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Abstract
AI is an enabling technology that can be utilized in various fields with impressive results. However, in its adoption, there are
risk factors that can be mitigated through the adoption of quality standards. It’s not by chance that the new ISO/IEC 25059
includes a specific quality model for AI systems. The article describes a research approach that proposes a way to prevent
the lack of quality in training data from propagating into the deductions of an AI system. This is all based on the concept
of completeness from ISO/IEC 25012 and can be referred to ISO/IEC 5259-2 characteristics of diversity, representativeness,
similarity for input dataset evaluation and to ISO/IEC 25059 functional correctness for output results evaluation.
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1. Introduction
The vast availability of data and tools has allowed the con-
struction of predictive and classificationmodels that form
the foundation of Automated Decision-Making (ADM)
systems. Many business decisions rely on recommenda-
tions generated by software systems, and in some cases,
these decisions are entirely automated. The notion that
this promotes the concept of decision neutrality due to
being algorithm-based is quite prevalent. However, since
the decision-making path of an AI system is heavily in-
fluenced by the data used during the learning phase, bi-
ases present in the data can sometimes transfer into the
choices proposed by the system. In the literature, it has
been demonstrated that the use of AI systems trained on
biased datasets can lead to situations of discrimination
[1]. The risk of skewed outcomes primarily stemming
from imbalanced datasets has also been studied, and it
can be mitigated by the introduction of synthetic data [2].
Learning algorithms construct the model based on the
training data, so such disproportion can lead to conclu-
sions that deviate from reality [3,4]. On the other hand, in
some situations, it is challenging to obtain homogeneous,
proportional, and, most importantly, representative data.
In these cases, the ISO standards that can help us are [1]:
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• ISO 31000:2018 Risk management — Guidelines
[2]

• ISO/IEC 25000:2014 Systems and software en-
gineering — Systems and software Quality Re-
quirements and Evaluation (SQuaRE) — Guide to
SQuaRE [3]

• ISO/IEC 27002:2022 Information security, cyber-
security and privacy protection - Information se-
curity controls [4]

• ISO/IEC DIS 5259-2 Artificial Intelligence — Data
Quality for Analysis and Machine Learning (ML)
- Part 2: Data Quality Measures [5].

Specifically, ISO 31000 includes risk management prin-
ciples that allow for the assessment of both the risk of
using incomplete data during the learning phase and the
risk associated with unfair predictions [1]. Other kinds
of risks, such as the ability of protect data from infor-
mation leakage, are for further study. ISO/IEC 27002
offers two possible new approaches for proactive secu-
rity, threat detection and machine learning/artificial in-
telligence systems. Initially, the ISO/IEC 25010 software
quality model [6] did not encompass quality character-
istics of AI systems. However, starting from 2023, the
SQuaRE series is enriched with the quality model for AI
systems: ISO/IEC 25059 standard. Table 1 presents the
new sub-characteristics identified by the working group
and their scope in relation to the original standard [7].
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Table 1

ISO/IEC 25010:2011 ISO/IEC 25059:2023*

AI sub-characteristics4.2 characteristics of the software product model

Functional suitability correctness adaptability
Usability controllability transparency
Reliability robustness
Security intervenability

4.1 characteristics of the quality in use
Satisfaction transparency transparency
Absence and mitigation of risks ethical/social risk

* in the process of being published

2. Fairness Evaluation in ML
Outputs

In the context of machine learning, evaluating fairness in
machine learning models is a very sensitive and impor-
tant issue. The goal is to ensure that models yield results
that are independent of group membership and do not
perpetuate or, in some cases, even exacerbate existing
societal inequalities.
There are two different approaches: measuring the

intensity of output errors or measuring the overall direc-
tion of errors. The first approach focuses on assessing
disparate or unfair errors among different categories,
ethnicities, or groups. The second approach evaluates
whether the model tends to make errors in a particular
direction or towards a specific group, ethnicity, or other
sensitive attribute. Bias or fairness metrics can be used
to evaluate this overall direction.
In the case of classification algorithms, the confusion

matrix 𝑃 allows for the calculation of the number of true
positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN)

𝑃 = [
𝑝11 ... 𝑝1𝑛
⋮ ⋮ ⋮

𝑝𝑛1 ... 𝑝𝑛𝑛
] (1)

𝑇𝑃(𝑖) = 𝑝𝑖𝑖 (2)

𝐹𝑃(𝑖) =
𝑛
∑

𝑘=1,𝑘≠𝑖
𝑝𝑖𝑘 (3)

𝑇𝑁 (𝑖) =
𝑛
∑

𝑘=1,𝑘≠𝑖
𝑝𝑘𝑘 (4)

The concepts of precision, recall, and accuracy are well-
known in the literature and are presented below for the
sake of completeness in the discussion:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)

Accuracy is a measure of functional correctness ac-
cording to ISO IEC 25059 and ISO IEC TS 4213.

3. Statistical Evaluation Methods
on Output

In a classification or decision scenario, statistical criteria
allow us to evaluate discrimination in terms of statisti-
cal expressions involving the random variables A (sen-
sitive attribute), Y (target variable), and R (the classifier
or score). Therefore, it is easy to determine whether a
criterion is satisfied or not by calculating the joint dis-
tribution of these random variables. Starting from the
definition of independence introduced in [8], for there
to be independence between two values of the sensitive
attribute, we need to verify that the joint probability has
the same values in both cases 𝑎𝑖 and 𝑎𝑗:

𝑃(𝑅 = 1|𝐴 = 𝑎𝑖) = 𝑃(𝑅 = 1|𝐴 = 𝑎𝑗) (8)

According to this hypothesis, the ideal case of perfect
fairness occurs when the probabilities have the same
value. As a consequence of this consideration, a measure
of non-independence is obtained by calculating the dis-
tance between the two values, which is zero in the ideal
case of complete independence:

𝔘(𝑎𝑖, 𝑎𝑗) = |𝑃(𝑅 = 1|𝐴 = 𝑎𝑖) − 𝑃(𝑅 = 1|𝐴 = 𝑎𝑗)| (9)

Table 2 shows the calculation of joint probabilities in
the case of the well-known Compas dataset [9], in which
the ML system incorrectly predicted a higher degree of
recidivism among African-American detainees.
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Table 2
Probability for Sensitive Attribute Race

𝐴 = 𝑎𝑖 𝑃(𝑅 = 1|𝐴 = 𝑎𝑖) Centroid

Caucasian 0.33
Hispanic 0.28
Other 0.20
Asian 0.23

0.26

African-American 0.58
Native-American 0.73

0.65

In the case of the Compas dataset, the joint probabil-
ities cluster around two centroids, which supports the
reasoning that it would be more reasonable to select these
two points as representative of the two treatment groups.
In fact, if the probability values cluster into subsets of
values, it signifies fair independence within the group
and, conversely, inequity between groups. If the distri-
bution of probability values is nearly uniform and it is
not possible to identify distinct groups, or if the num-
ber of groups is greater than two, you can calculate the
independence measure through the average of distances:

𝔘(𝑎1, .., 𝑎𝑚) =
2

𝑚(𝑚 − 1)

𝑚−1
∑
𝑖=1

𝑚
∑
𝑗=𝑖+1

𝔘(𝑎𝑖, 𝑎𝑗) (10)

In the literature, there are various clustering algorithms,
with k-means and DBSCAN being used in [10]. A differ-
ent approach to measuring fairness corresponds to the
maximum disproportion in the values of joint probabili-
ties (range or variability interval). Instead of measuring
the distances between probabilities belonging to groups,
we can calculate the difference between the maximum
and minimum values (MaxMin algorithm). What has
been discussed so far is applicable, without loss of gen-
erality, to other fairness measures such as separation,
sufficiency, and overall accuracy equality. In all of these
cases, the researcher is interested in identifying the pres-
ence of unfairness in a sensitive attribute A and assessing
its magnitude based on a value within the range {0, 1}.
However, if you calculate a fairness measure for each sen-
sitive attribute A, you may discover that different treat-
ment groups exist in relation to different indices. Since
the original problem is to understand whether there are
treatment differences in the values of sensitive attributes,
rather than calculating a measure for each individual at-
tribute, we can compute fairness measures for each value
of the sensitive attribute. This way, we can construct a
fairness vector with components being the fairness in-
dices and examine the relationships between different
vectors. In [9], a method was used to match treatment
groups based on the Pearson correlation index.

4. Mutual Information
The concept of mutual information allows for the mea-
surement of relationships between the joint probabilities
mentioned in (9). Indeed, it can measure the mutual
information between A and R, which is the amount of
information one random variable reveals about the other.
Therefore, the condition of independence between the
random variables A and R, as indicated in 9, can be ex-
pressed in terms of mutual information:

𝐼 (𝐴, 𝑅) = 𝐻(𝐴) + 𝐻(𝑅) − 𝐻(𝐴, 𝑅) (11)

where H(R) and H(A) are the entropies associated with R
and A, respectively:

𝐻(𝑅) =
𝑛
∑
𝑖=1

𝑃(𝑟𝑖)𝑙𝑜𝑔(𝑃(𝑟𝑖)) (12)

𝐻(𝐴) =
𝑛
∑
𝑖=1

𝑃(𝑎𝑖)𝑙𝑜𝑔(𝑃(𝑎𝑖)) (13)

Instead, the third term in equation 12 is:

𝐻(𝑅, 𝐴) =
𝑛,𝑚
∑

𝑖=1,𝑗=1
𝑃(𝑟𝑖 ∩ 𝑎𝑗)𝑙𝑜𝑔(𝑃(𝑟𝑖 ∩ 𝑎𝑗)) (14)

The other indices can also be expressed by mutual in-
formation and in particular referring to [11] and [10]
Separation is calculated by:

𝐼 (𝑅, 𝐴|𝑌 ) = 𝐻(𝑅, 𝑌 ) +𝐻(𝐴, 𝑌 ) −𝐻(𝑅, 𝑌 , 𝐴) −𝐻(𝑌 ) (15)

sufficiency is expressed by the following equation:

𝐼 (𝑌 , 𝐴|𝑅) = 𝐻(𝑌 , 𝑅) +𝐻(𝐴, 𝑅)−𝐻(𝑌 , 𝑅, 𝐴)−𝐻(𝑅) (16)

finally, the Overall Accuracy Equality (17) is computed
by:

𝐻(𝐴, 𝑅|𝑌 = 𝑅) = 𝐻(𝐴, 𝑌 = 𝑅)+
+ 𝐻(𝑅, 𝑌 = 𝑅) − 𝐻(𝑅 = 𝑌 , 𝐴|𝑅 = 𝑌 ) (17)

5. Data Quality Measures for Input
The underlying idea of this research is to find a way to 
anticipate disparities in the final outcomes of an AI sys-
tem by evaluating the learning training sets from the 
perspective of data quality (ISO IEC 25012). In particular, 
it has been observed how concepts of completeness, het-
erogeneity (Gini index), diversity (Shannon or Simpson 
index) or imbalance (imbalance ratio) can be used as pre-
dictive markers to highlight the risk that a data defect 
may propagate within the learning system.

Initially, [12] to analyze data quality issues in the learn-
ing data, Gini indices, imbalance ratios, Shannon, and
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Simpson indices were used. For fairness measures, in-
dependence and separation measures - consisting of the
components True Positive Rate (TPR) and False Positive
Rate (FPR) - were considered using the average of dis-
tances between probabilities as a criterion for synthetiz-
ing values (11).

The research revealed that the Gini index has good pre-
dictive capability for low values of the TPR component
of Separation. The imbalance ratio indicator has good
predictive capability for separation but not for indepen-
dence. The Shannon index showed an acceptable level of
prediction for the independence measure, excellent for
the separation measure, but was completely ineffective
for the FPR measure of separation. The Simpson index
did not appear to be useful as a predictive bias measure.
The results were quite encouraging, so there was an

attempt to improve the approach by acting on two fronts:
the calculation method of fairness measures and the qual-
ity index of the input data to the learning system.
Regarding the calculation method for fairness mea-

sures, the use of a central tendency index could mask
compensated errors, so three different approaches were
attempted: using the maximum disparity between proba-
bility values (MinMax method [13]), using the distance
between groups of similar probabilities (k-means and
DBSCAN), and using mutual information.

As for the quality index selected in ISO IEC 25012, we
chose the characteristic of completeness, particularly the
concept of maximum completeness as defined in [10].

The study demonstrated that the use of maximum com-
pleteness and theMinMaxmeasurement system provided
the best predictive capability for fairness indices: inde-
pendence, separation, sufficiency, and overall accuracy
equality. Additionally, the use of the MinMax technique
showed better sensitivity compared to mutual informa-
tion and the DBSCAN clustering system, as shown in
[13].

6. Conclusions
In the realm of AI systems, data governance and data
quality are extremely important concepts. Since AI algo-
rithms rely on learning datasets, the quality of input data
can impact the outcomes. In this article, we have seen
how completeness can serve as a good predictor of errors
in the outputs of an ML system. In this context, it is clear
that the definition of guidelines for the application of
data governance and data quality in AI systems is crucial.
Addressing bias in the data of technological systems is a
significant challenge in the digital age, as the decisions
made by algorithms can have substantial societal and
personal implications, which can be measured according
to international ISO/IEC standards.
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