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Abstract
Satellite imagery is a form of data that can be used for many applications, especially those focusing on change over time. In 
this article, we analyze methods of detecting buildings and predicting their height as well as what key attributes are required 
for good predictions. Building detection and prediction are done by using neural network algorithms such as convolutional 
neural networks to estimate their height. Predictions are made based on additional data of the building and its area. In this 
paper three different building estimation models are implemented. The research showed that using a mixed dataset that takes 
both Sentinel image patch data and numerical feature input of additional building data performs well even with lower quality 
images.
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1. Introduction
Having a way of quickly predicting building height pro-
vides us with essential knowledge for sustainable urban
development and plays a vital role in the fields of urban,
pollution transmission, building energy consumption,
population estimation [1]. Essentially building height
information is crucial for the comprehensive understand-
ing of urban development [2].
Determining urban development and its magnitude

usually requires the aggregation of many criteria. This is
a difficult process due to the time it takes to access this
information and the possible changes that might happen
while the data is being collected. Even with automated
monitoring systems, this creates linked data which is
hard to handle [3]. In addition, some things that are not
documented or finished will not be collected and this
will make the resulting predictions less accurate, as with
the degradation of the data accuracy, predictive accuracy
goes down too [4]. Therefore, approaching this problem
there is a need to use data that is easier to get and reflect
the current state precisely. Satellite images that are up
to date are a great source of current data that is freely
available.
There are many sources of satellite images like Lidar,

Sentinel-1, Sentinel-2, InSar, ICESat and others. All of
these specialize in different areas, have different spec-
trums that can be used for different tasks. For example, Li-
dar and InSar capture ground elevation/deformation and
are great for tasks that focus on nature/surface changes
[5][6]. ICESat images measure ice sheet balance. The
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focus is ice, and all-year measurements of clouds and
aerosol distributions over land in Polar Regions [7].
Sentinel-1/Sentinel-2 images came from the Coperni-

cus programme which is a European initiative for the
implementation of information services dealing with the
environment and security, based on observation data re-
ceived from Earth Observation (EO) satellites and ground-
based information. Copernicus API provides access to
Satellite images obtained during the Sentinel missions
allowing comparison of the same locations within dif-
ferent time frames. The Sentinel-2 satellite is equipped
with an opto-electronic multispectral sensor for survey-
ing with a resolution of 10 to 60 m in the visible, near
infrared (VNIR), and short-wave infrared (SWIR) spectral
zones, including 13 spectral channels. This ensures the
capture of differences in vegetation state, including tem-
poral changes, and minimizes impact on the quality of
atmospheric photography. The orbit is an average height
of 785 km and the presence of two satellites in the mis-
sion allows repeated surveys every 5 days at the equator
and every 2-3 days at middle latitudes.
An analysis of literature where Satellite images are

used has shown a variety of different use cases, such
as detecting specific crops and change in the soil struc-
ture [8]. Other examples include continuous observation
of ships moving on the sea surface [9] and retrieving
significant wave height [10].
The focus of this work is on prediction of building

height. There are already existing approaches that help
to solve similar problems. For example, shadows in com-
bination with gradient formulas are employed in high-
resolution images for building height extraction [11],
objects that are salient are identified and then their edges
are found [12]. Multi-scene building height estimation
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method is using shadow length calculation combined
with fish net and Pauta criterion [13]. Other building
detection works include using the U-Net model to assign
semantic labels to each pixel as building/non-building
[14] or using 3D building models in conjunction with
satellite imagery to predict building height [15], as well
as using deep convolutional neural networks (DCNN) for
semantic segmentation and applying filters [16].

Convolution neural networks (CNNs) networks could
be one of the most promising options for building de-
tection and height prediction. CNN models have been
proven to be good at extracting mid and high-level ab-
stract feature representations from small raw images [17]
for classification purposes, by interleaving convolutional
and pooling layers, i.e., spatially shrinking the feature
maps layer by layer. Recently proposed network archi-
tectures also allow for dense per-pixel predictions[18].

Many of these models rely on high-resolution satellite
imagery, the detail of whichmakes it easier for themodels
to identify and detect extremely small elements [19][20].
The spatial resolution of high-resolution satellite images
is about 1m/pixel [20]. The downside, however, is that
these high-resolution images are not taken very often.
This creates the preconditions for working with old data,
which could potentially give a false picture of the current
situation. Therefore, lower quality satellite imagery is a
more appropriate choice in this case.
In this work Sentinel satellite imagery with medium-

resolution 10 m/pixel Sentinel images [21] has been used
which allows to see the development of housing and
infrastructure. The authors of this study performed ex-
periments combining Sentinel imagery with additional
geographic and time data in order to achieve feasible
building height estimation accuracy.
Finally work is composed as follows: the details de-

scribed in Chapter II include the process of collecting
images of the buildings, their height and additional data,
as well as the peculiarities of forming a complete data set.
Chapter III describes three different models that were
used to estimate the height of the buildings. Chapter IV
provides a comparative analysis of the results of these
models. Chapter V provides summaries and insghts from
the study.

2. Dataset creation
For the sake of building variety, an area of interest was
bound to Europe. This gives the ability to have differ-
ent types of buildings without covering the whole world.
For the administrative information (building location,
height, area) "Planet OSM” database was used which con-
tains complete copies of the “OpenStreetMap” database.
“OpenStreetMap” (OSM) is a collaborative project to cre-
ate a free editable geographic database of the world. For

getting the building imagery data “Copernicus Open Ac-
cess Hub” applied programming interface (API) was used 
[22]. This allows getting satellite image patches with ad-
ditional information (latitude, longitude, time of the year 
and the day that the pictures were taken). To further sim-
plify the process “Copernicus Open Access Hub” applied 
programming interface (API) was used with “Python” 
programming language integration. This has facilitated 
the download and processing of Sentinel-2 images. An 
example of taken image can be seen below (see Figure 1).

Figure 1: Sentinel-2 example satellite image of Barcelona

Areas in Europe were selected by bounding mentioned 
geographical zone in a two-point rectangle (58°59’42.0"N 
10°14’20.4"W x 36°57’00.0"N 36°25’51.6"E). An example 
can be seen below (see Figure 2). According to bounds 
“Planet OSM” data query was adapted to only select build-
ings in the bounded area. Also, buildings that were less 
than 20m in height were filtered out.

Figure 2: Bound geographical zone with “geojson.io”

The “geojson.io” and building polygon (coming from
“Planet OSM” database) coordinate data was used to
download large Sentinel images of the region. Polygon



data from “OpenStreetMap” was iterated and patches of 
32x32px were cut out by centering patch to the center 
of building polygon. This helped to build image dataset 
consisting of 32x32px image patches with building in the 
center. Also, metadata was taken from the image (latitude, 
longitude, time of the year and the day the pictures were 
taken). Then image patch data was concatenated with 
administrative building data. Each image of a building is 
accompanied by its height and area in square meters (for 
non-linear model). The dataset creation flowchart can be 
seen below (see Figure 3).

Figure 3: Dataset creation flowchart

Created dataset contained 9988 images. To have 
more evenly distributed dataset, heights that have lower 
amount of images were removed. Building height 0.5 
quantile was calculated to be 30m and therefore build-
ings of height above 30m were removed from the dataset 
(see histogram in Figure 4).

Figure 4: Data filtered under 0.5 quantile – 30m. a) part 
histogram contains all dataset buildings, red line marks 0.5 
quantile; b) part histogram contains only building counts in 
range from 21-30m

After removing mentioned buildings dataset contain-
ing 8622 images and was split to train, validation, and 
test datasets. The distribution of heights after split stayed 
the same. Train set contained 5980 images of 2887 unique 
buildings, validation set contained 2237 images of 1352 
unique buildings and test set contained 405 images of 399 
unique buildings (see Table 1). The splitting was made 
to prevent having the same building in train, validation 
or test sets.

Most of the buildings were taken from southern Europe 
area. Higher than 30 m buildings were removed from the 
dataset and are marked in red (see Figure 5).

Table 1
Final dataset distribution

Dataset Image count Unique building count
Train 5980 2887

Validation 2237 1352
Test 405 399

Figure 5: Data distribution on the map and removed buildings.
a) part of the image shows initial dataset where buildings are
marked as blue dots; b) part of the image shows an initial 
dataset, where blue dots are buildings lower than 30m and 
red dots are buildings that were removed as they are above
30m height

3. Modeling and validation
In general, building height from sentinel images may be
calculated analytically if such information as Sentinel
location in space, sun position, building and building
shadow contour are well known. Unfortunately, while
sun and Sentinel position in space may be extracted from
image metadata, the shape of image buildings and its
shadow information are generally unknown because of
relatively rough resolution of Sentinel images. In or-
der to define the model possibilities to approximate the
building height of rough resolution images and validate
that model itself is able to approximate building height
from all theoretically necessary data features, three types
of models were implemented. Firstly, the baseline Non-
linear model that predicts building height from building’s
area was created. This allows to get nonrandom initial
height prediction which does not depend on Sentinel
data. Secondly, Convolutional Neural Network (CNN)
with DenseNet201 backbone model was used to extract
complex features from Sentinel-2 satellite imagery in or-
der to find relation between building shape presented in
rough sentinel image and height.
Finally, a mixed data model has been created, which

expands the second model by including such information
as latitude, longitude, day of the year and time of the day.
This information enables the model to approximate sun
position. By taking into account, that Sentinel position
from the ground at the image is always similar, the third
model has all information necessary for building height



Figure 6: Prediction model schemes

detection. Different models schemes provided in above 
(see Figure 6).

Neural network based models architectures can be 
seen in below (see Figure 7). On the left side (Model
2) - the CNN model that takes an image of size 32x32 
pixels and returns a height prediction. On the right side 
(Model 3) - the Mixed data model is shown, similarly takes 
a 32x32 pixels image but additionally takes additional 
numerical data latitude, longitude, day of the year and 
time of the day (input3 of size 4) and concatenates image 
and numerical data layers to single layer that returns 
predicted height. Both models try to minimise the mean 
squared error loss function (MSE).

Figure 7: Neural network based models architectures

To measure the accuracy between models three error
metrics, namely, Mean Squared Error (MSE), Mean Abso-
lute Error (MAE) and Mean Absolute Percentage Error
(MAPE) were used. These metrics were chosen as the
most popular error metrics for regression [23].

After training implemented models, the results showed
that when comparing MAE (which can be measured in
meters), the worst performing model is the Sentinel Im-
age patch CNN-based regression with an error of 2.31 m,
and the best performing model is a mixed data prediction

model with an error of 1.89 m. The nonlinear regression 
model was in the middle among Sentinel-based models 
with an error of 2.02 m (see Table 2). Here, the mean 
absolute error (MAE) refers to how many meters each 
forecast differed from the actual height of the building.

Table 2
Building height prediction errors on test set using Logistic 
regression with weighted classes, Image patch CNN regression 
and mixed data prediction models

Model MSE MAE MAPE
Logistic regression with weighted classes 7.71 2.02 0.087
Image patch CNN based regression 9.11 2.31 0.098
Mixed data prediction model 6.2 1.89 0.079

According to the results of models predictions on test
set of buildings in range 20-30m it is visible that without
having any additional information (only that comes with
Sentinel imagery - latitude, longitude, time of the year
(0-365) and the time of day (0-24) that the pictures were
taken) it is possible to predict building height with 1.89m
MAE. This is on average 13cm more precise than using
additional data of building area which can be not avail-
able if building is newly built or not yet registered. Also,
the mixed data model is on average 42cm more precise
than CNN image model.

Figure 8: Error distribution of models by no of predictions 
according to error

As seen in error distributions of different models in 
Figure 8. Most of the predictions of mixed data model 
are scattered around 0 error. The two other models have 
more widely scattered error. This means that mixed data 
model has better accuracy as it makes smaller deviations 
from ground truth. Also it can be seen that mixed data 
model seems to predict lower height than the buildings 
original height.

In order to further investigate the performance of each 
model in predicting height, three buildings from Nice and 
France were analyzed in detail (see Figure 9). Based on 
the height prediction results for Building 1 (see Figure 9), 
it can be assumed that for larger buildings, such as sports



arenas, the nonlinear regression model provides a more 
accurate prediction than other models based on image 
recognition. In the photo shown, the shadow angles the 
building, making it larger. It is possible that for this 
reason, the CNN model predicts a higher height for the 
building. As seen in the prediction results of building 2 
example (see Figure 9), the mixed data model is the most 
accurate. This could be that additional data of latitude 
and longitude helps the model to consider what other 
buildings are in the surrounding area and thus making 
the prediction more accurate. By the results on building 3 
(see Figure 9) the most accurate prediction is also made 
by mixed data model.

Figure 9: Image prediction test on three buildings in Nice 
(France). Each building marked on the map and has ground
truth height (GT) and model prediction

This could be due to the fact that there is only one
clearly separated building from other buildings in the
area with visible shadow and there are some surrounding
buildings for mixed data reference.
To furthermore check the correctness of the results

more diverse dataset should be made. This dataset should
contain images of larger range of heights not only 20-
30m with similar distribution of images between heights.
Also it would be wise to test how models perform on
areas that have dense/sparse building distribution. Fea-
ture importance tool checker, such as [24], can be used
to determine whether part of a CNN model identifies a
building shadow as an important feature/property.
For additional information we compared the Mixed

data model to the IM2ELEVATION model used for
Building Height Estimation from Single-View Aerial
Imagery [25]. Both models use different datasets, the
IM2ELEVATION model uses a multisensory fusion of

aerial optical and aerial light detection and ranging (Li-
dar) data to prepare the training data. Both models use a
convolutional neural network (CNN) architecture. The
IM2ELEVATION model takes a single optical image as in-
put and produces an estimated DSM image as output. The
IM2ELEVATION model achieved a mean absolute error
of 1.46 while the mixed data prediction model achieved a
mean absolute error of 1.89. The Mixed data model, how-
ever, makes use of satellite photos of lesser quality than
the areal ones. The Mixed data model outperforms the
IM2ELEVATION model where buildings are sparsely dis-
tributed in the scene. As it performs better when building
are not as close together and have more distinct features.

4. Conclusion
The analysis of the literature showed that Convolution
neural networks are one of the most promising options at
extracting mid and high-level abstract feature representa-
tions from small raw images and can be used effectively
for building height estimation.
A building dataset consisting of 8622 different build-

ings was created using images and metadata collected
from Sentinel-2 from the Copernicus program to train
and test the model. The "OpenStreetMap" database was
used to add height and additional information for each
building.

During modeling and validation phase, three different
models were created. The Non-Linear logistic regression
model was trained using the building area for initial data
and was used as baseline for other models. The CNN
DenseNet201 backbone model was trained only on a sen-
tinel image patches dataset containing additional data
about the buildings. It performed worse than the base-
line model. The Mixed data model consisting of CNN
DenseNet201 backbone feature extractor was trained on
a dataset that takes both Sentinel image patch data and
numerical feature input of additional building data. It
performed better than both the baseline model and CNN
DenseNet201 backbone model that used satellite imagery
alone.
Comparing the performance of the trained models, it

turned out that the mixed data prediction model provides
the best results. A mean absolute error of 1.89 and a mean
absolute percentage error of 0.079 were achieved. The
reason for better performance could be that additional
data of latitude and longitude helps the model to consider
what other buildings are in the surrounding area and thus
make the prediction more accurate.
A limitation of the models is that they are trained

mainly only on data from the southern Europe area and
feature buildings only up to 30 meters. When estimat-
ing buildings from different regions, this could result
in inconsistent results. The area was chosen due to the



abundance of data, while the height limit was decided
to ensure a more evenly distributed dataset, as smaller
building data greatly outnumbers large building data.
Testing the model with low buildings showed that to

apply the same model to smaller buildings a more high-
quality dataset is needed. To improve predictions, images
of buildings that are not as close together are required,
as they have more distinct features.
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