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Abstract
While climate change is triggering off calamitous aftermaths globally, wind energy offers an apposite alternate to conventional 
fossil fuels for abating greenhouse gas emanations. Economic profitability is an important factor for the green transformation 
of electricity generation businesses for achieving carbon neutrality as proposed in the Paris agreement of 2015. The current
research aspires to expand the annual profit of wind farms employing an adapted genetic algorithm. A dynamic tactic 
for allotting the crossover and mutation factors has been utilized to quantify their proportional proficiency. A randomly 
chosen variable wind flow pattern has been employed for calculating the annual profit of wind farms. The research inferences 
validate the higher competence of escalating mutation and crossover possibilities tactic for expanding the annual profit of 
wind farms with two arbitrarily selected terrain settings.
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1. Introduction
The never-ending release of Green House Gases (GHG)
into the air is swelling the air temperature and atypical
meteorological conditions triggering the macro-climate
alteration of the planet[1]. Renewable energy proposes a
proliferating alternative amid the ever-increasing inter-
national trepidation for the constricted provision of fossil
fuels and their perilous penalties on the atmosphere[2].
Astoundingly, the utilization of renewable power inflated
by 3% in 2020, even though the requirement of non-
renewable fuels collapsed throughout the globe due to
pandemic-related restrictions[3].

Accompanied by low GHG production benefit, renew-
able power solutions like wind energy is necessitated
to stay practicable by propositioning inexpensive gen-
eration charge through greater consistency and nom-
inal cost of maintenance to expedite de-carbonization
of universal energy techniques to a greater degree
[4]. The Wind Power Generation (WPG) expense has
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crashed dramatically over the earlier few decades trans-
nationally[5]. Researchers from every corner of the globe
are uninterruptedly endeavoring to boost the profitabil-
ity of WPG industries to support nations in achieving
their carbon neutrality goals as quickly as feasible[6].
Genetic Algorithm (GA) was utilized for wind power

generation site design in Gökçeada islet [7]. Saroha
and Aggarwal [8] offered a simulation intended for
WPG guesstimate with GA and Neural Network
(NN). An NN-empowered technique with Particle
Swarm Optimization (PSO) and GA has been
projected for WPG prognostication [9]. Roy and Das
[10] have exercised GA with PSO for WPG expenditure
minimization. A proportional study of GA and Binary
PSO has been presented to curtail the WPG
expenditure [11]. Although most of the studies focused
on reducing the WPG charge, more research needs to
be aimed at expanding the financial sustainability of
wind energy ventures for fulfilling the 2015 Paris
agreement commitments made by various governments
and global entities.

This research purposes to realize the maximum annual
profit of WPG farm for a randomly generated wind flow
pattern and two arbitrarily selected layout settings. Be-
cause of the intricacy of the WPG process, conventional
optimization tactics are inept to manage such conditions.
Artificial Intelligence (AI) methods have been previously
engaged in miscellaneous technical fields and are apt for
the present optimization situation for their heftiness and
prompt computing fitness[12, 13, 14, 15, 16].

GA is a prominent AI-aided method emulating the
process of organic predilection and ensuing the objective
of eminent computer scientist Alan Turing to form a
‘knowledge machinery’ impending the strategy of genetic
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development[17]. GA has been applied in the present
research accompanied by a proportional assessment of
two distinct procedures of choosing the probabilities of
crossover and mutation processes.

2. Problem construction

2.1. Objective function
The power generated by Wind Turbine (WT) can be ex-
pressed as follows.

𝑃𝑊𝑇 =
1

2
𝜌𝐴𝜗3𝐶𝑝 cos 𝜃 (1)

where 𝑃𝑊𝑇 denotes the generated power, 𝜌 signifies the
density of air, 𝐴 represents the cross-sectional area, 𝑣
is the speed of the wind, 𝐶𝑝 is the Betz threshold value
and 𝜃 is the angular error of yaw[11, 18]. The current
research is dedicated to increasing the annual profit of a
WPG farm. The objective function can be formulated as
follows.

𝑓𝐴 = [𝑆𝑉 −𝐺𝐶 ]× 𝑃𝑦𝑟 (2)

where 𝑓𝐴 denotes the yearly profit, 𝑆𝑉 signifies the mar-
keting value per unit of wind power, 𝐺𝐶 represents the
generation price per unit of wind energy and 𝑃𝑦𝑟 indi-
cates the wind power generated yearly. The generation
charge of wind power has been calculated as per the
function provided by Wilson et al.[19]. The randomly
generated airflow has been presented in Fig.1.

Figure 1: Considered randomly generated wind flow pat-
tern for evaluating the annual profit of wind farm

2.2. Terrain settings
Two arbitrarily selected terrain situations have been se-
lected for evaluating the annual profit of the WPG system.
One of the terrains is with no obstacle and another one
has an obstacle within it. The presence of obstacles has
been considered to evaluate its effect on the profitabil-
ity of the wind farm and increase the practicability of
the simulation. Although the terrain settings selected
for the current research are square, they can be easily
modified to any rectangular shape as per the need of the

decision-makers. The terrain settings have been graphi-
cally shown in Figs. 2 and 3.

Figure 2: Layout 1 without obstacle

Figure 3: Layout 2 with an obstacle of 500 m x 500 m dimension

3. Optimization algorithm
GA has been employed in the current research to deter-
mine the optimal annual profit of the WPG farm for the
randomly selected wind flow pattern and two different
layout settings. The algorithm has been briefly discussed
as follows. GA has been employed in the current research
to determine the optimal annual profit of the WPG farm
for the randomly selected wind flow pattern and two
different layout settings. The algorithm has been briefly
discussed as follows[12].

1. Establish the basic factors like populace size, rep-
etition number, probabilities for crossover, and
mutation.

2. Organize the populace indiscriminately.
3. Calculate the suitability of all distinct chromo-

somes.
4. Accomplish the arithmetic crossover technique

as follows.



a) Choose a numeral arbitrarily between 0
and 1. If it is less than the chance of the
crossover technique, suggest the parental
element.

b) Stimulate the crossover activity.
c) Reconsider the relevance of the descen-

dants.
d) If the successor is reasonable, adapt it into

the up-to-date populace.
5. Achieve the mutation method as follows.

a) Elect a numeral arbitrarily between 0 and 1.
If it is less than the chance of the mutation
tactic, suggest the parental chromosome.

b) Stimulate the mutation action.
c) Reconsider the fitness of the mutated units.
d) If the mutated unit is viable, adapt it into

the fresh populace.
6. Measure the appropriateness of the novel units

shaped by crossover and mutation methods.
7. Pick the most prominent result understanding

the keenness of the choice-maker.

Accompanied by the established system of consider-
ing constant values, this research work has applied an
innovative dynamic procedure for assigning the factors
of crossover and mutation. The dynamic crossover prob-
ability has been computed as follows.

𝑐𝑖 = 𝑐1 +

{︃
(𝑐2 − 𝑐1)

(︂
𝑅𝑖

𝑅𝑚𝑎𝑥

)︂(3/2)
}︃

(3)

where 𝑐𝑖 is the non-linearly rising crossover possibility.
𝑐1 and 𝑐2 are the bounds of the crossover proportion.
𝑅𝑖 is the present recurrence count and 𝑅𝑚𝑎𝑥 represents
the uppermost reiteration count. The dynamic mutation
probability has been calculated as follows.

𝑚𝑖 = 𝑚1 +

{︃
(𝑚2 −𝑚1)

(︂
𝑅𝑖

𝑅𝑚𝑎𝑥

)︂(3/2)
}︃

(4)

where 𝑚𝑖 is the non-linearly growing mutation possibil-
ity. 𝑚1 and 𝑚2 are the bounds of the mutation propor-
tion.

4. Results and discussion
GAs have been utilized abundantly in the wind farm 
designing process. They recommend a noticeable and 
acknowledged paradigm when contrasted with other op-
timization processes from the realm of artificial intelli-
gence. The purpose of the existing research is to expand 
the annual profit of wind farms. The vending charge 
of wind energy has been considered as USD 0.033/kWh. 
Accompanied by the deliberation of the standard static 
method, the current study has considered an innovative

non-linearly modifying method for assigning the pro-
portions of crossover and mutation procedures of the
GA-based wind farm design process. The values of di-
verse factors associated with the considered optimization
process have been exhibited in Table 1.

Table 1
Values of different factors related to the proposed enhanced 
GA

Factor Deemed Value

𝑐1 0.3
𝑐2 0.4
𝑚1 0.04
𝑚2 0.05

Populace Size 20
Highest Generation Count 50
Static Crossover Factor 0.3
Static Mutation Factor 0.04

The wake forfeiture is a significant feature for power
generation from WT as it reduces the accessible kinetic
energy of the wind of the in-line WTs. To curtail the
disadvantageous outcome of wake damage, a fixed gap
is essential to be kept between two in-line WTs for wind
farm design. The conditions of the WT have been offered
in Table 2.

Table 2
Factors associated to WT

Parameter Value

Output 1500 W
Blade Radius 38.5 m
Inter-WT Gap 308 m

Minimum Operational Wind Speed 12 km/hr
Maximum Operational Wind Speed 72 km/hr

Capital Expenditure per WT USD 750,000
Expense per Sub-Station USD 8,000,000

Yearly Operational Expenditure USD 20,000
Interest 3%

Probable Life 20 years
WT per Sub-Station 30

The optimal placements of WTs for Layout 1 using the 
novel dynamic and conventional static approach for allo-
cating the factors of crossover and mutation processes 
have been shown graphically in Figs. 4 and 5 respec-
tively. This terrain has no obstacle within its boundaries. 
The possible locations for placing WTs has been marked 
with circular red marks. The optimal placements of WTs 
for Layout 2 using the novel dynamic and conventional 
static approach for allocating the factors of crossover and 
mutation processes have been shown graphically in Figs. 
6 and 7 respectively. This layout has an obstacle of 500 m 
x 500 m dimension within its terrain. The optimization



algorithms have been programmed to avoid placing any
WT within the boundaries of the obstacle.

Figure 4: Optimal placement of WTs for layout 1 using 
the novel dynamic approach for allocating the factors of 
crossover and mutation processes of GA

Figure 5: Optimal placement of WTs for layout 1 using the 
conventional static approach for allocating the factors of 
crossover and mutation processes of GA

Figure 6: Optimal placement of WTs for layout 2 using 
the novel dynamic approach for allocating the factors of 
crossover and mutation processes of GA

Figure 7: Optimal placement of WTs for layout 2 using the 
conventional static approach for allocating the factors of 
crossover and mutation processes of GA

Relative assessments of the optimal yearly profits and
quantity of WTs accomplished by all methods of assign-
ing the possibilities of crossover and mutation procedures
of GA for both of the terrain designs have been offered
in Table 3 and Table 4 respectively.

Table 3
Comparison of optimal yearly profit obtained using both 
optimization approaches

Optimization Process Layout 1 Layout 2

Static Approach USD 22,149 USD 21,845
Novel Dynamic Approach USD 22,479 USD 22,322

Table 4
Comparison of optimal count of WTs obtained using both 
optimization approaches

Optimization Process Layout 1 Layout 2

Static Approach 94 93
Novel Dynamic Approach 93 87

The study results validate the preeminence of the pro-
jected novel dynamic approach of assigning crossover
and mutation factors over the established static tactic
for both designs as it achieved the higher annual profit
with lesser WTs as specified in Table 3 and Table 4. The
increased cost-effectiveness of the wind farm can allow
the enhanced sustainability of the WPG ventures and
assist the progression of GHG discharge control for the
power generation businesses.

5. Conclusion
Global organizations are continually attempting in the
direction of reduction of carbon trails by efficient appli-
cation of renewable sources like wind power as planned



by the Paris treaty of 2015. This study concentrates on
amplifying the yearly profit of wind farms through an
innovative dynamic approach for allocating the crossover
and mutation factors. The optimization results confirm
the enhanced suitability of the novel dynamic technique
over the typical static method for improving the WPG
site designs with the highest yearly profit. The projected
method can aid the WPG trades to plan a reasonably
feasible wind farm with the realistic deliberation of nu-
merous cost-allied factors and flexible airflow circum-
stances. The present research can bring about impec-
cable prospects for wind farm design enhancement and
economic sustainability of WPG systems for facilitating
the de-carbonization of the global power sector.
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