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T h e  p o p ul arit y  of  r o a d tr a ns p ort is gr o wi n g  e v er  hi g h er  i n t h e m o d er n  d a y  of  a g e  a n d  is t h e m ost  p o p ul ar  m o d e  f or tr a ns p orti n g 
g o o d s  [1 ]. U s u all y,  tr a n s p ort ati o n i n cr e a s e s t h e pri m e  c o st  of  t h e g o o d s  or  s er vi c e s,  t h u s, t o i n cr e a s e a  c o m p a n y’ s  pr o fit,
e ff e cti v e  v e hi cl e  r o uti n g b e c o m e s  e s s e nti al.  I n t hi s r e s e ar c h, w e  h a v e  a n al y s e d  t h e p o s si bilit y  of  i m pr o vi n g t h e f or e c a st of  
esti m at e d  ti m e of  arri v al  b y  r a n ki n g t h e dri v ers  b as e d  o n  t h eir b e h a vi o ur  d at a  a n d  esti m ati n g  d e vi ati o ns  fr o m pl a n n e d  arri v al  
ti m e u si n g  di ff er e nt  m a c hi n e  l e ar ni n g m et h o d s.  T h e  r a n ki n g w a s  p erf or m e d  wit h  T O P SI S  a n d  VI K O R  m et h o d s,  w hil e  t h e 
f or e c a sti n g w a s  p erf or m e d  u si n g  fi v e  m a c hi n e  l e ar ni n g al g orit h m s:  d e ci si o n  t r e e, r a n d o m f or e st, X G B o o st,  S u p p ort  Ve ct or  
M a c hi n e  a n d  k - N e ar est N ei g h b o urs.  T h e  p erf or m a n c e  of  t h e f or e c asti n g m o d els  w as  e v al u at e d  usi n g  t h e a dj ust e d  c o e ffi ci e nt  
of  d et er mi n ati o n,  r o ot s q u ar e  m e a n  err or  a n d  m e a n  a bs ol ut e  err or  m etri cs.  It w as  c o n cl u d e d  t h at t h e VI K O R  m et h o d  s h o ul d  
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e ns e m bl e  m o d el  b as e d  o n  r a n d o m f or est a n d  S u p p ort  Ve ct or  M a c hi n e  m o d els.
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1. I nt r o d u cti o n

T o i m pr o v e t h e tr a ns p ar e n c y of a s u p pl y c h ai n, its p ar-
ti ci p a nts us e tr a ns p ort m a n a g e m e nt s yst e ms as w ell as
tr a c ki n g a n d m o nit ori n g s yst e ms. Ve hi cl es ar e g etti n g
e q ui p p e d wit h str o n g er mi cr o pr o c ess ors, l ar g er m e m or y
c a p a cit y a n d r e al-ti m e o p er ati n g s yst e ms. T h e n e wl y
i nst all e d t e c h n ol o gi c al pl atf or ms c a n us e m or e a d v a n c e d
a p pli c ati o ns of t h e o p er ati n g s yst e m, i n cl u di n g m o d el-
b as e d pr o c ess c o ntr ol f u n cti o ns, arti fi ci al i nt elli g e n c e,
a n d c o m pr e h e nsi v e c o m p ut ati o n.

T h er ef or e, a n i n cr e asi n g tr e n d of i m pl e m e nti n g t h e
l at est d e v el o p m e nts i n i nf or m ati o n a n d i nt er n et t e c h-
n ol o gi es i n t h e tr a ns p ort s e ct or as w ell as a t e n d e n c y of
d e v el o pi n g n e w r es e ar c h- b as e d s yst e ms t h at c a n q ui c kl y
a d a pt t o a n e v er- c h a n gi n g e n vir o n m e nt is o bs er v e d. T h e
g o al of t his st u d y is t o i d e ntif y m et h o ds, b est s uit e d f or
s ol vi n g t h e esti m at e d ti m e of arri v al ( E T A) f or e c asti n g
pr o bl e m.

T h e r est of t h e p a p er is or g a ni z e d as f oll o ws. R el at e d
w or k i n t his ar e a is pr es e nt e d i n S e cti o n 2 . S e cti o n 3 i n-
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tr o d u c es t h e d at as ets  us e d  i n t h e c urr e nt  st u d y. S e cti o n  4
pr es e nts  t h e s el e ct e d r a n ki n g a n d  f or e c asti n g t e c h ni q u es.
E x p eri m e nt al  r e s ult s ar e  pr o vi d e d  i n S e cti o n  5 . Fi n all y,
c o n cl u di n g  r e m ar k s a n d  f ut ur e pl a n s  ar e  di s c u s s e d  i n
S e cti o n  6 .

2. R el at e d  w o r k

T o  b ett er  u n d erst a n d  w h at  attri b ut es  a n d  m et h o ds  c a n  b e
u s e d  f or r a n ki n g dri v er s,  r e s e ar c h [2 ] w a s  st u di e d.  T h e
ai m  of  t hi s r e s e ar c h w a s  t o c at e g ori z e  dri v er s  a c c or d-
i n g t o t h eir ri s k- pr o n e n e s s  b y  a n al y si n g  a  G P S- b a s e d
d e vi c e’s  ur b a n  tr a ffi c d at a.  Hi er ar c hi c al  Cl ust eri n g  Al g o-
rit h m ( H C A) a n d  Pri n ci p al  C o m p o n e nt  A n al y si s  ( P C A)
w er e  us e d  f or t h e st atisti c al a n al ysis  of  t h e f oll o wi n g dri v-
i n g p ar a m et er s:  S p e e d  o v er  6 0  k m/ h , S p e e d , Ac c el er ati o n , 
P ositi v e  a c c el er ati o n , Br a ki n g  a n d  M e c h a ni c al  w or k . T h e  
a ut h ors  of  t his r es e ar c h c o n cl u d e  t h at w hil e  it is p ossi bl e
t o cl a s sif y  t h e dri v er s  a c c or di n g  t o t h e s e p ar a m et er s,  a
l ot of  e xt er n al  f a ct or s, s u c h  a s  t h e dri vi n g  e n vir o n m e nt
or  t h e c o n diti o n  of  t h e ass ess e d  dri v er,  ar e  n ot  t a k e n i nt o
a c c o u nt.

A  c o m p ar ati v e  a n al ysis  of  t w o m ulti- crit eri a  d e cisi o n-
m a ki n g  ( M C D M) m et h o d s  T O P SI S  a n d  VI K O R  i s pr e-
s e nt e d  i n [3 ]. It w a s  f o u n d t h at t h e s e t w o m et h o d s  u s e
di ff er e nt  ki n ds  of  n or m ali z ati o n  ( T O P SI S us es  v e ct or  n or-
m ali z ati o n,  VI K O R  –  li n e ar) t o eli mi n at e  t h e u nit s  of
crit eri o n  f u n cti o n s a n d  u s e  di ff er e nt  a g gr e g ati n g  f u n c-
ti o ns f or r a n ki n g. N o n et h el ess,  b ot h  m et h o ds  w er e  f o u n d
s uit a bl e  f or s ol vi n g  r a n ki n g pr o bl e ms.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gabriele.kasputyte@vdu.lt
mailto:arnas.matusevicius@vdu.lt
mailto:tomas.krilavicius@vdu.lt
https://orcid.org/0000-0001-8509-420X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The use of machine learning (ML) techniques for the
ETA problem is discussed in [4] The authors applied
artificial neural networks (ANNs) and support vector re-
gression (SVR) to predict the time of arrival of container
ships. Distance to the destination, the timestamp, geo-
coordinates, and weather information have been chosen
as features. It was shown that SVR had performed better
than ANNs and that the weather data did not have a sig-
nificant impact on estimating the time of vessel arrivals.

In the [5] study, the 𝑘-Nearest neighbours (KNN), SVR,
and the random forest algorithmswere evaluated asmeth-
ods for predicting the arrival time of open-pit trucks. A
site-based approach was used as the position was only
measured at a few discrete nodes of the route network. It
was concluded that the random forest algorithm provides
the best prediction results.

Ma et al. [6] proposed a tree-based integration method
to predict traffic accidents by using different data vari-
ables. Predictions of the gradient boosting decision
tree algorithm outperformed back propagation neural
networks, support vector machines, and random forest.
However, in this study, the nonlinear relationship be-
tween the influence characteristics and the predicted
value was not analysed.

To improve travel time predictions, the author of [7]
study applied the combination of random forest and gra-
dient boosting regression tree (GBRT) models. The aim
was to study how reducing a large volume of raw GPS
data into a set of feature data affects high-quality travel
time predictions. Only travel time observations from
the previous departure time intervals were found to be
beneficial features and were recommended by the author
to be used as inputs when no other types of real-time
information (e.g. traffic flow, speed) is available. Also,
it is noted, that trees in GBRT models were found to be
consistently much shorter than those of random forest
models, leading to shorter computation times.
To sum up, characterizing attributes of drivers in re-

search are usually derivative – data obtained from vehi-
cle monitoring devices represent their driving behaviour.
Since MCDM methods were found popular for conduct-
ing ranking procedures, two easily comparable MCDM
methods will be used: TOPSIS and VIKOR. What con-
cerns the ETA problem, the accuracy of the ML models
tested in reviewed research was inconsistent. Therefore,
a wide variety of ML methods suitable for the problem
and available data will be evaluated. Namely, decision
tree, random forest, XGBoost, Support Vector Machine
(SVM) and KNN methods, as well as an ensemble of mod-
els, will be tested.

3. Research data

3.1. Data for ranking drivers
The available readings from a vehicle monitoring system 
that can be used to evaluate a driver’s behaviour were 
extracted. The readings in this research cover the period 
from August 21, 2020, to January 1, 2022, and up to 398 
observations representing different vehicles.
A dataset was constructed containing values for 7 at-

tributes, namely Free-rolling distance, Engine overloaded 
distance, Highest gear distance, Excess idling, Overspeeding 
time, Extreme braking events and Harsh braking events.

3.2. Data for forecasting model
In this research, logistic transportation data was reviewed 
and a dataset was created for the ETA forecasting models. 
The initial dataset includes 1758 observations and 13 
variables. The obtained information is from August 21, 
2020 to January 24, 2022. A set of explanatory variables X, 
with vectors 𝑥1, 𝑥2, . . . , 𝑥13, is obtained. The description 
of these variables is presented in Table 1.

Table 1
Set of explanatory variables

Variable Description Variable type
𝑥1 Driver’s score Ordinal
𝑥2 Tour beginning country Categorical
𝑥3 Tour ending country Categorical
𝑥4 Number of intermediate stops Discrete
𝑥5 Furthest country Categorical
𝑥6 Tour beginning month Categorical
𝑥7 Tour beginning day Categorical
𝑥8 Vehicle height Continuous
𝑥9 Vehicle width Continuous
𝑥10 Vehicle length Continuous
𝑥11 Vehicle weight Continuous
𝑥12 Hours of service breaks Continuous
𝑥13 Planned distance Continuous

Let 𝑇𝑖 be the factual time when the 𝑖th cargo will be
delivered, and 𝑡𝑖 the planned time of delivery for the 𝑖th
cargo. Then, the deviation from the planned time of deliv-
ery for the 𝑖th cargo∆𝑡𝑖 will be denoted as the difference
between the planned and factual time of delivery:

∆𝑡𝑖 = 𝑇𝑖 − 𝑡𝑖, (1)

where 𝑖 = 1, 2, . . . , 𝑛. In that case, the explanatory
variable is denoted as:

𝑦𝑖 = ∆𝑡𝑖. (2)

This variable is the goal of the forecasting problem.



4. Methodology

4.1. VIKOR method
The VIKOR method was introduced as one applicable 
technique to implement within MCDM. It focuses on 
ranking and selecting from a set of alternatives in the 
presence of conflicting criteria, and on proposing a com-
promise solution (one or more). The compromise ranking 
algorithm VIKOR has the following steps [8]:

1. Determine the best 𝑓*
𝑖 and the worst 𝑓−

𝑖 values
of all criterion functions, 𝑖 = 1, 2, . . . , 𝑛. If the
𝑖th function represents a benefit then:

𝑓*
𝑖 = max

𝑗
𝑓𝑖𝑗 , 𝑓−

𝑖 = min
𝑗

𝑓𝑖𝑗 . (3)

2. Compute the values 𝑆𝑗 and 𝑅𝑗 , 𝑗 = 1, 2, . . . , 𝐽 ,
by the relations

𝑆𝑗 =

𝑛∑︁
𝑖=1

𝑤𝑖
𝑓*
𝑖 − 𝑓𝑖𝑗

𝑓*
𝑖 − 𝑓−

𝑖

, (4)

𝑅𝑗 = max
𝑖

[︂
𝑤𝑖

𝑓*
𝑖 − 𝑓𝑖𝑗

𝑓*
𝑖 − 𝑓−

𝑖

]︂
, (5)

where 𝑤𝑖 are the weights of criteria, expressing
their relative importance.

3. Compute the values 𝑄𝑗 , 𝑗 = 1, 2, . . . , 𝐽 , by the
relation

𝑄𝑗 = 𝑣
𝑆𝑗 − 𝑆*

𝑆− − 𝑆* + (1− 𝑣)
𝑅𝑗 −𝑅*

𝑅− −𝑅* , (6)

where

𝑆* = min
𝑗

𝑆𝑗 , 𝑆− = max
𝑗

𝑆𝑗 ,

𝑅* = min
𝑗

𝑅𝑗 , 𝑅− = max
𝑗

𝑅𝑗 ,
(7)

and 𝑣 is introduced as weight of the strategy of
"the majority of criteria" (or "the maximum group
utility"), here 𝑣 = 0.5.

4. Rank the alternatives, sorting by the values 𝑆, 𝑅
and 𝑄, in decreasing order. The results are three
ranking lists.

5. Propose as a compromise solution the alternative
(𝑎′) which is ranked the best by the measure 𝑄
(minimum) if the following two conditions are
satisfied:
C1. "Acceptable advantage":

𝑄(𝑎′′)−𝑄(𝑎′) ⩾ 𝐷𝑄 (8)

where 𝑎′′ is the alternative with second
position in the ranking list by 𝑄; 𝐷𝑄 =
1/(𝐽 − 1); 𝐽 is the number of alternatives.

C2. "Acceptable stability in decision-making":
Alternative 𝑎′ must also be the best ranked
by 𝑆 or/and𝑅. Here, 𝑣 is the weight of the
decision-making strategy "the majority of
criteria".

4.2. TOPSIS method
The basic principle of the TOPSIS method is that the cho-
sen alternative should have the shortest distance from the 
ideal solution and the farthest distance from the negative-
ideal solution [9]. The TOPSIS procedure consists of the 
following steps:

1. Calculate the normalized decision matrix. The
normalized value 𝑟𝑖𝑗 is calculated as

𝑟𝑖𝑗 =
𝑓𝑖𝑗√︁∑︀𝐽
𝑗=1 𝑓

2
𝑖𝑗

, (9)

where 𝑗 = 1, . . . , 𝐽 ; 𝑖 = 1, . . . , 𝑛.
2. Calculate the weighted normalized decision ma-

trix. The weighted normalized value 𝑣𝑖𝑗 is calcu-
lated as

𝑣𝑖𝑗 = 𝑤𝑖 · 𝑟𝑖𝑗 , (10)

where 𝑗 = 1, . . . , 𝐽 ; 𝑖 = 1, . . . , 𝑛, 𝑤𝑖 is
the weight of the 𝑖th attribute or criterion, and∑︀𝑛

𝑖=1 𝑤𝑖 = 1.
3. Determine the ideal and negative-ideal solution.

𝐴* = {(max
𝑗

𝑣𝑖𝑗 |𝑖 ∈ 𝐼 ′), (min
𝑗

𝑣𝑖𝑗 |𝑖 ∈ 𝐼 ′′)},
(11)

𝐴− = {(min
𝑗

𝑣𝑖𝑗 |𝑖 ∈ 𝐼 ′), (max
𝑗

𝑣𝑖𝑗 |𝑖 ∈ 𝐼 ′′)},
(12)

where 𝐼 ′ is associated with benefit criteria, and
𝐼 ′′ is associated with cost criteria.

4. Calculate the separation measures, using the 𝑛-
dimensional Euclidean distance. The separation
of each alternative from the ideal solution is given
as

𝐷*
𝑗 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑣𝑖𝑗 − 𝑣*𝑖 )
2, (13)

where 𝑗 = 1, . . . , 𝐽.
Similarly, the separation from the negative-ideal
solution is given as

𝐷−
𝑗 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑣𝑖𝑗 − 𝑣−𝑖 )2, (14)

where 𝑗 = 1, . . . , 𝐽.
5. Calculate the relative closeness to the ideal solu-

tion. The relative closeness of the alternative 𝑎𝑗

with respect to 𝐴* is defined as

𝐶*
𝑗 =

𝐷−
𝑗

𝐷*
𝑗 +𝐷−

𝑗

, (15)

where 𝑗 = 1, . . . , 𝐽.
6. Rank the preference order.

Items 𝐶𝑗 are ordered in descending order. The
highest number indicates the best solution.



4.3. Decision Tree
Decision tree is a type of supervised learning algorithm
that can be used in both regression and classification prob-
lems [10]. Each node is related to an attribute, whereas
the leaves of the tree represent the final solution as the
result of combining values of the attributes.

The splitting process is stopped after a particular stop-
ping criterion is met. For example, a given threshold for
the minimum number of observations left in a node being
reached or a given threshold for the minimum change in
the impurity measure not succeeding any more by any
variable can be a stopping criterion [11].

Let 𝐿 be the initial dataset made out of training sam-
ples with known dependent variable values. At first, the
tree will be made of only a root node 𝑡1 which represents
the full set of variables. The objective is to split the nodes
into two decision nodes until a terminal node is reached,
for example splitting 𝐿 into 𝑡𝐿 and 𝑡𝑅, then splitting 𝑡𝐿
and 𝑡𝑅 into further sub-nodes until a stopping criterion
is met [12].

4.4. Random Forest
Random forest is a ML algorithm that constructs a multi-
tude of decision trees at training time. The main principle
of constructing a random forest is that it is formed by
combining solutions from binary decision trees made
using diverse subsets of the original dataset and subsets
containing randomly selected features from the feature
set.

Constructing small decision trees that only have a few
features takes up only a little of the processing time,
hence the majority of such trees’ solutions can be com-
bined into a single strong classifier.
Steps for constructing a random forest as pre-

sented in [10] are as follows:

1. First, assume that the number of cases in the train-
ing set is𝐾 . Then, take a random sample of these
𝐾 cases, and use this sample as the training set
for constructing the tree.

2. If there are 𝑝 input variables, specify a number
𝑚 < 𝑝 such that at each node, 𝑚 random vari-
ables out of the 𝑝 can be selected. The best split
on these 𝑚 is used to split the node.

3. Each tree is subsequently grown to the largest
extent possible and no pruning is needed.

4. Aggregate the predictions of the target trees to
predict new data.

5. Finally, a decision is made by the majority rule.

4.5. XGBoost
XGBoost is a ML algorithm that implements frameworks
based on Gradient Boosted Decision Trees [13]. XGBoost

surpasses other ML algorithms by solving many data sci-
ence problems faster and more accurately than its coun-
terparts. Also, this algorithm has additional protection
from overfitting.

The objective function to be optimized is given by

𝑜𝑏𝑗(𝜃) =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾∑︁
𝑘=1

Ω(𝑓𝑘), (16)

where 𝑛 is the number of iterations, 𝑙(𝑦𝑖, 𝑦𝑖) is the train-
ing loss function, 𝑦𝑖 =

∑︀𝐾
𝑘=1 is the number of trees, Ω

is the regularization term, 𝑓𝑘 ∈ ℱ , and ℱ is the set of
possible classification and regression trees.

Writing the prediction value at step 𝑡 as 𝑦(𝑡)
𝑡 , gives

𝑦𝑡
(𝑡) =

𝑡∑︁
𝑘=1

𝑓𝑘(𝑥𝑖) = 𝑦𝑡
(𝑡−1) + 𝑓𝑡(𝑥𝑖). (17)

Next, a tree which optimizes our objective is chosen.

𝑜𝑏𝑗(𝑡) =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦𝑖) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖) =

=

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑏,

(18)

where 𝑏 is a constant.
To minimize the probability of overfitting, the com-

plexity of the tree Ω(𝑓) is defined as

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤𝑗
2, (19)

where

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥), 𝑤 ∈ 𝑅𝑇 , 𝑞 : 𝑅𝑑 → {1, 2, . . . , 𝑇}.
(20)

Here 𝑤 is the vector of scores on leaves, 𝑞 is a function
assigning each data point to the corresponding leaf, and
𝑇 is the number of leaves.

4.6. Support Vector Machine
The goal of SVM is to find the maximum separating hy-
perplane that would have themaximum distance between
the nearest training data objects [14]. A separating hy-
perplane can be written as:

WX+ 𝑏 = 0, (21)

where W is a weight vector, namely, W =
{𝑤1, 𝑤2, . . . , 𝑤𝑛}; X is a set of training data made of 𝑝
number of objects, 𝑛 number of attributes and an associ-
ated class label 𝑦𝑖; and 𝑏 is a scalar constant.



The distance between hyperplanes, denoted as
2/||W||, has to be maximal. Consequently, this means
that ||W|| (the Euclidean norm of the vector W) has to
be minimized. To simplify calculations, the Euclidean
norm ||W|| can be swapped for ||W||2/2. Thus, the ob-
jective function for this optimization problem is defined
as:

min
W,𝑏

1

2
||W||2, (22)

𝑦𝑖(WX𝑇
𝑖 + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑝, (23)

where the constraint (23) ensures that all objects from
the training dataset will be positioned on the correct side
of the appropriate marginal hyperplane.
The Lagrange multiplier strategy allows combining

these two conditions into one:

min
W,𝑏

max
𝛼≥0

{︃
1

2
||W||2 −

𝑝∑︁
𝑖=1

𝛼𝑖[𝑦𝑖(WX𝑇
𝑖 − 𝑏)− 1]

}︃
.

(24)
Kernel functions are used when the training dataset

needs to be transformed into a higher-dimensional space
due to the data being linearly inseparable.

𝐾(X𝑖,X𝑗) = 𝜑(X𝑖)𝜑(X𝑗)
𝑇 , ∀X𝑖,X𝑗 ∈ X. (25)

In this study, the Gaussian radial basis function kernel
was used:

𝐾(X𝑖,X𝑗) = e−𝛾||X𝑖−X𝑗 ||2 ,

where the 𝛾 value is derived from the following equation:

1

𝛾
≈ MED𝑖,𝑗=1,...,𝑝(||X𝑖 −X𝑗 ||). (26)

Here MED is the median. Usually parameter 𝛾 is found
through trial and error.

4.7. 𝑘-Nearest Neighbours
The KNN algorithm is a method based on objects likeness
[15]. In other words, the principle is to find the prede-
fined number (𝑘) of training samples closest to the new
point. In the case of regression, the relationship between
the explanatory variables and the continuous dependent
variable is approximated by estimating the average of the
observations, which together form the so-called neigh-
bourhood. Its size is determined using cross-validation
while minimizing the root mean square error.

The Euclidean distance was used to calculate the dis-
tance between objects.

4.8. Model evaluation metrics
The significance of regression in a model is usually cal-
culated using the coefficient of determination [16]:

𝑅𝑦𝑥1𝑥2...𝑥𝑘 =

√︃
1− 𝜎2

𝑟𝑒𝑠

𝜎2
𝑦

, (27)

where 𝜎2
𝑟𝑒𝑠 is a residual dispersion from a forecast

model, 𝜎2
𝑦 – dispersion of 𝑦.

However, the adjusted coefficient of determination
𝑅2

𝑎𝑑𝑗 is better suited for comparing regression models
as it avoids the inaccuracy, caused by numerous factors
in the coefficient of determination [16]:

𝑅2
𝑎𝑑𝑗 = 1− (1−𝑅2) · 𝑛− 1

𝑛− 𝑘 − 1
, (28)

where 𝑛 is the number of observations available for anal-
ysis, 𝑘 is the number of variables.

Moreover, statisticians are used to measuring accuracy
by computing mean square error (MSE), or its square
root conventionally abbreviated by RMSE (for root mean
square error). The latter is in the same units as the
measured variable and so is a better descriptive statistic.
Moreover, it is the most popular evaluation metric used
in regression problems. RMSE follows an assumption
that errors are unbiased and follow a normal distribution.
RMSE metric is given by [17]:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑆𝑖 −𝑂𝑖)2, (29)

where 𝑂𝑖 are the observations, 𝑆𝑖 are the predicted val-
ues of a variable.

Moreover, the average magnitude of the forecast errors
can be measured by the mean absolute error:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑆𝑖 −𝑂𝑖|. (30)

In this case, the direction of errors is not being considered 
[17].

There are various ways to improve models depending 
on the technique involved. The most popular way is 
to construct ensemble models. Once there are multiple 
models that produce a score for a particular outcome, 
they can be combined to produce ensemble scores. For 
example, a new score can be calculated as the average 
of two classifiers and then assess it as a further model. 
Usually, the area under the curve improves for these 
ensemble models.

5. Results

5.1. Driver ranking
Selection of attribute weights. To begin the ranking 
procedure, first attribute weights had to be established.



Since the drivers must be ranked in compliance with at-
tribute priorities dictated by a company, their importance
was evaluated by an expert on a scale from 1 to 10. This is
presented in Table 2. Thus, we get the first set of weights:

Table 2
The first set of weights

Attribute Score Weight min/max
Free rolling distance 5 0.09 max
Engine overloaded distance 10 0.19 min
Highest gear distance 7 0.13 max
Excess idling 10 0.19 min
Overspeeding time 10 0.19 min
Extreme braking events 8 0.15 min
Harsh braking events 4 0.07 min

𝑊1 = 𝑤1 + 3𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 1,

where 𝑤1 = 0.09 is the weight of Free rolling distance, 
𝑤2 = 0.19 is the weight of Engine overloaded distance, 
Excess idling and Overspeeding time, 𝑤3 = 0.13 is the 
weight of Highest gear distance, 𝑤4 = 0.15 is the weight 
of Extreme braking events, 𝑤5 = 0.07 is the weight of 
Harsh braking events.
However, since the importance of attributes can be 

biased, a baseline weight model was also tested.

𝑊2 = 7𝑤1 = 1,

where 𝑤1 = 1/7 is the weight of each attribute.

Results of ranking methods. Ranking of the drivers 
was performed using the generated sets of weights. Cri-
terion values, computed by TOPSIS (𝐶𝑖) and VIKOR (𝑄) 
methods, were used to rank the drivers. However, in 
many instances the difference between two values of the 
same criteria had been minute, hence the values were 
grouped. Values were grouped using a ten-point system.
Considering the results of different ranking methods 

presented in Table 3, the method with the most logi-
cal ranking of the drivers was confirmed to be with the 
VIKOR method. In addition, the first weight set should be 
used when creating a dataset for the forecasting models, 
since it would comply with the attribute priorities from 
the company and no significant difference was observed 
between the two tested sets of weights.

5.2. Forecasting models
For improving the forecast of ETA, it was enough to 
forecast deviation from planned duration, because this 
variable had already been computed by routing service. 
In that case, the goal was to forecast the deviation from 
planned tour duration. Overall five ML methods were

Table 3
Score distribution with different weight sets

TOPSIS VIKOR
Score 𝑊1 𝑊2 𝑊1 𝑊2

10 325 316 156 148
9 62 71 107 120
8 6 7 67 63
7 4 3 28 31
6 0 0 16 12
5 0 0 6 8
4 1 1 9 6
3 0 0 3 5
2 0 0 5 4
1 0 0 1 1

tested: decision tree, random forest, XGBoost, support
vector machine (SVM) and 𝑘-Nearest neighbours (KNN).

Quantitative variables were normalized usingmin-max
normalization, while the categorical variables were trans-
formed and added to the models by replacing them with
binary dummy variables.
Therefore, when applying the random selection and

assignment of the set indices to the test and training sets,
75% of the dataset was assigned to the training sample and
25% to the test sample. Cross-validation was used for the
selection of optimal parameters in all five models. During
this procedure in the regression models, the sample data
was divided into 10 groups.

Further, the optimal parameters of all models are de-
termined:

1. The decision tree model. The minimum num-
ber of observations that can be in a node was set
to be seven. Furthermore, if a node is to be split,
the minimum number of observations per node
has to be 20.
A total of 11 splits were made. The hours of service
breaks, the tour beginning day, the beginning, end-
ing and furthest countries, as well as the planned
tour distance impacted the creation of the model.

2. The random forestmodel. The optimal number
of randomly selected variables in each division
of the random forest was set to 59 (this value had
been determined based on a precision measure).
Whereas the number of trees is a basic size of 500.

3. The XGBoost model. An optimal model is de-
termined by the lowest value obtained for the
RMSE error. The maximum tree depth value of
0.3 was obtained. The higher this value is, the
more complicated the model becomes. Also, the
ratio of partial sample training cases is 0.75. In
other words, the XGBoost method randomly se-
lects 75% of the training dataset prior to growing
the trees, which in return protects from an over-



load of data. Such partial selection of a sample
occurs once per each iteration. The maximum
number of repetitions was determined to be 150.

4. The 𝑘-Nearest neighbourmodel. The 𝑘 param-
eter for KNNmodel was established to be equal to
4. This value was selected by changing the param-
eter value from 1 to 10 and determining which
parameter has the smallest RMSE value. The Eu-
clidean distance measure was used to estimate
the distance between the points.

5. The SVMmodel. The number of support vectors
was established to be 1008 and the Gaussian radial
basis function kernel was used.

The accuracy of all five constructed models was evalu-
ated by predicting values of deviation from planned tour
time for unseen test set data. The adjusted coefficient of
determination 𝑅2

𝑎𝑑𝑗 , RMSE, and MEA were calculated to
determine and compare the suitability of the prediction
models. The results are presented in Table 4. It can be
seen that for all three accuracy measures, the best results
for predicting test data were obtained using a random for-
est model, where the mean absolute difference between
the predicted and actual values had been almost 684, the
square root of the average squared differences between
the predicted and actual values had been 1 120.15, and the
adjusted coefficient of determination had been 77.57%.
XGBoost model yielded quite similar results, where 𝑅2

𝑎𝑑𝑗

had been lower by only 3.3%, the MAE error had been
higher by 93.24 units and the RMSE had been higher by
90.83. The worst prediction results were obtained using
KNN method, for which 𝑅2

𝑎𝑑𝑗 had been less than 25%.

Table 4
The accuracy of regression models

Model 𝑅2
𝑎𝑑𝑗 RMSE MAE

Decision tree 0.6666 1391.18 792.56
Random forest 0.7757 1120.15 683.94
XGBoost 0.7427 1210.98 777.18
SVM 0.6726 1408.97 867.82
KNN 0.2465 2105.53 1208.22

A possibility to improve the models by forming an en-
semble model was observed, hence a decision was made
to try a combination of predictions from two models:
the random forest and SVM. Several combinations were
made. The first method estimated the average of the
forecasts of both models:

𝑦𝑖 =
𝑦𝑖𝑟𝑓

+ 𝑦𝑖𝑠𝑣𝑚

2
, (31)

where 𝑦𝑖 is the predicted value of the 𝑖th observation
for the model ensemble, 𝑦𝑖𝑟𝑓

are the predicted values
of the 𝑖th observation of the random forest model and

𝑦𝑖𝑠𝑣𝑚
– of the SVM model. The adjusted coefficient of

determination of this ensemble model resulted in 0.7672.
Another way to form an ensemble ofmodels is by using

the weighted sum method. In this type of ensemble, the
prediction value of the better model (in this case the
random forest model) is determined to have a weighting
coefficient 𝑐1, that is less than 1, but not less than 0.5.
However, the total amount of weights must be equal
to one, therefore, the weighting coefficient of the other
model (SVMmodel) 𝑐2 shall be greater than zero, but less
than 0.5. Then, the new predicted value could then be
obtained as follows:

𝑦𝑖 = 𝑐1 · 𝑦𝑖𝑟𝑓
+ 𝑐2 · 𝑦𝑖𝑠𝑣𝑚

. (32)

The equation
𝑐1 = 1− 𝑐2 (33)

must be met, thus (32) can be written as:

𝑦𝑖 = (1− 𝑐2) · 𝑦𝑖𝑟𝑓
+ 𝑐2 · 𝑦𝑖𝑠𝑣𝑚

. (34)

In order to find with which weight the adjusted coef-
ficient of determination of the ensemble model obtains
the highest value, the value of 𝑐2 was being changed
from 0.01, 0.02, 0.03, and so on to 0.49. The experiment
resulted in a maximum value of 𝑅2

𝑎𝑑𝑗 (0.7795) when 𝑐2
was equal to 0.2. The second way of constructing an
ensemble model resulted in a higher 𝑅2

𝑎𝑑𝑗 than the first
method, hence, the second was more suitable. There-
fore, the expression of the final ensemble model was as
follows:

𝑦𝑖 = 0.8 · 𝑦𝑖𝑟𝑓
+ 0.2 · 𝑦𝑖𝑠𝑣𝑚

. (35)

The forecast graph of the created ensemble model is pre-
sented in Fig. 1. Some outliers remained poorly predicted,
but the overall prediction is accurate. Metrics evaluating

Figure 1: Predicted values of the model ensemble

the created ensemble model are presented in Table 5. In
comparison to the results of individual models (Table 4),
higher accuracy could be observed in all three metrics of
the ensemble model. Nonetheless, the improvement in
accuracy was not significant: the adjusted coefficient of



determination was higher than the best individual model
by only 0.38%, the RMSE was lower by 1.87, and MAE
was lower by 0.47.

Table 5
The accuracy of the model

Model 𝑅2
𝑎𝑑𝑗 RMSE MAE

Ensemble model 0.7795 1118.28 683.47

6. Conclusions
In this research, in order to improve the forecast of
contemporary ETA, the possibility to rank the drivers
based on their behaviour data and predict deviations from
planned arrival time using different ML methods were
analysed. For this purpose, a dataset consisting of vehicle
monitoring data was used for ranking the drivers with
TOPSIS and VIKORmethods. It was found that the results
of the VIKOR method with the company’s attribute im-
portance weight set produced the most suitable drivers’
scores. Then, these scores were used to supplement a
new dataset constructed for ML methods. Moreover, five
methods: decision tree, random forest, XGBoost, SVM,
KNN, were used to create the deviation from the planned
tour duration forecasting model. Finally, the ensemble
model based on the random forest and SVM resulted in
the most accurate results (𝑅2

𝑎𝑑𝑗 = 77.95%).
In the future, it is planned to continue the construc-

tion of the improved ETA prediction model by including
real-world parameters that a vehicle takes into account
while driving a certain route. For example, the need to
stop for mandatory driving breaks or filling up would be
considered.
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