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Abstract 
Remote sensing tools are becoming popular in gathering information about forest area changes. 
The European Space Agency has launched multiple Sentinel satellites for land and marine 
monitoring. The Sentinel-2 (S2) satellite has great forest monitoring capabilities with its 13 
high resolution bands. With the capabilities provided by this satellite, high accuracy pixel-based 
classification can be applied. In order to train a model that would be well suited to recognize 
forested areas from S2 images, a solid training dataset must be provided. In this study, two 
different information sources, Copernicus High Resolution Layers (HRL) and OpenStreetMap 
(OSM), were used to automatically create datasets. Models were trained and evaluated using 
the same artificial neural network architecture. After further analysis, it was noted that both 
OSM and HRL trained models yielded similar numerical evaluation results. Both models 
adjusted well to their data source classification and reached similar evaluation results of around 
0.92 pixel accuracy. Upon further visual inspection, it was noted that OSM trained models 
created more false negative classifications identifying small forest patches and forest areas 
along rivers/lakes, HRL on the other hand created more false positives when identifying not 
only areas along rivers but rivers themselves as forest. All models failed to properly identify 
forest clearings in large forest areas, although HRL-trained models provided slightly better 
results.  
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1. Introduction

Monitoring of forest areas is carried out on a
continuous global and national scale. Field 
monitoring methods are not sufficient to monitor 
changes on a continuous basis, and there is a need 
to automate the process to achieve the highest 
possible accuracy. The use of remote sensing tools 
to monitor forest cover is increasing worldwide 
[1]. One of the major drivers for frequent forest 
monitoring is deforestation [2] and illegal logging 
[3]. 

The European Space Agency’s Sentinel 
satellites are well suited for global forest 
observation. The main advantages of Sentinel 
satellites in forest monitoring are the long-term 

IVUS 2022: 27th International Conference on Information Technology
EMAIL: sidlauskasarminas@gmail.com (A. Šidlauskas); 
andrius.krisciunas@ktu.lt (A. Kriščiūnas)

©️  2022 Copyright for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).  

CEUR Workshop Proceedings (CEUR-WS.org)  

delivery of satellite imagery, global and frequent 
coverage, good data accessibility for the general 
public, and a wide variety of observation methods 
(radar, spectral bands) [4]. 

Sentinel-2 (S2) mission satellites provide 13 
high resolution bands for land and sea monitoring. 
These bands and their combinations have already 
been used in various ways to classify forests [5, 6, 
7, 8]. Reference [5] evaluates S2 capabilities to 
classify forest categories and European Forest 
types in the Mediterranean area, [6] evaluates the 
performance of dense S2 time series in forest 
species mapping in a challenging mountainous 
environment, [7] investigates the use of multi-
temporal S2 data to identify tree species, [8] 
assesses the suitability of S2 data of typical land 
cover classifications (crop and forest). Often these 
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classification tasks are completed using machine 
learning. In the case of referenced studies, a 
supervised random forest (RF) algorithm has been 
applied for pixel-based classification.  

To train a precise model, a good dataset is 
required. Failure to prepare a precise dataset can 
result in an inaccurate classification model. 
Studies often use national data provided by 
forest/statistics agencies [5, 6, 7], which can then 
be further processed manually [6]. This data is 
provided in polygon form, polygons are then used 
to classify a certain area as a forest or specific 
forest species. Information about land use 
classification can also be received from OSM [9]. 
This information also includes forest polygons, 
similar to national data which is provided in 
polygon form. In other cases, Copernicus High 
Resolution Layers are used [10], these layers, 
which are provided in raster form, are then 
processed to act as pixel-based masks. The model 
accuracy in these papers varies from 83% to 95% 
when evaluating using pixel accuracy metrics.  

Preparation of a precise dataset can take a long 
time if classification is done by hand or if 
institution data is used. The latter can have 
outdated/incomplete data which could severely 
restrict the ability to create a good dataset for 
certain areas. Additionally, different states may 
restrict access to this data. From this, the necessity 
of open access data, which could always be 
accessed and would be constantly updated, arises. 
In this work comparison of two open access data 
sources suitable for automatic ground-truth mask 
generation are investigated to evaluate their 
applicability to use directly for the selected 
machine learning model. Both HRL and OSM 
data sources are used as ground truths during 
evaluation. Accuracy has been tested using 
Copernicus S2 True Color Images (TCI). These 
images were collected in the summertime. The 
pixel-based classification was applied to a fully 
convolutional network (FCN) model with a 
resnet50 architecture. 

2. Materials
2.1. Study area

Lithuania has been selected as the study area. 
The territory of Lithuania consists mostly of 
flatlands with lakes, swamps, and forests. 
Dominant species – pine, spruce, and birch. 
Lithuania covers an area of 65 300 km2. The main 
reason for limiting the study area to one country 

is to avoid introducing new forest types during 
training and evaluation. 

2.2. OpenStreetMap polygons 

OpenStreetMap is a free editable geographic 
database of the world. During this research 
instance, data from the OSM database was taken 
for the year 2020. The database contains polygons 
of various areas – buildings, rivers, lakes, states, 
forests, etc. Forest polygons from the database can 
easily be converted to shapefile, geojson, or any 
other geospatial vector file format type. This is 
administrative information, meaning that if the 
database returns a polygon with a forest, it does 
not necessarily mean that there is a forest in that 
area, only that there should be a forest in that area. 
The opposite is true as well, small patches of 
forests might not be marked with polygons, which 
again introduces obscurity. Since OSM is massive 
in its scope, it is obvious that small inaccuracies 
are to arise and data will take longer to be updated. 
This becomes especially apparent with forest 
clearings which are officially marked as forest 
areas as shown in Figure 1. 

2.3. Copernicus pan-European 

The Copernicus pan-European HRL portfolio 
provides detailed land monitoring information 
including the HRL Forest layer. The approach to 
constructing the HRL Forest layer is based on a 
random forest classifier and is able to handle 
outliers to a certain context for forest 
classification problems achieving an accuracy of 
more than 98%. Unfortunately, implementation of 
such an approach requires intensive initial data 
preparation from different sources including the 
Sentinel missions and ancillary data sources like 
land-parcel identification systems (LIPIS), OSM 
data, and other local data sources. Respectively 
validation steps require semi-automatic validation 

Figure 1: Forest with clearing and mask 
generated from OSM polygons 



steps [11]. HRL data is provided only every three 
years, while the last available forest coverage data 
is from 2018. The data provided by HRL on forest 
coverage can be received in raster files separated 
by European countries. This information can be 
used to create forest/non-forest pixel-based masks 
for training datasets which may be stated as valid 
information and used as ground truth labels during 
the periods of layer construction. Copernicus 
provides various three main forest layers – tree 
cover density (TCD), dominant leaf type (DLT), 
and forest type product (FTY). In this case, the 
TCD layer will be used. 

2.4. Mosaic of the study area 

The mosaic of the study area is a single raster 
image merged from multiple S2 images after they 
undergo preprocessing. Preprocessing includes 
cropping S2 images into small parts and merging 
them. Although a single S2 image already takes 
up only a part of the study area, it may contain 
clouds. Areas of image that contain clouds are 
unusable, no forest can be classified over them. 
Hence, there is a need to “remove” these clouds 
from the study area. The removal method infers 
cropping a single S2 image into small parts, then 
using a cloud mask (provided by S2) we ignore 
images that contain clouds. If all images in a given 
area contain clouds, select the image with the 
lowest amount of cloudiness.  

In this study, mosaic was created from images 
from the 2018 summer period. This year's choice 
was motivated by the need to align it with the 
latest HRL data. Since S2 images are heavily 
impacted by clouds and shadows of clouds, 
priority has been placed to month with the lowest 
percentile of clouds in images. The month of June 
provided most images with a low distribution of 
clouds; hence, the study area is comprised of 
images from June. To create a single raster of the 
study area 21 S2 images have been used. Created 
mosaic of the study area is provided in Figure 2. 

Figure 2: The study area of Lithuania. Image 
comprised of S2 data 

2.5. Randomly generating points 

One of the main advantages of automatically 
generating datasets is the ability to change the size 
of the dataset easily. Additionally, you can select 
specific areas of interest from which to generate 
datasets. Within these areas, points can be 
specified or they can be randomly selected. In the 
present case, points were generated randomly 
within the entire study area. Raster of the territory 
of Lithuania contains geocoordinates. Using these 
coordinates, boundaries of latitude and longitude 
can be extracted. These boundaries are then used 
to generate two random floating-point numbers, 
one for latitude, and the other for longitude. Two 
randomly generated numbers then make up a 
point. Then it can be calculated if the generated 
point is within the study area polygon. After 
generating the required number of random points 
inside the area of interest, these points can be used 
to crop out fixed size images from the study area. 
Using this method, a subset of random images can 
be created. The subsets are then used as the basis 
for new datasets. Selected points in the study area 
are presented in Figure 3. 

Figure 3: Randomly generated points within the 
polygon of the study area. Image displays 
1600 generated points 

2.6. Generating datasets 

In the scope of this paper, three random subsets 
of points were generated consisting of 800, 1600, 
and 3200 points respectively. Then for each point, 
an image sized 200x200 pixels is generated. The 
S2 TCI images have 10m spatial resolution. From 
this, a single image forms a square with a single 
side of 2000 meters, the image’s area is 4km2. To 
create the datasets each subset of images is then 
duplicated, this is done so that mirrored datasets 
can be created, the only difference between these 
datasets is their masks. Every image in a dataset 
has a mask image. Mask images contain the 
classification of every pixel from the original 
image. From 800 randomly generated points, 2 



datasets have been generated – 800 images and 
OSM masks and 800 images and HRL masks. 
Finally, each dataset was split into 9/10 training 
images and 1/10 validation images. In Figure 4 
several examples are provided to explain the most 
noticeable differences among generated masks. In 
the first example, we can see that the OSM 
database provides a generalized forest area, which 
does not take into account any forest clearings, 
whereas HRL does. The second example shows 
that OSM fails to precisely identify forests along 
the river. The last example provides not a single 
larger forest area, but small patches of forests, and 
again OSM is at a detriment, lacking a substantial 
number of polygons to identify small forest 
patches. 

(1) 

(2) 

(3) 

a) b) c) 

Figure 4: S2 image and generated forest (green) 
and non-forest (black) masks; a) True Color Image 
(TCI), 10m special resolution b) masks generated 
from OSM data c) masks generated from HRL 
data 

2.7. Evaluation dataset 

For evaluation, two new unique datasets are 
generated, one based on HRL data and the other 
on OSM data. These datasets were created using 
the same principle as the training datasets. A 
single dataset is made up of 200 images. After 
training all models will be additionally evaluated 
using these datasets, which means that both HRL 
and OSM will be regarded as ground truth during 
evaluation. The evaluation datasets were created 
to introduce new images that have not been 
processed by models and test their accuracy. 
Additionally, both datasets allow evaluating 

models against the same data, since during 
training they have their validation subset. 

2.8. Training model 

The main goal of this paper is to evaluate the 
differences between two pixel-based 
classification datasets. This means that during 
training the same model has to be used with all 
datasets. A fully convolutional network model has 
been selected with resnet50 architecture. The 
model distinguishes itself as fast, which is perfect 
when training multiple pixel-based classification 
models on different datasets. 

3. Methods
3.1. Overview

To compare two different datasets and their 
precision, pixel-based classification will be 
performed. Figure 5 provides a general workflow. 

Figure 5: Workflow of automatically creating 
datasets and testing their performance 

The workflow consists of: 
1. Gather S2 images for the study area from

Copernicus Open Access Hub.
2. Involves cloud removal and changing the
coordinate system to WGS84.
3. Forming a cloudless single raster mosaic
of the study area.
4. Generate a specified number of random
images from the study area.
5. Gather HRL images from Copernicus
Land Monitoring Service.
6. Convert pan-European raster into pixel-
based forest/non-forest mask.



7. Generated a complete dataset from the
HRL raster and a list of random images.
8. Gather forest polygons from the OSM
database.
9. Generate a geojson format file that
contains the required forest polygons.
10. Generate a complete dataset of OSM
polygons and a list of random images.
11. Feed datasets to an FCN model.
12. Get a trained FCN model.
13. Generate a validation only dataset from a
new list of random images in the study area
and HRL raster.
14. Test trained FCN model accuracy against
validation dataset.
15. Check the evaluation results.

3.2. Calculating accuracy 

Accuracy during training and evaluation will 
be calculated using pixel accuracy and mean 
intersection over union (MIoU). Although pixel 
accuracy is a more common accuracy metric, it 
suffers when predicted images have a class 
imbalance. For example, an image consists of 100 
pixels, 90 of which are non-forest pixels, and the 
rest are forest pixels. Then a trained model 
predicts that 100 pixels (the entire image) are non-
forest. Pixel accuracy will be 90%. However, if 
we take intersection over union of forest and non-
forest, we will have 0% and 90% accuracy, 
respectively. Then, if we calculate the mean of 
both classes, prediction accuracy drops to 45%. In 
this instance, mean intersection over union is a 
more accurate metric since datasets have images 
generated randomly, which can lead to a severe 
class imbalance in a single image. Both accuracy 
metrics are provided in the scope of this research. 

Pixel accuracy equation: 

𝑎 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(1) 

where TP – true positive pixels, FP – false 
positive pixels. 

Mean intersection over union equation: 

𝐼𝑜𝑈 =  
𝑃 ∩ 𝐴

𝑃 ∪ 𝐴

(2) 

𝑚𝐼𝑜𝑈 =  
𝐼𝑜𝑈𝑓𝑜𝑟𝑒𝑠𝑡 + 𝐼𝑜𝑈𝑛𝑜𝑛−𝑓𝑜𝑟𝑒𝑠𝑡

2

(3) 

where P – predicted pixels, A – actual pixels. 

4. Results
4.1. Training results

Each model was trained for 1000 epochs with 
its own dataset. Validation masks were created 
from their own data source (OSM had its 
polygons, pan-European its raster). In Figure 6 we 
can see that pixel accuracy is generally similar 
across all datasets. MIoU, however, does vary 
more with OpenStreetMap. The lower MIoU can 
be attributed to inaccuracies of OSM. Validation 
data from this dataset could contain forested areas 
that are not marked as forest, thus impacting the 
validation results. Increasing the size of the 
training dataset also produced better overall 
validation results during training. 

800 

1600 

3200 

a) b) 

Figure 6: Validation results with different 
datasets a) using pixel accuracy b) using MIoU 

4.2. Evaluation results 

All trained models have been evaluated using 
two different datasets, one based on HRL data, 
and the other on OSM data. Table 1 provides 
evaluation results from the HRL based testing 
dataset, whereas Table 2 provides evaluation 
results from the OSM based dataset. Based on the 
results, it can be seen that both models have 
adjusted well to their training datasets. When 
evaluating HRL trained models with a newly 
created HRL evaluation dataset it performs better 
than the dataset trained with OSM data. However, 
when evaluation is done the other way around, 
OSM trained datasets to perform better. 
Additionally, it can be noted that models with 
larger training dataset sizes had slightly better 
accuracy, especially when validating against a 



dataset from the same source. Both models reach 
a similar accuracy ceiling of ~0.92 pixel accuracy 
and ~0.84 MIoU, when tested against their 
relative evaluation dataset. Based on these 
evaluation results, it cannot be stated that either 
HRL or OSM prove to be better sources for 
ground truth. Direct comparison of these results 
cannot be conducted with referenced papers, 
because different data is regarded as ground truth. 

Table 1 
HRL based evaluation results 

Data 
source 

Dataset 
size 

Pixel 
accuracy 

MIoU 

HRL 800 0.891 0.798 
HRL 1600 0.907 0.828 
HRL 3200 0.917 0.843 
OSM 800 0.844 0.717 
OSM 1600 0.859 0.742 
OSM 3200 0.854 0.734 

Table 2 
OSM based evaluation results 

Data 
source 

Dataset 
size 

Pixel 
accuracy 

MIoU 

HRL 800 0.872 0.758 
HRL 1600 0.861 0.741 
HRL 3200 0.859 0.738 
OSM 800 0.902 0.802 
OSM 1600 0.910 0.819 
OSM 3200 0.921 0.838 

4.3. Noticeable differences 

Although the evaluation results are very 
similar, certain differences can be identified by 
visually inspecting how models predict more edge 
cases. In Figure 7 we can see how the trained 
models compare. The first example shows that the 
OSM trained model ignores forest clearings while 
the HRL trained model recognizes clearings, 
albeit not very precisely. Both models still 
suffered heavy inaccuracies when they had to 
recognize forest clearings in large forested areas. 
Models would simply opt out to mark the entire 
area as forest and ignore clearings. The second 
example provides evidence of pan-European 
being better at recognizing forest areas along 
rivers. Since OSM rarely provides forest polygons 
for areas along rivers and lakes, HRL trained 
models become better at recognizing them. When 
it comes to small rivers, OSM models tend to 

completely ignore forest areas around rivers, 
while HRL trained models have a recurring issue 
of often identifying river itself as a forest. The last 
example shows how OSM has an issue with 
recognizing small forest patches. This is probably 
the most noticeable difference of all. On the other 
hand, pan-European is very good at identifying 
these patches, however it can at times identify 
larger areas that are no longer outside the bounds 
of small forest patches. 

1) 

2) 

3) 

a) b) c) 

Figure 7: Examples of trained model classification 
a) S2 images, 10m spatial resolution b)
classification, model trained with OSM data c)
classification, model trained with HRL data

5. Conclusion

Six pixel-based forest/non-forest classification
datasets were generated, three based on OSM 
data, and another three on HRL data, in order to 
evaluate the applicability of using open access 
data for dataset generation. All datasets were used 
to train a model that represents them. After 
training they were evaluated using additional 
evaluation datasets. Evaluation showed that both 
data sources yielded similar numerical accuracy 
results. Both data sources provided accurate data, 
that allowed models to reach ~0.92 pixel accuracy 
and ~0.84 MIoU, when evaluating with datasets 
from relative data source. During the evaluation, 
it was also noted that increasing the training 
dataset size increased the accuracy of the relative 
dataset evaluation. After additional visual 
inspection of edge cases, it was noted that models 
trained with OSM datasets tend to create a false 
negative classification of forest areas along rivers 
and small forest patches scattered in an area. 



Models that were trained using HRL datasets were 
better at classifying forest clearings, forest areas 
along rivers and small forest patches scattered in 
an area. However, HRL trained models could 
provide false positive classification, identifying 
parts of the river as forest. Numerical differences 
between these two data sources proved to be 
negligible, one data source cannot be regarded as 
worse than the other. Although HRL data is 
produced only once every three years, visual 
inspections of generated dataset masks and 
trained model classified masks prove that it is 
better at detecting fine details in remote sensing 
images. Taking this into account, a pixel-based 
classification model can be trained using 2018 
data, which can then be used to classify newer or 
older remote sensing data by year, which is 
especially important in HRL dataset case which is 
expensive to prepare and are provided only once 
every three years. 

6. Data availability statement

Datasets that were generated during this
research, both training and evaluation, together 
with complete study area and HRL raster of the 
study area can be found at 
https://zenodo.org/record/6548615 (accessed on 
20 May 2022). OSM data can be found at 
https://planet.openstreetmap.org (accessed on 20 
May 2022). 
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