
Reinforcement Learning-based Service Assurance of
Microservice Systems

Xiaojian Liu1, Yangyang Zhang2, Wen Gu1, Qiao Duan1 and Qingqing Ji3

1 Beijing University of Technology, Beijing, China
2 China Electronics Standardization Institute, Beijing, China
3 Chinese Academy of Sciences, Beijing, China

Abstract
As microservices architecture has steadily emerged as the prevailing direction in software system
design, the assurance of services within microservices systems has garnered increasing attention. The
concept of intelligent service assurance within microservices systems offers a novel approach to
addressing adaptation challenges in complex, risk-laden environments. This paper introduces a
groundbreaking approach known as the Reinforcement Learning (RL) Based Service Assurance Method
for Microservice Systems (RL-SAMS), which incorporates the fundamental RL principle of "improving
performance through experience" into service assurance activities. Through the implementation of an
intelligent service degradation mechanism, the continuity of services is ensured. Within the framework
of our designed microservices system, two essential components are introduced: the Adapter
Component (AC) and the RL Decision-making Component (RLDC). Each microservice is treated as an
independent RL agent, resulting in the construction of a multi-agent RL decision-making architecture
that balances "centralized learning and decentralized decision-making." This intelligent decision-
making model undergoes training and learning, accumulating positive experiences through continuous
trial and error. Experimental cases demonstrate that RL-SAMS outperforms the widely adopted Hystrix
across various service risk scenarios, particularly excelling in intelligently critical service assurance.

Keywords
Reinforcement learning; Microservice system; Intelligent service assurance 1

1. Introduction

In 2014, Martin Fowler formally introduced the
concept of "Microservices" through his blog post titled
"Microservices." This innovative approach to software
architecture involves breaking down a software
system into numerous small services, each operating
independently in its own process. When compared to
traditional monolithic systems, microservices
architectures offer several notable advantages,
including the ability to deploy independently,
effortless scalability, and decentralization. An
increasing number of network applications have made
the transition to microservices architecture, with
notable examples including Amazon, Netflix, Twitter,
SoundCloud, and PayPal. To give you an idea of the
scale, a single page on Amazon can trigger
approximately 100 to 150 microservice calls, while the
Netflix system manages a staggering 5 billion
microservice interactions on a daily basis [1]. It's
evident that microservice architecture has
progressively emerged as the predominant
developmental direction for software system
architecture [2][3][4].

5th International Workshop on Experience with SQuaRE Series and
its Future Direction, December 04, 2023, Seoul, Korea

liuxj@bjut.edu.cn (X. Liu);zhangyy@cesi.cn (Y. Zhang)

 0000-0002-0666-4102 (X. Liu); 0009-0006-4940-8527(Y.
Zhang)

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

The autonomy and collaborative interaction
among microservices offer both advantages and, at the
same time, present significant service reliability risks.
On one hand, this autonomy entails separate
operations, maintenance, and independent decision-
making. This can lead to a focus on local interests at the
expense of global considerations, sometimes even
resulting in conflicting service assurance efforts
among microservices. On the other hand, the intricate
business interactions among microservices often
amplify "local failures" into "cascading failures,"
triggering an "avalanche effect." In such cases, problem
resolution becomes elusive as the root cause remains
elusive.

The key to addressing these service assurance
challenges lies in establishing an effective group
decision-making mechanism within the microservices
system. This mechanism empowers each microservice
with the ability to comprehend the bigger picture and
make decisions for the entire system. This paper,
utilizing a reinforcement learning approach, explores
a service assurance decision-making method tailored
for microservices systems. Each microservice is
conceptualized as an independent reinforcement
learning agent. Through continuous interactions with

34

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

the service environment and the operational and
maintenance environment, the fundamental concept
of "enhancing performance through experiential
learning" is woven into the fabric of microservice
assurance. This equips the decision-making system
with the capacity to intelligently differentiate between
assurance targets and to flexibly provide assurance for
critical elements.

Section 2 of the paper provides a summary of
related research, with a particular emphasis on the
current state of research in microservice assurance
technology and reinforcement learning methods. In
Section 3, we present an overview of the RL-SAMS
method along with an introduction to its key
components. Section 4 showcases the effectiveness of
the RL-SAMS method through pre-experimental
results. Finally, in Section 5, we summarize the
contributions of this paper and outline potential
directions for future research.

2. Related Works

Technologies related to microservice assurance
include service degradation technology [5][6], service
fault tolerance technology [7], service elastic scaling
technology [8][9], service current limiting technology
[10] etc. Santos et al. [6] proposed a strategy for online
service degradation based on quality of service (QoS),
which aims to minimize request congestion due to lack
of system resources; Combining architecture analysis
method and sensitivity analysis method, Wang et al. [7]
proposed a fault-tolerant strategy algorithm based on
reliability criticality measurement; Coulson et al. [9]
designed an automatic expansion system prototype of
microservice based on supervised learning; Firmani et
al. [10] put forward an API call rate limit selection
strategy in order to prevent unauthorized users from
achieving ultra-high SLA. Most of the existing research
on microservice assurance focus on the local situation
of their respective microservices. It is impossible to
comprehensively consider the guarantee of service
expectations from the perspective of users. One of the
key problems that need to be solved is how to establish
an assurance system of service for global decision-
making without breaking the original distributed and
independent framework of microservice.

The existing research on reinforcement learning-
enabled software adaptive control can be roughly
divided into: (1) Strategy generation and evolution
research. Wang et al. [11] used reinforcement learning
method to solve the problem of dynamic service
configuration in the integrated adaptive system. Wang
et al. [12] used reinforcement learning method,
combined with Markov model Gaussian process, to
establish a multi-agent game model, which aims to
solve the problem of self-adaptive combination of
services. Rao et al. [13] proposed a distributed
learning mechanism to solve the problem of resource
allocation in the cloud environment. Dongsun et al. [14]
proposed a framework-based online planning method
for self-management, which enables the software
system to change and improve its plan through online
RL. Amoui et al. [15] used RL in the planning process
to support action selection, and clarifies why, how and
when RL can benefit autonomous software systems. (2)

System and environmental modelling research. Zhao
et al. [16] proposed a learning framework that
integrates online and offline work based on
reinforcement learning and case sets. Belhaj et al. [17]
put forward a framework named "autonomic
container", which endows applications with run-time
adaptive action capability based on RL method. With
model-based reinforcement learning method, Ho HN
et al. 18] used Markov process to model the
environment state, which is applied for the planning
and continuous optimization of adaptive software
systems. Tesauro et al. [19] utilized reinforcement
learning method to solve the problem of service
ranking.

Regarding multi-agent RL, the representative
studies in recent years include MADDPG (Multi-Agent
Deep Deterministic Policy Gradient) [20] and COMA
(Counterfactual Multi-Agent actor-critic) [21], both of
which are based on classic Actor-Critic architecture. At
present, multi-agent RL is one of the most focused and
widely researched directions in reinforcement
learning methods.

In summarizing the current state of research, it's
clear that while various technologies and effective
measures have been developed for microservice
system assurance from different angles, most of them
primarily address localized issues and decision-
making within their own domains. As a result, they
often fall short in comprehensively addressing the
decision-making requirements for the overall system's
assurance. The challenge now lies in merging the
decision-making traits inherent to microservice
architecture with the valuable insights gained from the
remarkable research achievements in reinforcement
learning methods within the realm of adaptive control.
The objective is to empower each microservice with a
global perspective and intelligent decision-making
capabilities. This remains at the forefront of ongoing
research efforts.

3. RL-SAMS Methodology

The comprehensive architecture of RL-SAMS is
illustrated in Figure 1. Building upon the Microservice
System Component (MC), we've introduced the
Adapter Component (AC) and the RL Decision-making
Component (RLDC). Within the MC, we've enhanced
each microservice by incorporating the AC. This
enhancement includes the addition of a SMM and a
DCM, both of which provide interfaces for interaction
with the RLDC. To keep the illustration
straightforward, Figure 1 simplifies the
interdependence among multiple microservices. The
RLDC establishes a mechanism characterized by
"centralized learning and decentralized decision-
making."

The fundamental concept of "enhancing
performance through experiential learning" is
embedded into microservice assurance. This
integration is achieved through the ongoing
interactive learning of multiple agents, taking into
account the effects of system operation and
maintenance, user expectations, and various other
state factors.

35

Figure 1: Architecture of RL-SAMS

3.1. Adapter Component

The core function of the AC is to provide an Interactive
interface for the RLDC to perceive the running service
state of the microservice system, and to timely control
the configuration and implementation of various types
of assurance actions. The main functional modules
include a state monitoring module (SMM) and a
dynamic configuration module (DCM).

1. State monitoring module (SMM). The content
of state monitoring depends on the actual
requirements, such as request volume, correct
rate, response time, etc., and can also be
specific business parameters, exception codes,
etc. Spring Cloud framework provides
"/metrics" endpoint, "/health" endpoint,
"/trace" endpoint and other interfaces for
regular microservice state monitoring. Section

4 Experiment will activate these endpoints to
achieve simple state monitoring to
demonstrate the effectiveness of RL-SAMS.
Customized SMMs and interfaces are also
suitable for the mechanism proposed in this
paper.

2. Dynamic configuration module (DCM). To
achieve runtime oriented dynamic assurance, it
is required the RLDC have the ability to
dynamically configure and execute assurance
action without restarting the microservice. We
establish a configuration center server to
centrally manage the configuration files of each
microservice, and the RLDC controls the
content of each microservice configuration file
according to the decision result, as well as the
action of microservice configuration update, so
as to realize the service assurance, as showed
in Figure 2.

Figure 2: Interaction between AC and RLDC

36

Figure 3: Framework of RLDC

3.2. RL Decision-making Component

In the RLDC, each microservice with decision-making
ability is modelled as an independent agent for
centralized training and decentralized execution. That
is, in training stage, the learning of each agent is
performed using globe states to consider strategies of
other agents; in execution stage, each agent only
makes decisions based on its own state perception. In
addition, an experience replay pool is set up, and the
experience replay mechanism is used to solve the
problems of correlation between training samples and
unfixed probability distribution of training samples.
Each state transition are recorded as state-action pair
and the corresponding reward and next state, as
follows:

(𝑠1, 𝑠2, … , 𝑠𝑛; 𝑎1, 𝑎2, … , 𝑎𝑛; 𝑅; 𝑠1
′ , 𝑠2

′ , … , 𝑠𝑛
′)

Where 𝑠𝑖 is the current state of each
microservice. 𝑎𝑖 is assurance action selected by each
microservice. 𝑅 is reward value, such as the degree of
satisfaction of various users’ expectations after each
assurance action is performed. 𝑠𝑖

′ is the next state of
each microservice. The framework and process of the
two microservices are shown in Figure 3. Each
microservice corresponds to an independent "action
decision" module and a shared "value decision"
module. There are two strategy networks with same
structure in one "action decision" module: Target
strategy 𝜇𝑖

′ and evaluation strategy 𝜇𝑖 , which are
used to assurance decision making based on local
microservice state:

1. Target strategy 𝜇𝑖
′ takes the next state of

local microservice 𝑠𝑖
′ as input, and outputs the

assurance action 𝑎𝑖
′ corresponding to 𝑠𝑖

′:

𝑎𝑖
′ = 𝜇𝑖

′(𝑠𝑖
′|𝜃𝑡𝑎𝑟𝑔𝑒𝑡

𝜇
)

The target strategy 𝜇𝑖
′ does not actively train, but

periodically updates it with the parameters of the
continuously learning evaluation trategy 𝜇𝑖 ,
thereby increasing the stability of the learning
process. 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 is the parameter of

𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐.

2. Evaluation strategy 𝜇𝑖 takes the current
state of local microservice 𝑠𝑖 as input, and
outputs the assurance action 𝑎𝑖 corresponding to
𝑠𝑖:

𝑎𝑖 = 𝜇𝑖(𝑠𝑖 |𝜃𝑒𝑣𝑎𝑙
𝜇

)

The evaluation strategy 𝜇𝑖 is continuously
trained and learned based on the feedback of Q-
value from "value decision" module. 𝜃𝑒𝑣𝑎𝑙 is the
parameter of 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖c.
Although decentralized decision-making, each

microservice is closely related in business logic, so the
service effect of each microservice is mostly
comprehensive evaluation. Therefore, compared with
MADDPG, which designs a critic module for each agent,
this paper designs a shared critic module (i.e., "value
decision" module) for all microservices, and outputs
the corresponding Q-value of each microservice
according to the comprehensive reward function. The
"value decision" module designs two neural networks
with the same structure: Value decision target
network 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 and Value decision
evaluation network 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐, which are
used to output the Q-value of each microservice
assurance action based on the global state of the
microservice system:

1. 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 takes the next state of the
microservice system (𝑠1

′ , 𝑠2
′ , … , 𝑠𝑛

′) and the
corresponding (𝑎1

′ , 𝑎2
′ , … , 𝑎𝑛

′) as the input, and
outputs the Q-value corresponding to the next state

of each microservice:
𝑄1

′ (𝑠𝑖
′, 𝑎𝑖

′ |𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

)

where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 is the parameter of

𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐. 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 does not
actively train and learn, but periodically updates it
with the continuously learned parameters of
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 to increase the stability of
the learning process.
2. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 takes the current
state of the microservice system (𝑠1, 𝑠2, … , 𝑠𝑛)
and the corresponding (𝑎1, 𝑎2, … , 𝑎𝑛) as input,
and outputs the Q-value corresponding to the
current state of each microservice value:

𝑄𝑖 (𝑠𝑖 , 𝑎𝑖 |𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

)

37

where 𝜃𝑒𝑣𝑎𝑙 is the parameter of
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖c. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐
periodically selects several state transition records
randomly from the experience replay pool for
training and learning, let’s say 𝑁. The process of
training and learning is the process of continuously
optimizing the difference between the estimated
Q-value and the actual Q-value. The loss function is
defined as:

𝐿(𝜃𝑒𝑣𝑎𝑙) =
1

𝑁
∑(𝑟 + 𝛾 ∗ 𝑄𝑖

′(𝑠𝑖
′, 𝑎𝑖

′|𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

)

− 𝑄𝑖(𝑠𝑖 , 𝑎𝑖|𝜃𝑒𝑣𝑎𝑙
𝑄

))
2

where 𝛾 is the learning rate, 𝛾 ∈ [0,1] . The
larger the 𝛾 , the more emphasis on long-term
rewards in the learning process. The evaluation
strategy of each microservice 𝜇𝑖 updates the
parameters according to gradient descent (J1 and
J2 in Figure 3):

∇𝐽 ≈
1

𝑁
∑ ∇𝜇𝑖(𝑠𝑖|𝜃𝑒𝑣𝑎𝑙

𝜇
) ∙ ∇ 𝑄𝑖(𝑠𝑖 , 𝑎𝑖 , 𝜃𝑒𝑣𝑎𝑙)

4. Experiments

4.1. Experimental scene

In order to verify the effectiveness of RL-SAMS, we
build a user-information-querying system consisting
five microservices with "VMware Workstation 16 Pro",
as shown in Figure 4. The system includes three
business microservices, one configuration center
microservice and one registry center microservice.
Each microservice is developed based on "Spring
Cloud" framework[22] and deployed on an
independent VMware virtual machine. The
configuration of each virtual machine is as follows:
memory 1GB, number of processors 1, hard disk (SCSI)
20GB, operating system Ubuntu-16.04.

Three business microservices include:
1. Two client microservices, 𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 which are used to receive
requests for querying user information, and call
the 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice to return the
result to the requesting user. There is no difference
in business logic between the two microservices,
just to verify that the RL-SAMS has the ability to

guarantee core business priority, one of the two
client microservices is selected as the core
business microservice.
2. One 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice,
responsible for background business processing.
The microservice receives user information query
requests, and returns the query results. In order to
simulate the performance bottleneck of each
microservice, set the 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice
to execute the information query service after
sleeping for one second.
We simulate high concurrent business requests

based on the performance testing framework "Locust".
In the experiment, we deploy three pressure

simulation modules for three business function
microservices: 𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡, 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡, and
𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟. We set three simulation modules with
different pressure cycles to simulate different
pressure sources of the microservice system to verify
the core business priority assurance capability of RL-
SAMS in the face of different pressure sources.

4.2. Experimental Design

The experiment takes whether the two request
microservices perform service degrade as action space,
𝑎𝑐𝑜𝑟𝑒 ∈ [on, off] , 𝑎𝑛𝑜𝑛_𝑐𝑜𝑟𝑒 ∈ [on, off] , and compares
the average reward value of all heartbeat monitoring
requests for two client microservices within 15s after
each assurance action. 𝑎𝑐𝑜𝑟𝑒 = 𝑜𝑛 means that the
service degradation mechanism is enabled to ensure
service continuity, and 𝑎𝑐𝑜𝑟𝑒 = 𝑜𝑓𝑓 means the
opposite. Reward function is defined as:

𝑅 =
∑ 𝑅CC

𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
+

∑ 𝑅NC

𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
Where，

𝑅CC = {

4, 𝑛𝑜𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
1, 𝑑𝑒𝑔𝑟𝑎𝑑𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
−3, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑅NC = {

1, 𝑛𝑜𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
0, 𝑑𝑒𝑔𝑟𝑎𝑑𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
−1, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 are the
total number of microservice state heartbeat
monitoring requests sent randomly in the
corresponding period, ∑ 𝑅CC and ∑ 𝑅NC are the
sum of the heartbeat monitoring request rewards for
𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 respectively. Three
responses are as following:

• 𝑛𝑜𝑟𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒. Returning the correct
request result within the specified time;
• 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑_𝑠𝑒𝑟𝑣𝑖𝑐𝑒. The microservice is
degraded and in this experiment, it is designed that
a default value is returned without actually
processing;
• 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒. Timing out or returning
error. Different reward value is designed between
𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and the 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 to
encouraging business-critical service assurance.
In RL, a 2-layer 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 and

𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 are constructed based on
TensorFlow. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 updates the
parameters to 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 every 200 learning.
The optimization of the neural network adopts
RMSprop optimizer. The learning rate 𝛾 is set to 0.9,
and the exploration strategy 𝜀 is set to 0.8. The
capacity of the experience replay pool is 200, and
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 randomly selects 32 sets of
state transition records from the experience replay
pool every 5 steps as training samples for learning, and
simultaneously trains two behavioral decision
evaluation strategies.

38

Figure 4: Experimental Scene

Table 1
Comparative Experiment Scenarios

Service risk scenarios
Core_client

Concurrent users
Non_core_client
Concurrent users

Expectation

Action RCC RNC R

HJC-HCC-LNC 200 50 [acore = on, anon_core = off] 1 1 2
HJC-LCC-HNC 50 200 [acore = off, anon_core = on] 4 0 4
LJC-LCC-LNC 50 50 [acore = off, anon_core = off] 4 1 5
HJC-LCC-LNC 100 100 [acore = off, anon_core = on] 4 0 4
HJC-HCC-HNC 200 200 [acore = on, anon_core = off] 1 0 1

4.3. Comparative Experiment

Experiment takes the widely used Hystrix[23] as
baseline method, and compares assurance effect
between the Hytrix service circuit breaker mechanism
and RL-SAMS in five service risk scenarios shown in
Table 1. In addition, the service effect without any
assurance method, named "Blank" in Figure 5, will be
compared as another baseline to verify the successful
implementation of Hystrix and RL-SAMS.Table 1 shows
five different service risk scenarios and expected
optimal decision action and average reward. The name
of service risk scenarios is combined by three fields,
𝑋1𝐽𝐶−𝑋2𝐶𝐶−𝑋3𝑁𝐶, corresponding different concurrent
pressure models. 𝑋1𝐽𝐶 is joint concurrent field,
meaning if requests from both 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 together will achieve
performance saturation. 𝑋2𝐶𝐶 and 𝑋3𝑁𝐶 is independent
concurrent fields, meaning if requests from
𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 or 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 respectively
will achieve performance saturation. H means high
concurrent pressure. L means low concurrent
pressure. The preliminary experiments indicate that
around 150 concurrent users can subject the
microservices in this experiment to high concurrency
pressure.

Figure 5: Comparative Experiment
The average reward value of heartbeat monitoring

requests for three different service assurance methods
in five service risk scenarios is shown in Figure 5.

In all 𝐻𝐽𝐶 scenarios: (1) The “Blank” method will
cause the response time of all requests to time out.
According to the reward function, the average reward
value is -4. (2) Using the "Hystrix" method, whether it
is high independent concurrency (𝐻𝐶𝐶 or 𝐻𝑁𝐶), will
activate circuit breakers of both two request
microservices. The average reward value is 1. Due to
the existence of the retransmission mechanism in
"Hystrix", the average reward value fluctuates in the
range of 1+0.2. (3) By comparing the effects of
𝐻𝐽𝐶−𝐻𝐶𝐶−𝐿𝑁𝐶, 𝐻𝐽𝐶−𝐿𝐶𝐶−𝐻𝑁𝐶, 𝐻𝐽𝐶−𝐿𝐶𝐶−𝐿𝑁𝐶, it is verified
that the decision model trained by the RL-SAMS will
intelligently and selectively execute the degrade of the
microservices according to source of pressure. In

 4.3.1. Effectiveness Analysis

39

𝐻𝐽𝐶−𝐻𝐶𝐶−𝐿𝑁𝐶, since 𝐻𝐶𝐶 causes 𝐻𝐽𝐶, 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is
impossible to assurance. So, it is best to degrade its
service to assurance 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠; In
𝐻𝐽𝐶−𝐿𝐶𝐶−𝐻𝑁𝐶, since 𝐻𝑁𝐶 causes 𝐻𝐽𝐶, it is best to degrade
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 to assurance 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠; In
𝐻𝐽𝐶−𝐿𝐶𝐶−𝐿𝑁𝐶, 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
together cause 𝐻𝐽 𝐶, it is also best to degrade and
sacrifice 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 to assurance
𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, according to reward function.

The experiment verify that RL-SAMS can not only
effectively select the assurance action, but also
distinguish the degraded objects according to the
source of the service risk, so as to realize intelligent
elastic Microservice System assurance.

Figure 6: RL process in HJC-LCC-HNC

4.3.2. Model Accuracy and Training
Process Analysis

During the model training process, two Locust
modules for handling requests as microservices
continuously simulate concurrent request pressures
with a random cycle duration of 1800 seconds.
Considering coverage of risk scenarios for five types of
services and RL state space control to shorten the
learning cycle, the random range for concurrent users
is set to [0, 50, 100, 150, 200]. Logs record the state of
each step and the selection of safeguarding actions
during the model training process. Taking service risk
scenario HJC-LCC-HNC as an example, Figure 6 presents
the proportion of assurance actions at each stage of
training.Due to the random nature of simulating
concurrent request pressures, HJC-LCC-HNC does not
occur continuously. The number of cycles in Figure 6
refers to the extraction of all assurance action selection
records when HJC-LCC-HNC occurs throughout the entire
training process. These records are sorted
chronologically, and every 100 data points are used to
calculate the proportion of assurance actions in a
Period. The decision of whether to degrade Core_client
and Non_core_client microservices to break their
concurrent requests will be made. As shown in Figure
6, in Period 1, the intelligent agents of the two request
microservices almost randomly decide whether to
activate the degradation. Since both client
microservices experience low concurrent pressure,
they both exhibit a trend of not activating degradation
in Period 2, resulting in an increase in the proportion
of [acore = off, anon_core = off]. Under the influence of
the "value decision" module, Core_client and

Non_core_client will receive the maximum reward
values with [acore = off, anon_core = on] , and their
corresponding Q-values will also be the highest.
Therefore, as training progresses, the proportion of
[acore = off, anon_core = on] increases. After Period 6,
the proportion of [acore = off, anon_core = on]
exceeds 90% and stabilizes, reaching 98% in Period 8.
In other words, in service risk scenario HJC-LCC-HNC, RL-
SAMS can, with a probability of 98% * 98% = 96%,
ensure the normal service of the Core_client by only
degrading the concurrent requests of the
Non_core_client. The accuracy performance in other
service risk scenarios is similar.

5. Conclusion

This paper introduces an innovative decision-making
method for microservice systems, leveraging
reinforcement learning principles. It seamlessly
incorporates the core concept of "enhancing
performance through experiential learning" into
service assurance processes within the microservices
architecture. The flexible assurance capability
targeting critical assurance components paves the way
for novel approaches to intelligent service assurance
and maintenance. Through a thorough analysis and
validation via case experiments, RL-SAMS
demonstrates its prowess across various service risk
scenarios, particularly excelling in its ability to
intelligently differentiate key assurance elements and
proactively ensure the continuity of core business
operations.

While this paper has introduced reinforcement
learning methods into service assurance activities
within microservice systems, there are still many
aspects that require further research and exploration.
These include:
• Efficient Learning with Expanding State and

Action Spaces: Reinforcement learning is
fundamentally about accumulating experiential
knowledge to maximize rewards and minimize
losses. As the state and action spaces grow, the
cost of model training and learning also increases
rapidly. It will be necessary to investigate and
improve methods for accumulating positive
experiences more efficiently and enhancing
convergence rates.

• Decentralized Training and Centralized Learning:
The approach taken in this paper involves
centralized training and learning. However, in
real-world scenarios where microservices come
from different providers, there may be obstacles
to sharing operational data. Addressing how to
limit data sharing while enabling decentralized
training for individual microservices and
centralized learning of experiences is a pressing
challenge.

• Integration with Log Analysis and Risk Prediction:
Exploring how to combine reinforcement learning
with log analysis and risk prediction to leverage
prior knowledge and accelerate learning
efficiency is an area worth investigating.
Integrating reinforcement learning with existing
systems for proactive risk management and

40

incident response can enhance the overall
effectiveness of service assurance activities.

These areas of research and improvement will
contribute to the further development and refinement
of reinforcement learning methods in the context of
microservices and service assurance.

References

[1] Xiang zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu,
Chao Ji, and Wenyun Zhao. Poster: Benchmarking
microservice systems for software engineering
research. In 2018 IEEE/ACM 40th International
Conference on Software Engineering:
Companion (ICSE-Companion), pages 323–324.
IEEE, 2018.

[2] Holger Knoche and Wilhelm Hasselbring. Using
microservices for legacy software modernization.
IEEE Software, 35(3):44–49, 2018.

[3] Florian Rademacher, Jonas Sorgalla, and Sabine
Sachweh. Challenges of domain-driven
microservice design: A model-driven perspective.
IEEE Software, 35(3):36–43, 2018.

[4] Claus Pahl, Antonio Brogi, Jacopo Soldani, and
Pooyan Jamshidi. Cloud container technologies: a
state-of-the-art review. IEEE Transactions on
Cloud Computing, 7(3):677–692, 2017.

[5] Zhizhen Zhong, Jipu Li, Nan Hua, Gustavo B
Figueiredo, Yanhe Li, Xiaoping Zheng, and
Biswanath Mukherjee. On qos-assured degraded
provisioning in service-differentiated multi-
layer elastic optical networks. In 2016 IEEE
Global Communications Conference
(GLOBECOM), pages 1–5. IEEE, 2016.

[6] Alex S Santos, Andre K Horota, Zhizhen Zhong,
Juliana De Santi, Gustavo B Figueiredo, Massimo
Tornatore, and Biswanath Mukherjee. An online
strategy for service degradation with
proportional qos in elastic optical networks. In
2018 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2018.

[7] Lei Wang. Architecture-based reliability-
sensitive criticality measure for fault-tolerance
cloud applications. IEEE Transactions on Parallel
and Distributed Systems, 30(11):2408–2421,
2019.

[8] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar
Buyya. Auto-scaling web applications in clouds:
A taxonomy and survey. ACM Computing Surveys
(CSUR), 51(4):1–33, 2018.

[9] Nathan Cruz Coulson, Stelios Sotiriadis, and Nik
Bessis. Adaptive microservice scaling for elastic
applications. IEEE Internet of Things Journal,
7(5):4195–4202, 2020.

[10] Donatella Firmani, Francesco Leotta, and
Massimo Mecella. On computing throttling rate
limits in web apis through statistical inference. In
2019 IEEE International Conference on Web
Services (ICWS), pages 418–425. IEEE, 2019.

[11] Hongbing Wang, Xiaojun Wang, Xingguo Hu,
Xingzhi Zhang, and Mingzhu Gu. A multi-agent
reinforcement learning approach to dynamic
service composition. Information Sciences,
363:96–119, 2016.

[12] Hongbing Wang, Qin Wu, Xin Chen, Qi Yu, Zibin
Zheng, and Athman Bouguettaya. Adaptive and
dynamic service composition via multiagent
reinforcement learning. In 2014 IEEE
international conference on web services, pages
447–454. IEEE, 2014.

[13] Jia Rao, Xiangping Bu, Kun Wang, and Cheng-
Zhong Xu. Self-adaptive provisioning of
virtualized resources in cloud computing. In
Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and
modeling of computer systems, pages 129–130,
2011.

[14] Dongsun Kim and Sooyong Park. Reinforcement
learning-based dynamic adaptation planning
method for architecture-based selfmanaged
software. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing
Systems, pages 76–85. IEEE, 2009.

[15] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab,
and Ladan Tahvildari. Adaptive action selection
in autonomic software using reinforcement
learning. In Fourth International Conference on
Autonomic and Autonomous Systems (ICAS’08),
pages 175–181. IEEE, 2008.

[16] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin.
A reinforcement learning-based framework for
the generation and evolution of adaptation rules.
In 2017 IEEE International Conference on
Autonomic Computing (ICAC), pages 103–112.
IEEE, 2017.

[17] Nabila Belhaj, Djamel Belaïd, and Hamid Mukhtar.
Framework for building self-adaptive
component applications based on reinforcement
learning. In 2018 IEEE International Conference
on Services Computing (SCC), pages 17–24. IEEE,
2018.

[18] Han Nguyen Ho and Eunseok Lee. Model-based
reinforcement learning approach for planning in
self-adaptive software system. In Proceedings of
the 9th International Conference on Ubiquitous
Information Management and Communication,
pages 1–8, 2015.

[19] Gerald Tesauro, Nicholas K Jong, Rajarshi Das,
and Mohamed N Bennani. A hybrid
reinforcement learning approach to autonomic
resource allocation. In 2006 IEEE International
Conference on Autonomic Computing, pages 65–
73. IEEE, 2006.

[20] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb,
OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative
competitive environments. Advances in neural
information processing systems, 30, 2017.

[21] Jakob Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In
Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[22] Cosmina I, Cosmina I. Spring microservices with
spring cloud[J]. Pivotal certified professional
spring developer exam: a study guide, 2017: 435-
459.

[23] Molchanov H, Zhmaiev A. Circuit breaker in
systems based on microservices architecture[J].
2018.

41

