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Abstract
Hate speech is a complex and non-trivial phenomenon that is difficult to detect. Existing datasets used for training hate
speech detection models are annotated based on different definitions of this phenomenon, and similar instances can be 
assigned to different annotation categories based on these differences. The goal of our experiment is to evaluate selected 
hate speech detection models for English language from the perspective of inter-annotator agreement, i.e. how the selected 
models “agree” in terms of annotation of hate speech instances.

For model comparison we used English dataset from HASOC 2019 shared task and 3 models: BERT-HateXplain, HateBERT 
and BERT. Inter-annotator agreement was measured with pairwise Cohen’s kappa and Fleiss’ kappa. Accuracy was used 
as additional metric for control. The experiment results showed that even if the accuracy is high, the reliability, measured 
via inter-annotator agreement, can be low. We found that the best accuracy in hate speech detection was achieved with
BERT-HateXplain model, however, Cohen’s kappa metric for the results of this model was close to 0, meaning that the results 
were random and not reliable for real life use. On the other hand, comparison of BERT and HateBERT models revealed that 
annotations are quite similar and they have the best Cohen’s kappa score, suggesting that similar neural network architectures 
can deliver not only high accuracy, but also correlating results and reliability. As for Fleiss’ kappa, a comparison of expert
annotations and three selected models gave an estimate of a slight agreement, confirming that high accuracy can go together 
with low reliability of the model.
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1. Introduction
Hate speech is a complex and non-trivial phenomenon
that is difficult to detect. Online hate speech is assumed 
to be an important factor in political and ethnic violence
such as the Rohingya crisis in Myanmar [1], [2]. There-
fore, media platforms are pressured to timely detection
and elimination of hate speech occurrences [3]. This ten-
dency led to increasing efforts in terms of hate speech 
detection, and a number of hate speech detection models
have been developed.
Existing datasets used for training hate speech detec-

tion models are annotated based on different definitions
of this phenomenon, and similar instances can be as-
signed to different annotation categories based on these
differences in perception of what constitutes hate speech.
Analysis of the effects of definition on  the annotation 
reliability led to the conclusion that hate speech phe-
nomenon requires a stronger and more uniform defini-
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tion [4]. Also, it was found out that most of the publicly
available datasets are incompatible due to different defi-
nitions attributed to similar concepts [5]. Moreover, hate
speech datasets can have very similar labels, so some
studies merge them together into one class to reduce
class imbalance [10]. However, this practice could make
a negative impact on research as distinction between
classes is necessary. For example, merging the offensive
language and hate speech classes of [6] dataset in [3] and
[12] or the racist language and sexist language classes
of [11] dataset in [13] and [14]. In hate speech research
abusive language or toxic comments can cover several
paradigms [10], therefore following available definitions
is very important. Similarly, it was suggested that offen-
sive language is not the same as hate speech and therefore
they should not be merged [6].
Following other authors, such as [6], [7], [8] and [9],

the summarised definition of hate speech is the following:
hate speech describes negative attributes or deficiencies 
of groups of individuals because they are members of
a particular group. Hateful comments occur toward
groups because of race, political opinion, sexual orienta-
tion, gender, social status, health condition, etc. As it was
suggested in [6] and [9], offensive comments could be
attributed to separate class and offensive language could
be defined as an attempt of degrading, dehumanizing,
insulting an individual and / or threatening with violent
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acts.
As one of the reasons why it is difficult to detect hate

speech is varied definitions in different studies [4],[5],
a comparison of different hate speech detection mod-
els not in terms of performance but in terms of what is
marked as hate speech could contribute to more compre-
hensive understanding of the phenomenon and its timely
identification. Following the latter notion, the goal of
this experiment is to evaluate selected hate speech detec-
tion models for English language from the perspective of
inter-annotator agreement, i.e. how the selected models
“agree” in terms of annotation of hate speech instances.

Section II presents methods used as well as experi-
mental setup, Section III describes the data used in the
experiment, Section IV reports the results, and Section V
ends this paper with conclusions and future plans.

2. Methods and experimental
setup

For our experiment we selected 3 popular hate speech
detection models for English language and tested them
on HASOC 2019 dataset. Our setup consisted of 4 “an-
notators” - results provided by aforementioned 3 models 
and annotations presented in HASOC 2019 dataset. The
annotations mentioned were treated as “gold standard”.
In the following sections, methods of data 

representation are presented (it was important for
selecting hate speech detection models), and hate speech
detection models as well as inter-annotator metrics used
in our experiment are introduced.

2.1. Basic word embeddings
Perception of natural language from textual data is an
important area of artificial intelligence. As images can be
perceived as pixels for a computer, language also needs a
way to be represented as textual data in a way that can
be processed automatically. For example, the sentence
The cat sat on the mat cannot be directly processed or 
understood by a computer system. One of the best
methods to represent this for a computer is to convert
the words into real numeric vectors - word embeddings
[16]. Word embeddings associate each word in the
vocabulary (a set of words) with a real-valued vector set
in a predefined N-dimensional space (Fig. 1). After
transforming the words or sentences into their
embeddings, it is possible to model the semantic
importance of a word in numerical form and thus to
carry out mathematical operations [35].

This vector mapping can be learned using unsuper-
vised methods such as statistical document analysis or
by using supervised techniques, for example, neural net-
work model developed for tasks such as sentiment analy-
sis or document classification [38].

Figure 1: Projection of word and phrase insertions showing 
that words of similar meaning in space are adjacent [17]

The simplest way to represent words in numeric values
is with One-Hot Encoding [24]. This method is one of
the most popular and works well when there are not
many different categories (up to 15 works best, although
in some cases it may work poorly with fewer).

The single hot encoding is a method which creates new
binary columns of categorical variables, where value of
1 indicates that the original data row belongs to that
category. For example, we have the original data: red,
red, red, red, yellow, green, yellow. For each possible
value a separate column is created and where the initial
value is red, we enter 1 in the corresponding column,
while in the other columns 0s are inserted (Fig. 2) [36].

Figure 2: Example of a single hot encoding [18]

Although this method is simple and easy to learn, it has
major drawbacks. Because we only give our computer
ones and zeros, it cannot interpret any meaning from this
data (calculating cosine similarity will always result in
zero or near-zero values). This is where pre-trained word
embeddings and BERT embeddings help and that is why
they have become popular in variety of natural language
processing tasks, including hate speech detection.

2.2. Pre-trained word embedding models
It is often an optimal solution to use pre-trained models
for deep learning tasks. A pre-trained model is developed
and trained by someone to solve a specific problem based
on chosen data [37]. Using pre-trained models saves
time spent on training the model or in search of efficient
neural network architecture. Two main ways to use a pre-



trained model is fixed feature extraction or fine-tuning
of the model and adapting it to the problem at hand [19].

The fine-tuning of the model is done in one step. Fig. 3
represents process, where each user-generated comment
for hate speech detection is classified according to a fine-
tuned BERT model[20].
The feature-based approach involves two steps. First,

each text, for example, a user-generated comment, is
represented as a sequence of words or subwords, and
each word or the insertion of each subword is calculated
using fastText or BERT models. Second, this sequence
of insertions will form the input to the neural network
(NN) classifier, where the final decision regarding label
of the input text will be made (Fig. 3) [20]. For this task
a variety of deep neural network (DNN) architectures
can be used, for example, deep recurrent neural network
(RNN) [31], deep convolutional neural network (CNN)
[33], gated recurrent unit (GRU) [3], long short-term
memory (LSTM) [34], etc. The most suitable architecture
usually is selected via experiments and by combining
more than one architecture for the task.

Figure 3: Illustrative explanation of the feature-based and 
fine-tuning methodologies [20]

2.3. BERT embeddings
BERT - Bidirectional Encoder Representations from
Transformers, released in 2018 by Google AI Language
researchers. BERT features the state-of-the-art perfor-
mance on most NLP problems [25]. BERT word embed-
dings can take one or two sentences as input and use a
special token [SEP] to separate them. The [CLS] token is
always placed at the beginning of the text and is a char-
acteristics of classification tasks. These characters are 
always required, even if we have only one sentence or if
we are not using BERT model for classification tasks [35]
as it helps the algorithm to distinguish between different
sentences.
Thus, for BERT model to be able to distinguish be-

tween words, there are normally three main steps. First,
as mentioned above, the [SEP] and [CLS] characters are
added at the beginning and at the end of the sentence.
Next, an index is specified for each word and, finally, for

sentences that are shorter than the longest sentence, ze-
ros are added, i.e. the lengths of the sentences are made
equal. This step is called padding [25]. Next, word embed-
dings are used - taking each word for each of them one
specific vector is assigned. Each value of these vectors
represents one aspect of the words (Fig. 4).

Figure 4: Three steps before word embeddings [21]

BERT is based on the transformer architecture, there-
fore it uses the attention mechanism. Attention is a way
of looking at the relationship between the words in each
sentence, and it allows for BERT to take into account
a very large amount of context of a concrete size, both
from the left and the right of a particular word [20]. By
examining the working principle of BERT word embed-
dings, it can be seen that when inputting an English word
with an ambiguous meaning, for example, crush, BERT 
model can understand that this is a word with several
different meanings (each word is inserted according to
the context in which it was used). On the other hand,
in Word2Vec or fastText based models every word has 
a single meaning (it specifies only one vector for all the
different meanings of this word) [36].
In addition, BERT uses tokenization of word parts or

subwords. For example, the English word singing can be 
represented as two strings: sing and ing. The advantage 
of this is that when a word is not in the BERT dictionary,
it can be split into parts to produce rare word embeddings
[20]. This type of embeddings was used in all 3 chosen
hate speech detection models.

2.4. Selected hate speech detection
models

For our experiment we selected three BERTmodels which
were differently pre-trained for the hate speech recogni-
tion task:

• BERT-HateXplain.1

1Available at https://github.com/hate-alert/HateXplain.

https://github.com/hate-alert/HateXplain


• HateBERT.2

• BERT.3

The selected models were trained on different datasets
and used for classifying texts as either hate speech, offen-
sive or non-hate. BERT model was trained using tweets
from Twitter [30], BERT-HateXplain also was trained 
using Twitter and, additionally, Gab4. Moreover, 
Human Rationales were included as part of the
training data to boost the performance [29].
HateBERT model was trained using RAL-E: the Reddit
Abusive Language English dataset [30].

2.5. Inter-annotator agreement
In linguistics inter-annotator agreement is a formal
means of comparing annotator performance in terms
of reliability [26]. The annotation guidelines define a cor-
rect annotation for each relevant instance. As the actual
annotations are created by the annotators, there is no
reference dataset against which to check if the annota-
tions are correct. Therefore, common practice is to check
for reliability of the annotation process, assuming that if
the annotation process is not reliable, then annotations
cannot be expected to be correct.
For our experiment, we chose inter-annotator agree-

ment to evaluate how the selected models for hate speech
detection “agree” in terms of annotation of hate speech
instances. We selected Cohen’s kappa, Fleiss’ kappa and
Accuracy metrics.

Accuracy is one of the metrics for evaluating classifi-
cation models. Having more than two classes, the targets
are calculated as part of the correctly predicted sample
in the test set, divided by all predictions made in the test
set hey [39]

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct predictions
Total number of predictions

(1)

Cohen’s kappa is commonly used for measuring the
degree of agreement between two raters on a nominal
scale. This coefficient also controls for random agreement
[28]. Cohen’s kappa has value 1 for perfect agreement
between the raters and value 0 - for random agreement.
As we compared more than 2 models (“annotators"), we
used pairwise Cohen’s kappa (2). Fleiss’ kappa (3) is used
for analyzing agreement between more than two raters
rating nominal categories [27] and its value for perfect
agreement is 1, while 0 marks random agreement.

𝑐𝑜ℎ𝑒𝑛(𝜅) =
𝑝0 − 𝑝𝑒
1− 𝑝𝑒

(2)

2Available at https://github.com/tommasoc80/HateBERT.
3Available at https://github.com/google-research/bert.
4Gab is American microblogging and social networking service.
Available at https://gab.com.

𝑓𝑙𝑒𝑖𝑠𝑠(𝜅) =
𝑃 − 𝑃 𝑒

1− 𝑃 𝑒

(3)

3. Data
For model comparison we used English dataset from
HASOC 2019 shared task5. The data source is Twitter,
and the data was sampled using keywords or hashtags
relevant for hate speech [15]. All the tweets were anno-
tated by 2 annotators. When there was a mismatch in the
annotation between annotators, the tweet was assigned
to a third annotator. The dataset has been labelled with
5 classes:

• NOT - Non Hate / Non Offensive Content: posts
with no hate, profane or offensive content.

• HOF - Hate Speech and Offensive Language:
posts with hate, offensive or profane content.

• HATE - Hate Speech: posts contain hateful con-
tent.

• OFFN - Offensive Language: posts contain offen-
sive content.

• PRFN - Profane Language: posts contain profane
words but hate or offensive content is absent.

We have chosen 3 of these classes for evaluation,
namely, NOT, HATE and OFFN, as these were the classes
our selected models were trained to identify. PRFN (pro-
fane language) class was merged with NOT (non hate /
non offensive content) as it did contain neither HATE
(hate speech) nor OFFN (offensive language) content [32].
The number of records assigned to each class is shown
in Table 1.

The dataset has 2 subsets - training subset (5852 posts)
and test subset (1153 posts). We performed evaluation
on these subsets with different models separately.

Table 1
Distribution of classes

Data Subset NOT posts HATE posts OFFN posts

Training 4042 1443 667
Testing 958 124 71

4. Results
We used disagree6 library developed for the Python pro-
gramming language. It was used to calculate the number
of disagreements between three models and expert an-
notations. This makes it easier to understand how hate

5Available at https://hasocfire.github.io/hasoc/2019/dataset.html.
6Available at https://github.com/o-P-o/disagree/.

https://github.com/tommasoc80/HateBERT
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speech is treated by each of the selected models. After re-
viewing the data, it was found that the most coincidences
are in those comments that are marked as NOT (non hate
speech or non offensive language). For models and ex-
perts, it is easier to distinguish these types of comments
because of the large amount of comments with this label
present in the dataset. The biggest discrepancies are ob-
served where the content contains hate speech (HATE)
(Table 2).

Table 2
Disagreements in annotations

Data Subset All match
2 do not
match

3 do not
match

Training 2919 2556 377
Testing 802 298 52

After calculating Accuracy of the models, it was ob-
served that BERT-HateXplain model has the highest esti-
mate, which reaches almost 68 percent using the training
subset. Accuracy becomes even greater when using the
testing subset, in this case accuracy stands at nearly 82
percent. However, all models do not differ by a large
percentage, as HateBERT model reached 77 percent and
BERT model with 75 percent had the lowest Accuracy
score using the testing subset (Fig. 5 and Fig. 6).

Figure 5: Accuracy of training subset

Figure 6: Accuracy of testing subset

From the results obtained, it can be seen that with
larger amount of data Accuracy percentage drops down.
It is also important to note that there is a small amount
of OFFN (offensive) and HATE (hate speech) comments
in the test data subset and for that reason it is easier for
the model to achieve higher accuracy.

Cohen’s kappa coefficient is a quantitative measure of
two evaluators (annotators) evaluating the same thing, a
measure of reliability adjusted for how often annotators
agree. A coefficient value of 0 means that the consen-
sus of the evaluators is random, and 1 means that the
evaluators fully agree [26]. It is possible for the statistic
to be negative, which can occur by chance if there is no
relationship between the ratings of the two raters, or it
may reflect a real tendency of the raters to give differing
ratings [22].
When this metric is applied to the models, the best

result was obtained between BERT and HateBERT mod-
els. BERT-HateXplain model has a coefficient of almost
0 (0.007), indicating that most consensus is random and
that the model is not reliable, even though Accuracy is
high. However, all models have a relatively low Cohen’s
kappa coefficient (Fig. 7 and Fig. 8), therefore it would be
incorrect to rely on the results of these models for auto-
mated hate speech detection without taking into account
their limitations.

Figure 7: Cohen’s kappa for training subset

Figure 8: Cohen’s kappa for testing subset

We have also calculated Fleiss’ kappa coefficient,
which is defined as extended the case of Cohen’s kappa,
where the annotations of more than two evaluators can
be compared. A comparison of expert annotations and 3
selected models gave an estimate of 0.122 using training
subset and 0.163 for testing subset. According to [23],
such Fleiss’ kappa ratio refers to a slight agreement.
The results showed that the selected models, namely,

BERT, HateBERT and BERT-HateXplain, which are
trained on English datasets, are not very reliable. Al-
though selected models are popular in hate speech re-



search, when evaluated against selected inter-annotator
agreement metrics, it can be seen that their performance
is not enough to solve the hate speech detection tasks.

5. Conclusions and future plans
In this paper, we presented an inter-annotator agreement
for hate speech detection tasks between three different
BERT models using HASOC 2019 dataset. The experi-
ment results showed that it is not correct to rely only on
Accuracy metric, even if Accuracy percentage is high, be-
cause the reliability could be low. To check if the model is
reliable we chose Cohen’s kappa and Fleiss’ kappa. In our
selected models we found that the highest Accuracy was
achieved with BERT-HateXplain model, even so, when
calculating the Cohen’s kappa metric the estimate was
almost 0, which means that model’s results were random
and were not reliable for real life use. However, compar-
ing BERT and HateBERT models we saw that annotations
are quite similar, and their Cohen’s kappa metric result
suggests that similar neural network architectures can
deliver not only high accuracy, but also correlating re-
sults and reliability. As for Fleiss’ kappa, a comparison of
expert annotations and three selected models gave an es-
timate of a slight agreement (0.122 for training subset and
0.163 for testing subset), confirming that high Accuracy
can go together with low reliability of the model.

Our future plans include wider model testing with dif-
ferent annotation schemes (e.g. distinguish profane lan-
guage, sexist language, misogyny, etc.) and data sources
as well. We also plan to test models for different lan-
guages, e.g. Russian, Spanish, German, French, etc. We
plan to use the knowledge gained from this experiment
for developing hate speech detection model for Lithua-
nian language as well.
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