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Abstract 
We investigated the process of unsupervised generative learning and the structure of 
informative generative representations of images of handwritten digits (MNIST dataset). 
Learning models with the architecture of sparse convolutional autoencoder with constraints to 
produce low-dimensional representations achieved successful generative learning demonstrated 
by high accuracy of generation of images. A well-defined, continuous and connected structure 
of generative representations was observed and described. Structured informative 
representations of unsupervised generative models can be an effective platform for 
investigation of origins of intelligent behaviors in artificial and biological learning systems.  
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1. Introduction

Representation learning with the objective to
identify informative elements in the observable 
data has a well-established record in machine 
learning. Informative representations were 
obtained with Restricted Boltzmann Machines 
(RBM), Deep Belief Networks (DBN) [1, 2], 
different flavors of autoencoders [3] and other 
models allowed to improve accuracy of 
supervised learning [4]. The relations between 
learning and statistical thermodynamics were 
studied in [5] and other works leading to 
understanding of a deep connection between 
learning processes and principles of information 
theory and statistics.  

In the experimental studies, a range of results 
was reported, such as the “cat experiment” that 
demonstrated spontaneous emergence of concept 
sensitivity on a single neuron level in 
unsupervised deep learning with image data [6]. 
Disentangled representations were produced and 
discussed [7] with a deep variational autoencoder 
and different types of data pointing at the 
possibility of a general nature of the effect. 
Concept-associated structure was observed in 
latent representations of Internet network traffic 
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[8], images [6,7,9], as well as a number of other 
results with different types of data and 
applications [10,11].  

These results demonstrated that structure that 
emerges in the latent representations created by 
models of generative learning in the process of 
unsupervised self-learning with minimization of 
generative error can have intrinsic associations 
with characteristics patterns in the observable data 
and perhaps, can be used as a foundation for 
learning methods and processes that use these 
associations for improved efficiency. 

Interestingly, these observations in 
unsupervised machine learning were paralleled in 
the recent works with a number of results in 
biologic sensory networks [12,13] that 
demonstrated commonality of low-dimensional 
representations in processing of sensory 
information by mammals, including humans.  

These previous findings prompted and 
stimulated an investigation into the process of 
production and essential characteristics of low-
dimensional informative latent representations 
obtained with neural network models of 
unsupervised generative self-learning, including 
formation of a conceptual structure in the latent 
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representations of the sensory environment of the 
learner.  

The questions investigated in this work were 
the following: what are the characteristics of the 
latent representations of successful generative 
models? Is there an association between the 
characteristic patterns (or higher-level concepts) 
in the input data and latent distributions produced 
by learning models?  

What structure can be identified in the latent 
representations with entirely unsupervised 
methods, without prior knowledge of conceptual 
content of the input data? 

These questions were approached with 
generative models of deep neural network 
architecture and a dataset of images of real, 
unprocessed image data of handwritten images 
(MNIST dataset) used widely in the studies of 
machine intelligence systems. The intent of the 
study is to understand how successful common 
generative models of unsupervised self-learning 
even of limited complexity, can produce 
informative and structured representations of 
input data modeling sensory environments. 

The novelty of the presented approach is 
associated with using “generic” generative 
architecture with clearly defined directions of 
possible incremental variation and evolution. 
Using this type of architecture can provide 
answers to essential questions of how complex 
architectures that were reported in the cited results 
could have developed in realistic learning 
systems. 

Throughout the work, externally known types 
or patterns in the input data that models 
observable sensory environment of a learning 
system will be referred to as “higher-level 
concepts” or “external concepts”, that signify a 
class of a sample in the input space that is defined 
by an external process, outside of the model. An 
example of an external concept for an image with 
a geometric shape can be word “triangle” or a 
specific symbol. In contrast, structures in the 
latent representations of the observable space that 
can be identified entirely by unsupervised means 
without any external or prior information, will be 
referred to as “internal” “natural” or “native” 
concepts [14].  

A priori, there is no reason to assume that 
external and native concepts are related or 
correlated, so the relation between the external 
and native concepts is an interesting and 
intriguing question in its own right. 

2. Methods and data
2.1. Model architecture

A convolutional autoencoder model [15] used 
in this work had the encoding stage with 
convolution-pooling layers followed by several 
layers of dimensionality reduction with a sparse 
encoding layer of size 20–25 producing an 
effective low-dimensional latent representation 
described by activations of neurons in the 
encoding layer.  

Sparse training penalty was applied to latent 
activations as L1 regularization, resulting in 2 to 
4 neuron activations for most images in the 
dataset. The decoding / generative stage that was 
fully symmetrical to the encoder. The diagram of 
the architecture used in this work is shown in 
Figure 1. 

Figure 1: Sparse convolutional autoencoder
model 

Overall, the models had 21 layers and ~ 9 × 104 
trainable parameters. The models were 
implemented in Keras / Tensorflow programming 
package [16] and trained for minimization of 
generative error i.e., an average norm of the 
difference between input images and the output 
produced by the model on the unsupervised 
training set defined by the categorical cross-
entropy (CCE) cost function. 

2.2. Data 

The dataset of images used in the study, 
MNIST [17] consisted of three sets of images 
(training, validation and test) of handwritten 
digits, from 0 to 9 produced by different real 
individuals. The models were trained on a subset 
of 10,000 images, with approximately equal 
representation of all digits. 

To ensure entirely unsupervised character of 
latent representations created by trained models, 
labeled samples were not used in the phase of 
generative training of the models, but only in the 
analysis of distributions of higher-level concepts 
in the latent representations created by trained 
models. 



2.3. Training 

The success of unsupervised learning was 
measured by the characteristics of training 
performance and generative ability. Training 
performance was measured by the reduction in the 
value of the cost function over the period of 
training. Generative performance was evaluated 
visually based on the quality of generation of a 
subset of images in the training dataset. 
Approximately 70% of models were successful in 
generative learning by both measures. A clear 
correlation was observed between the training and 
generative characteristics. Models with training 
loss above certain threshold generally did not 
succeed in acquiring good generative ability. 

Success of generative learning, that is, the 
ability to generate high quality images of the types 
present in the training dataset indicated that latent 
representations produced by the learning models 
retained significant information about the 
distribution of observable data represented by the 
training dataset. 

2.4. Encoding and generation 

A trained model can perform two essential 
transformations of data: encoding, E(x) from the 
observable space, i.e., image x to the latent 
position l; and generative, G(l) in the opposite 
direction, producing an observable image, y. The 
objective of generative learning is to minimize the 
distance between training images and their 
generations by the model, defined by a training 
metric (cost function) in the observable space. 

2.5. Sparse representations 

As a result of a sparsity constraint imposed in 
unsupervised generative training, the effective 
latent representations of observable images were 
low dimensional, that is, an observable image was 
described by activations of a small number of 
latent neurons; the observed effective 
dimensionality with the images in the dataset was 
2 to 4 (i.e., two to four non-zero activations of 
latent neurons). 

A sparse latent representation of this type can 
be described by a stacked space of low-
dimensional “slices” [18], indexed by a tuple of 
activated neurons, (i1, i2, i3). For example, an 
image of digit “2” can be described in a 24-
dimensional sparse representation space by the 

index (1, 3, 8) with coordinates (0.011, 0.017, 
0.019) that translates to corresponding activations 
of the neurons 1, 3 and 8 in the latent layer, and 
nil activations of other latent neurons. 

3. Results

The results in this section were obtained with 
several instances of models trained as outlined 
earlier, that were successful in generative 
learning. The results pertain to essential 
characteristics of low-dimensional latent 
representations produced by generative modes, 
such as structure, topology, consistency and 
others. 

3.1. Generative latent structure 

Examination of the geometrical and 
topological structure of sparse representations of 
the handwritten digit images produced by 
generative models confirmed highly structured 
character of representations closely correlated 
with characteristic types of images. 

Following the objective of the study to 
examine the structure of informative generative 
representations without known concept samples, 
an approach was developed that allows to 
investigate the structure in the latent 
representations produced by successfully learned 
generative models by purely unsupervised 
methods that do not require knowledge of the 
semantics, concept, class or any other prior 
information about the input data. The process of 
producing such unsupervised structure (or 
“generative landscape” of the representation) is 
based on identification of a density structure, such 
as density clusters in a general sample of encoded 
sensory inputs with methods of unsupervised 
density clustering such as MeanShift [19].  

The approach is based on several essential 
assumptions. The first one is success of generative 
learning reflected by sufficient accuracy and 
quality of generation. The second is sparsity of 
resulting representations, that provides two 
essential benefits: a lower dimensionality of the 
encoded inputs, and higher decoupling in the 
structure of representations making it easier to 
detect and harness for learning. And finally, an 
assumption on the composition of the training set 
to contain a constant number of characteristic 
types of inputs (i.e., representativity).  

To apply methods of density clustering in the 
latent representation, first a structure of space 



slices needs to be identified (Section 2.5). This 
was done according to the following process: 

• For each three-dimensional slice: l = (i1,
i2, i3) a subset of significant activations S(l)
identified as Σ aj ≥ f × amax, where amax:
maximum activation in the slice (the sum of
activations of slice neurons); f: a factor, f =
0.25 in the study.
• S(l) projected on the slice coordinates,
resulting in a three-dimensional set Sp(l).
• A density clustering method applied on
the set Sp(l) producing a sequence of density
clusters ordered by size D(l) = { Dk(l) }. The
length of the sequence is defined by the
clustering method and does not have to be
known in advance.
• The process is repeated for slices with
significant representation of significant
activations (i.e., the size of S(l) above certain
threshold, relative to other slices) resulting in
a stacked structure of density clusters,
generative landscape D = { D(l) }, with a
natural two-dimensional unique index of (l, n);
l: the position of the slice; n: the position of the
cluster in the slice
With the generative landscape produced with

the described process, the first task was to 
examine how the resulting latent structure is 
correlated with characteristic types of data in the 
training dataset. It can be determined by 
transforming center positions of the clusters of the 
landscape D(l) to observable images with the 
generative transformation G(l) (Section 2.4). 
Figure 2 shows the resulting “map” of images 
associated with the identified density structure of 
the generative landscape. 

Figure 2: Generative structure of the latent
landscape (vertical axis: slice; horizontal axis: 
cluster (first 15 clusters) 

As can be observed in the visualization of 
Figure 2, cluster positions were indeed closely 
associated with characteristic types of images in 
the training dataset. 

3.2. Latent geometry and topology 

The identified landscape of density structure 
can assist in examination of the geometry and 
topology of the sparse latent space.  

The first objective was to investigate 
connectedness and continuity of the latent regions 
associated with characteristic types of observable 
images. To this end, arrays of random positions 
were created on the spheres of a given radius from 
the cluster centers, thus producing a “flow” of 
latent positions from cluster centers of the 
landscape outwards. The positions were then 
transformed to observable space with generative 
transformation, as in the previous section 
producing arrays of observable images associated 
with the latent positions. 

Examination of the resulting images allowed 
to conclude that generative representations 
produced by models were indeed connected and 
continuous, with well-defined regions associated 
with specific types of images (Figure 3). 

Figure 3: Generative latent landscape, continuity
Examination of different clusters and 

landscapes produced by different individual 
models allows to conclude that consistency and 
connectedness is a general property of generative 
latent landscapes. 

3.3. Structural consistency of 
latent representations 

While latent representations created by 
generative models can be expected to be specific 
to individual learning models due to peculiarities 
of the training process, for example, random 
selection of training samples. At the same time, 
some essential characteristics of generative 
representations appeared to be consistent between 
the learning models.  



To investigate consistency of the latent 
structure, an analysis of latent landscapes 
produced with three independently trained 
generative models was performed.  

The models were trained over 40-60 epochs of 
unsupervised generative learning with a training 
set of 10,000 samples, achieving a training plateau 
at validation loss of 0.12-0.14 (with the starting 
value of ~ 0.7) and good to excellent generative 
performance on a subset of images and were not 
selected by any specific criteria. After completion 
of the training phase several successful 
independently trained models were selected and 
characteristics of generative landscapes produced 
with methods described earlier measured. 

The measured characteristics were: the overall 
size of the landscape as the number of identified 
density clusters with population above certain 
margin, relative to the size of the training dataset 
(~ 2%); recognition, the fraction of the landscape 
clusters associated with recognizable digits (as 
discussed in Section 3.1), indicating a correlation 
of the landscape with the characteristic content of 
the training set; representativity of the content of 
the landscape, such as presence of all types of 
digits (completeness) and distribution of digits 
between slices and clusters (digits with highest 
and lowest population of associated clusters in the 
landscape). The results are presented in Table 1. 
Table 1 
Consistency of latent structure 

Model Size Recog
nition 

Complet
eness 

Populati
on: h / l 

A 474 0.973 True 0,7 / 4,6 
B 396 0.975 True 0,7 / 2,5 
C 485 0.971 True 0,4 / 2,8 

As can be inferred from these results, latent 
landscapes of independently trained successful 
generative models had significant consistency in 
the size, recognition and representation of 
characteristic types of images. On the other hand, 
factors such as distribution of digits in the slices 
and clusters, highest and lowest representation of 
digits in the clusters and a number of others 
tended to be more specific to individual learning 
models. 

Similar results were previously obtained with 
several different types of image data such as 
geometrical shapes [9] pointing at the likelihood 
of a general character of the observed effect of 
categorization in the latent representations of 
successful generative models by characteristic 
types of patterns.  

3.4. Unsupervised concept learning 

The results of the preceding sections, with 
strong correlations observed between the 
emergent latent structure of successful generative 
models and characteristic types of observable data 
can be interpreted as distillation of “native” or 
“natural” concepts in the observable data in the 
process of unsupervised learning with 
minimization of generative error. The structure or 
the latent landscape, as discussed in the preceding 
sections, can be resolved in an entirely 
unsupervised process by a number of methods. 

It can be concluded from these results that 
generative learning under certain constraints and 
the resulting structure in the informative latent 
representations can be used as a foundation for 
implicit learning of characteristic patterns in the 
observable data before and without external 
contextual information about it. These results can 
also offer insights into explainability of learning 
in generative models via association of learned 
concepts or classes in the observable data and the 
native information structure that emerges in the 
latent representations in the process of 
unsupervised generative learning. 

4. Discussion

Highly structured character of low-
dimensional generative representations produced 
by successful models of unsupervised generative 
self-learning observed in this work provides 
further support for a growing number of results 
pointing at importance of informative 
representations in processing of sensory 
information by learning systems, of both artificial 
and biological nature. 

In this work the effect was observed with real-
world image data of significant complexity, 
pointing at a general character of the effect. 
Informative structured representations strongly 
correlated with characteristic patterns, or concepts 
in the sensory data can play an essential role in 
emergence and development of intelligent 
behaviors including conceptual intelligence, 
abstraction and communications.  

Continuing research in this direction can shed 
light on common principles of learning for 
artificial and biological systems and perhaps point 
a direction to a generation of learning systems 
capable of more natural and intuitive learning 
from direct interaction with the sensory 
environment [20]. 
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