamlessly integrates different aspects of deep learning to create a more 

holistic and potentially more effective diagnostic system for patients.  

 

 

Figure 1: The framework of the proposed approach. (a) Original mammogram of the mass, (b) 
Detected Region of Interest (ROI) of the mass, (c) ROI of the detected mass, (d) Binary mask segmented 
from the ROI of the mass 

3.1. Breast mass cancer detection based on YOLO model 

At this level, a comprehensive comparative study of common object detection methods is conducted. 

Among the various approaches examined, YOLO [1]  emerged as a promising choice due to its 

advanced real-time object detection performance. In the first phase of proposed approach for breast 

cancer detection (detected region of interest ROI of the mass), three most recent versions of the YOLO 

architecture V5 [10], V7 [11] and V8 [12] are used and compared (see Figures 2, 3 and 4 for architecture 

details). 

(d) 

(a) (b) 

(c) 



 
Figure 2: YOLO V5 architecture [13] 

 

 

 
Figure 3: YOLO V7 architecture [14] 



 
Figure 4: YOLO V8 architecture [15] 

3.2. Breast cancer segmentation based on SegNesT architecture 

Once these regions of interest have been identified (in the first stage), we applied, in the second 

stage, image segmentation using the SegNesT model. This model is a customized version of the ViT 

NEST [2], adapted specifically for effective segmentation tasks. SegNesT excels in precisely outlining 

the contours of relevant structures, thereby enhancing lesion characterization. 

This architecture adopts a hierarchical approach based on the Transformer architecture for image 

processing. The workflow start from data pre-processing, where an image and its corresponding mask 

(label) are fed into the model. The image is initially partitioned into patches, which facilitates the 

capture of local details while retaining a global image representation and accommodating different 

resolutions. Subsequently, the model employs multiple hierarchical NesT levels to capture information 

across various scales. Each hierarchical level comprises a pooling layer, a convolutional with 

normalization layer, a position embedding layer and a transformer layer to model feature dependencies. 

Ultimately, this model can represent intricate information at multiple resolutions. Finally, it employs a 



deprojection operation (un-patchify) to reconstruct the image (mask) based on the extracted features 

(see Figure 5). 

 

 
Figure 5 : SegNest architecture 
 

Our architectural design encompasses three primary components: 

• NesT (Nested Transformers): The NEST VIT architecture encompasses five crucial 

components for comprehensive image analysis. Firstly, it initiates with Patch Embedding, 

dividing the input image into smaller patches and transforming them into embeddings, 

facilitating the processing of both local and global information. The architecture then operates 

across multiple Hierarchical Levels, focusing on feature extraction at various scales, utilizing 

self-attention mechanisms and feed-forward networks to enhance feature representations. To 

maintain spatial awareness, Positional Embeddings are incorporated and added to patch 

representations. Following feature extraction, a Feature Refinement stage refines feature maps 

using convolutional layers, effectively eliminating artifacts and enhancing visual quality 

through the following steps: 

• Linear Layer 

• Unpatchify Layer 

• Convolution Layer 1: Kernel size = 9x9 

• Convolution Layer 2: Kernel size = 5x5 

• Convolution Layer 3: Kernel size = 3x3 

• MaxPooling Layer: Kernel size = 3x3 

Finally, an Image Reconstruction stage rearranges feature representations into the original 

image format, ensuring a coherent and visually appealing final output. 



• Mask Reconstruction: The second component focuses on the reconstruction of the image 

itself. It takes the embedding vectors generated by the "NesT" part and arranges them in a grid 

of patches to reconstruct the segmented image or mask. 

• CNN Block: The third and essential component comprises a CNN block that contributes 

significantly to the overall architecture. This block includes three convolution layers.  

• Convolution Layer 1: Kernel size = 9x9 

• LeakyReLU Layer 

• Convolution Layer 2: Kernel size = 5x5 

• LeakyReLU Layer 

• Convolution Layer 3: Kernel size = 3x3 

Padding is applied in these three layers to maintain the image size after convolution. This CNN 

block effectively eliminates any blocking artifacts that might be present in the reconstructed 

image from the NesT component, resulting in a smoother and visually appealing final output. 

4. Experimentations and results 
4.1. Dataset used in this work 

In this work we have chosen the CBIS-DDSM dataset  [16], a subset of the Digital Database for 

Screening Mammography (DDSM) [17], is a valuable resource for breast cancer research. It stands out 

due to its complexity, encompassing diverse digital mammography images of both normal and 

abnormal cases. These images are rich in details and annotations, making it a challenging dataset for 

tasks like lesion detection and classification. The dataset's complexity arises from the presence of subtle 

lesions, varying image qualities, and diverse lesion types. We used 1253 images for the train set and 

363 for the test set. 

 
Figure 6: CBIS DDSM images examples 



4.2. Data pre-processing 

As part of our implementation, we applied some preprocessing techniques to prepare our dataset for 

use, we summarize them in the following points: 

• Image croppe 

We have applied image cropping to focus on a specific region of interest (ROI) within the 

image. Our approach involves utilizing the mask images supplied within the dataset, allowing 

us to extract and crop the white regions from the original images. 

• Resize 

    We resized all cropped images to a size of 224×224 px to fit the model input. 

• Image enhancement using CLAHE method 

We use this technique to improves the visibility of details in an image by enhancing the contrast. 

It does this by redistributing the intensity values in a way that ensures a more uniform 

distribution of pixel values, thereby making both dark and bright regions more distinguishable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7: Examples of applying CLAHE: (a): input image, (b): CLAHE result. 
 

• Normalization 

The normalization process consisted of subtracting the minimum value from each pixel then 

divide by the range of pixel values (maximum minus minimum). This scaling ensured that pixel 

values were within the desired range to improve performance, avoid numerical instabilities and 

allow consistent comparisons between pixel values. We applied normalization to the images 

input by scaling their pixel values within a normalized range of 0 to 1. 

4.3. Used metrics and loss functions 

Here we present the different metrics and loss functions used to train and evaluate our models. 

Intersection over union (IoU): is another evaluation metric used to assess the quality of 

segmentations. It is calculated as the ratio of the intersection area between the predicted mask and the 

reference mask to the union area of the two masks. The IoU is given by the formula: 

𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(1) 

(a)                                (b) 



Dice score (DSC): is an evaluation measure used to assess the similarity between two sets, often 

used to assess the quality of medical image segmentations. For two sets A and B, the Dice Score is 

calculated as follows: 

𝐷𝑆𝐶 =
2 ∗ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(2) 

 

where A and B represent the cardinalities of sets A and B respectively. 

Dice loss: is a loss function used for training segmentation models, especially for tasks where 

segmentation is represented by a binary mask. The Dice Loss is defined as the inverse of the Dice Score. 

The objective is to minimize this loss to improve the quality of the segmentation. 

ℒ𝐷𝑖𝑐𝑒 = 1 − 𝐷𝑆𝐶 (3) 

Binary cross-entropy (BCE): is a commonly used loss function for training binary classification 

models. It is used when each example can belong to only one class. It measures the distance between 

the model’s predictions and the true labels (ground truth). The binary cross-entropy is defined as 

follows: 

ℒ𝐵𝐶𝐸 = −(𝑦 ∗ 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑝)) (4) 

where y is the true binary label (0 or 1) and p is the probability predicted by the model for this label. 

Focal binary cross-entropy (Focal loss): is a specialized variant of the binary cross-entropy loss 

function. The Focal Loss was introduced to address the problem of training deep neural networks on 

imbalanced datasets, where the model may struggle to effectively learn from the minority class 

examples. 

The main idea behind Focal Binary Cross-Entropy is to down-weight the loss contribution of easy-

to-classify examples and focus more on the hard-to-classify ones. It does this by introducing two key 

parameters:𝛾) and 𝛼. 

ℒ𝐵𝐶𝐸
𝐹𝑜𝑐𝑎𝑙 = −𝛼𝑡𝑖

(1 − 𝑝𝑡𝑖
)

𝛾
log(𝑝𝑡𝑖

) (5) 

Where: 

𝑝𝑡 = {
𝑝 if 𝑦 = 1
1 − 𝑝 otherwise

(6) 

𝛼𝑡 = {
𝛼 if 𝑦 = 1
1 − 𝛼 otherwise

(7) 

Combined loss function (Combo Loss): is a composite loss function that simultaneously minimizes 

the Dice loss and a modified version of the cross-entropy loss. Its formula is giving as follows: 

ℒ𝑐𝑜𝑚𝑏 = 𝛼 ⋅ ℒ𝐵𝐶𝐸 + (1 − 𝛼) ⋅ ℒ𝐷𝑖𝑐𝑒  (8) 

We can also consider a focal version of this combined loss function as follow: 

ℒ𝑐𝑜𝑚𝑏
𝐹𝑜𝑐𝑎𝑙 = 𝛼 ⋅ ℒ𝐵𝐶𝐸

𝐹𝑜𝑐𝑎𝑙 + (1 − 𝛼) ⋅ ℒ𝐷𝑖𝑐𝑒 (9) 

Mean Average Precision (mAP)  : is commonly used to analyze the performance of object detection 

and segmentation systems.  In our work is used to evaluate mass detection models. It compares the 

ground-truth bounding box to the detected box. The higher the score, the more accurate the model is in 

its detections. It is calculated using the following formula : 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑛

𝑘=1

 (10) 



 

Where n is the number of classes and APk is the Average Precision of the classe k. 

  

𝐴𝑃𝑘 =
𝑇𝑃(𝑘)

𝑇𝑃(𝑘) + 𝐹𝑃(𝑘)
  (11) 

 

with TP(k) is the True Positive rate of the class k:  The model predicted a label of class k and matches 

correctly to the ground truth.  FP(k) is the False Positive rate of the class k: The model predicted a label 

of class K, but it is not a part of the ground truth. mAP50 is Mean Average Precision calculated for 

the IoU threshold of 0.5. 

4.4. Results and discussion 

Discussion is dedicated to the analysis and discussion of the outcomes obtained from our 

experiments, focusing on two main aspects: Object Detection Results and Segmentation Results. 

4.4.1. Mass detection results 

In this subsection, we delve into the performance of our object detection model. Table 1 presents the 

performance of different models: YOLOv5 Small (V5 S), YOLOv7 (V7 X), and YOLOv8 Medium (V8 

M). Analyzing the mAP50 score on the test set, YOLOV8 Medium achieved the best performance with 

a score of 59%, surpassing YOLOv5 Small with 46% and YOLOv7X with 51%. These results suggest 

that YOLOV8 Medium displayed the highest performance among the three tested models. 

 

Table 1 
Mass detection results using different YOLO models 

Model map50 Image Size 

YOLO V5 S 46 % 1280×1280 
YOLO V7 X 51% 640×640 
YOLO V8 M 59% 640×640 

 

It's worth noting that despite the larger size of YOLOv5 Medium with an image resolution of 

640×640 compared to YOLOv5 Small, it did not achieve satisfactory results. This can be attributed to 

the fact that YOLOv5s was trained on high-resolution images (1280×1280), whereas YOLOv5m was 

trained on lower-quality images. Unfortunately, it was not possible to evaluate the performance of 

YOLOv5m at a resolution of 1280×1280 due to hardware limitations. Therefore, the results of 

YOLOv5m at this resolution are not considered in this comparison. 

Table 2 presents a comparison of various models and their performance metrics in the context of 

breast cancer mass segmentation. 

 

Table 2 
Comparison with related works 

Paper Model mAP 

Prinz et al. [5]  YOLO V5s 49,8% 
 Su et al. [9] YOLO V5s 59% 

Our YOLO V8 59% 
Su et al. [9]   YOLO V5L6 65% 

 



In the study by Su et al. [9], they achieved a success rate of 59% using YOLOv5 after 1000 training 

epochs. In contrast, our approach also reached a 59% mAP rate, but with a different approach that 

required only 300 training epochs. This difference in the number of epochs suggests a relative efficiency 

in our approach. They achieved with YOLOv5L6 an mAP50 of 65%. However, due to hardware 

constraints, we were unable to use this version. 

Furthermore, when compared to the article by Prinzi et al. [5], which utilized YOLOv5s with data 

augmentation and obtained a result of 49.8% in mAP50, our approach yielded better results. 

4.4.2. Segmentation results 

The following subsection is dedicated to the analysis of our segmentation model's performance. The 

results of SegNet are displayed in the table above with the different loss functions used: 

Table 3 
Mass segmentation results using SegNest model 

Loss function Dice 

ℒ𝐵𝐶𝐸  75% 

ℒ𝑐𝑜𝑚𝑏  81.2% 

ℒ𝑐𝑜𝑚𝑏
𝐹𝑜𝑐𝑎𝑙 (𝑑𝑖𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡 = 1.0, 𝑓𝑜𝑐𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡 = 1.0) ) 89.99% 

ℒ𝑐𝑜𝑚𝑏
𝐹𝑜𝑐𝑎𝑙 (𝑑𝑖𝑐𝑒𝑤𝑒𝑖𝑔ℎ𝑡 = 0.5, 𝑓𝑜𝑐𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡 = 0.5 ) 90.15% 

 

In our research, we explored different loss functions in our SegNesT model training. Initially, we 

have used the binary cross-entropy (BCE) loss function, our model achieved a Dice score of 75%. 

However, when we adopted the combined loss function, our performance improved significantly, 

reaching a Dice score of 81.2%. To further enhance our model's performance, we introduced the 

Combined Focal Loss, using dice_weight=1.0 and focal_weight=1.0, which resulted in even better 

performance, with an impressive Dice score of 88.99%. Finally, by adjusting the weights to 

dice_weight=0.5 and focal_weight=0.5, our model achieved its best result, with a remarkable Dice score 

of 90.15%. These results underscore the critical importance of selecting the right loss function in 

improving the performance of our SegNesT model. 

Table 4 presents a comparison of various models and their performance metrics in the context of 

breast cancer mass segmentation. 

Table 4 
Comparison with related works 

Paper Model Dice 

Sharif Amit Kamran et 
al. [34] 

Swin-SFTNet 24.13% 

Bouzar-Benlabiod et 
al. [18] 

U-Net SE-RestNet-101 75% 

Yuehang Wang et al. 
[19] 

AM-MSP-cGAN 84.49% 

Dongdong Liu et al. [8] TrEnD 89.48% 
Our approach SegNest 90.15% 

 

Our SegNesT model has achieved the higher dice score among similar literature works. Bouzar-

Benlabiod et al. [18] had used Attention U-net, obtained a Dice score of 75%. Yuehang Wang et al. 

[19] has achieved a dice score of 84.49% using a hybrid approach combining YOLO and ViT. 

Dongdong Liu et al. [8] also with a ViT-based model named TrEnD achieved a Dice score of 89.48% 



was achieved. It is clear that our SegNesT model has outperformed the results of related works even 

transformer-based models, achieving the highest Dice score of 90.15%. This superior performance 

highlights the effectiveness of our approach compared to previous methods in the field of medical image 

segmentation. 

Our NesT based approach plays a crucial role in addressing the quadratic complexity issue of full 

self-attention in vision transformers. By introducing a hierarchical nested structure and incorporating 

block aggregation, NesT effectively improves data efficiency and accuracy compared to previous 

methods within the realm of ViT-based approaches. This progress positions our approach favorably 

compared to other ViT based approaches. 

The block aggregation mechanism plays a central role in promoting effective inter-block 

communication, thereby diminishing the necessity for full self-attention at each layer. This 

simplification of the architectural design not only amplifies the effectiveness of training with smaller 

datasets but also demonstrates its utility as model size scales up, illustrating NesT's enhanced efficiency 

in handling larger models. 

4.4.3. Result samples 

In this section, we provide a comprehensive showcase of result samples obtained from our study. 

These samples serve as illustrative examples of the outcomes generated by our research. 

Figure 8 showcases the qualitative results of our model's detection task, offering a visual 

representation of its performance in identifying and localizing objects of interest within the dataset. 

These results provide valuable insights into the accuracy and precision of our model's detection 

capabilities, contributing to a comprehensive assessment of its overall effectiveness. 

Figure 9 presents the qualitative results of our model's segmentation task, underlining the 

remarkable resemblance between the ground truth mask and the predicted mask generated by our 

SegNest model. This compelling similarity confirm the precision and fidelity of our model's 

segmentation capabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Masses detected with YOLOV8 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Example of segmentation result with SegNest. (a) Regions of Interest (ROI), (b) Ground Truth, 
(c) Predicted Mask 
 

5.  Conclusion 

In this paper, we highlight the potential use of object detection and semantic segmentation in the 

field of breast cancer detection and diagnosis. We have explored various aspects of deep learning, 

including mass detection using YOLO versions 5, 7, and 8, as well as breast mass cancer segmentation 

using our proposed SegNest architecture, based on ViT Nest. The findings indicate the efficacy of these 

methodologies, as YOLO V8 M achieved the highest mean average precision (mAP) of 59% among 

the YOLO models for mass detection. Additionally, our SegNest model demonstrated outstanding 

performance in mass semantic segmentation, achieving a Dice loss of 90.15%. These approaches have 

demonstrated their effectiveness in identifying anomalies and tumors in mammographic images, 

offering promising avenues for improving the accuracy of breast cancer diagnoses. 

While our findings are promising, it's important to outline that our experimentation was conducted 

with a limited dataset. To enhance the performance and generalizability of our models, we foresee 

numerous directions for future research and development. These include expanding our dataset to 

encompass a more diverse range of cases, refining model architectures, and exploring transfer learning 

techniques from other medical imaging domains. These steps will be crucial in ensuring that the benefits 

of deep learning in breast cancer detection can be realized more broadly, ultimately benefiting both 

patients and healthcare professionals. 

 

 

 

 

 

                 (a)                                      (b)        (c) 
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