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Abstract 
As microservices architecture has steadily emerged as the prevailing direction in software system 
design, the assurance of services within microservices systems has garnered increasing attention. The 
concept of intelligent service assurance within microservices systems offers a novel approach to 
addressing adaptation challenges in complex, risk-laden environments. This paper introduces a 
groundbreaking approach known as the Reinforcement Learning (RL) Based Service Assurance Method 
for Microservice Systems (RL-SAMS), which incorporates the fundamental RL principle of "improving 
performance through experience" into service assurance activities. Through the implementation of an 
intelligent service degradation mechanism, the continuity of services is ensured. Within the framework 
of our designed microservices system, two essential components are introduced: the Adapter 
Component (AC) and the RL Decision-making Component (RLDC). Each microservice is treated as an 
independent RL agent, resulting in the construction of a multi-agent RL decision-making architecture 
that balances "centralized learning and decentralized decision-making." This intelligent decision-
making model undergoes training and learning, accumulating positive experiences through continuous 
trial and error. Experimental cases demonstrate that RL-SAMS outperforms the widely adopted Hystrix 
across various service risk scenarios, particularly excelling in intelligently critical service assurance. 
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1. Introduction

In 2014, Martin Fowler formally introduced the 
concept of "Microservices" through his blog post titled 
"Microservices." This innovative approach to software 
architecture involves breaking down a software 
system into numerous small services, each operating 
independently in its own process. When compared to 
traditional monolithic systems, microservices 
architectures offer several notable advantages, 
including the ability to deploy independently, 
effortless scalability, and decentralization. An 
increasing number of network applications have made 
the transition to microservices architecture, with 
notable examples including Amazon, Netflix, Twitter, 
SoundCloud, and PayPal. To give you an idea of the 
scale, a single page on Amazon can trigger 
approximately 100 to 150 microservice calls, while the 
Netflix system manages a staggering 5 billion 
microservice interactions on a daily basis [1]. It's 
evident that microservice architecture has 
progressively emerged as the predominant 
developmental direction for software system 
architecture [2][3][4]. 
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The autonomy and collaborative interaction 
among microservices offer both advantages and, at the 
same time, present significant service reliability risks. 
On one hand, this autonomy entails separate 
operations, maintenance, and independent decision-
making. This can lead to a focus on local interests at the 
expense of global considerations, sometimes even 
resulting in conflicting service assurance efforts 
among microservices. On the other hand, the intricate 
business interactions among microservices often 
amplify "local failures" into "cascading failures," 
triggering an "avalanche effect." In such cases, problem 
resolution becomes elusive as the root cause remains 
elusive.  

The key to addressing these service assurance 
challenges lies in establishing an effective group 
decision-making mechanism within the microservices 
system. This mechanism empowers each microservice 
with the ability to comprehend the bigger picture and 
make decisions for the entire system. This paper, 
utilizing a reinforcement learning approach, explores 
a service assurance decision-making method tailored 
for microservices systems. Each microservice is 
conceptualized as an independent reinforcement 
learning agent. Through continuous interactions with 
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the service environment and the operational and 
maintenance environment, the fundamental concept 
of "enhancing performance through experiential 
learning" is woven into the fabric of microservice 
assurance. This equips the decision-making system 
with the capacity to intelligently differentiate between 
assurance targets and to flexibly provide assurance for 
critical elements. 

Section 2 of the paper provides a summary of 
related research, with a particular emphasis on the 
current state of research in microservice assurance 
technology and reinforcement learning methods. In 
Section 3, we present an overview of the RL-SAMS 
method along with an introduction to its key 
components. Section 4 showcases the effectiveness of 
the RL-SAMS method through pre-experimental 
results. Finally, in Section 5, we summarize the 
contributions of this paper and outline potential 
directions for future research. 

2. Related Works

Technologies related to microservice assurance 
include service degradation technology [5][6], service 
fault tolerance technology [7], service elastic scaling 
technology [8][9], service current limiting technology 
[10] etc. Santos et al. [6] proposed a strategy for online 
service degradation based on quality of service (QoS), 
which aims to minimize request congestion due to lack 
of system resources; Combining architecture analysis 
method and sensitivity analysis method, Wang et al. [7] 
proposed a fault-tolerant strategy algorithm based on 
reliability criticality measurement; Coulson et al. [9] 
designed an automatic expansion system prototype of 
microservice based on supervised learning; Firmani et 
al. [10] put forward an API call rate limit selection 
strategy in order to prevent unauthorized users from 
achieving ultra-high SLA. Most of the existing research 
on microservice assurance focus on the local situation 
of their respective microservices. It is impossible to 
comprehensively consider the guarantee of service 
expectations from the perspective of users. One of the 
key problems that need to be solved is how to establish 
an assurance system of service for global decision-
making without breaking the original distributed and 
independent framework of microservice. 

The existing research on reinforcement learning-
enabled software adaptive control can be roughly 
divided into: (1) Strategy generation and evolution 
research. Wang et al. [11] used reinforcement learning 
method to solve the problem of dynamic service 
configuration in the integrated adaptive system. Wang 
et al. [12] used reinforcement learning method, 
combined with Markov model Gaussian process, to 
establish a multi-agent game model, which aims to 
solve the problem of self-adaptive combination of 
services. Rao et al. [13] proposed a distributed 
learning mechanism to solve the problem of resource 
allocation in the cloud environment. Dongsun et al. [14] 
proposed a framework-based online planning method 
for self-management, which enables the software 
system to change and improve its plan through online 
RL. Amoui et al. [15] used RL in the planning process 
to support action selection, and clarifies why, how and 
when RL can benefit autonomous software systems. (2) 

System and environmental modelling research. Zhao 
et al. [16] proposed a learning framework that 
integrates online and offline work based on 
reinforcement learning and case sets. Belhaj et al. [17] 
put forward a framework named "autonomic 
container", which endows applications with run-time 
adaptive action capability based on RL method. With 
model-based reinforcement learning method, Ho HN 
et al. 18] used Markov process to model the 
environment state, which is applied for the planning 
and continuous optimization of adaptive software 
systems. Tesauro et al. [19] utilized reinforcement 
learning method to solve the problem of service 
ranking.  

Regarding multi-agent RL, the representative 
studies in recent years include MADDPG (Multi-Agent 
Deep Deterministic Policy Gradient) [20] and COMA 
(Counterfactual Multi-Agent actor-critic) [21], both of 
which are based on classic Actor-Critic architecture. At 
present, multi-agent RL is one of the most focused and 
widely researched directions in reinforcement 
learning methods.  

In summarizing the current state of research, it's 
clear that while various technologies and effective 
measures have been developed for microservice 
system assurance from different angles, most of them 
primarily address localized issues and decision-
making within their own domains. As a result, they 
often fall short in comprehensively addressing the 
decision-making requirements for the overall system's 
assurance. The challenge now lies in merging the 
decision-making traits inherent to microservice 
architecture with the valuable insights gained from the 
remarkable research achievements in reinforcement 
learning methods within the realm of adaptive control. 
The objective is to empower each microservice with a 
global perspective and intelligent decision-making 
capabilities. This remains at the forefront of ongoing 
research efforts. 

3. RL-SAMS Methodology

The comprehensive architecture of RL-SAMS is 
illustrated in Figure 1. Building upon the Microservice 
System Component (MC), we've introduced the 
Adapter Component (AC) and the RL Decision-making 
Component (RLDC). Within the MC, we've enhanced 
each microservice by incorporating the AC. This 
enhancement includes the addition of a SMM and a 
DCM, both of which provide interfaces for interaction 
with the RLDC. To keep the illustration 
straightforward, Figure 1 simplifies the 
interdependence among multiple microservices. The 
RLDC establishes a mechanism characterized by 
"centralized learning and decentralized decision-
making." 

The fundamental concept of "enhancing 
performance through experiential learning" is 
embedded into microservice assurance. This 
integration is achieved through the ongoing 
interactive learning of multiple agents, taking into 
account the effects of system operation and 
maintenance, user expectations, and various other 
state factors. 
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Figure 1: Architecture of RL-SAMS 

3.1. Adapter Component 

The core function of the AC is to provide an Interactive 
interface for the RLDC to perceive the running service 
state of the microservice system, and to timely control 
the configuration and implementation of various types 
of assurance actions. The main functional modules 
include a state monitoring module (SMM) and a 
dynamic configuration module (DCM). 

1. State monitoring module (SMM). The content 
of state monitoring depends on the actual
requirements, such as request volume, correct
rate, response time, etc., and can also be 
specific business parameters, exception codes, 
etc. Spring Cloud framework provides 
"/metrics" endpoint, "/health" endpoint, 
"/trace" endpoint and other interfaces for 
regular microservice state monitoring. Section 

4 Experiment will activate these endpoints to 
achieve simple state monitoring to 
demonstrate the effectiveness of RL-SAMS. 
Customized SMMs and interfaces are also 
suitable for the mechanism proposed in this 
paper.  

2. Dynamic configuration module (DCM). To 
achieve runtime oriented dynamic assurance, it 
is required the RLDC have the ability to
dynamically configure and execute assurance
action without restarting the microservice. We 
establish a configuration center server to 
centrally manage the configuration files of each 
microservice, and the RLDC controls the
content of each microservice configuration file 
according to the decision result, as well as the
action of microservice configuration update, so 
as to realize the service assurance, as showed 
in Figure 2.

Figure 2: Interaction between AC and RLDC 
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Figure 3: Framework of RLDC 

3.2. RL Decision-making Component 

In the RLDC, each microservice with decision-making 
ability is modelled as an independent agent for 
centralized training and decentralized execution. That 
is, in training stage, the learning of each agent is 
performed using globe states to consider strategies of 
other agents; in execution stage, each agent only 
makes decisions based on its own state perception. In 
addition, an experience replay pool is set up, and the 
experience replay mechanism is used to solve the 
problems of correlation between training samples and 
unfixed probability distribution of training samples. 
Each state transition are recorded as state-action pair 
and the corresponding reward and next state, as 
follows: 

(𝑠1, 𝑠2, … , 𝑠𝑛; 𝑎1, 𝑎2, … , 𝑎𝑛; 𝑅; 𝑠1
′ , 𝑠2

′ , … , 𝑠𝑛
′ )

Where 𝑠𝑖  is the current state of each 
microservice. 𝑎𝑖  is assurance action selected by each 
microservice. 𝑅 is reward value, such as the degree of 
satisfaction of various users’ expectations after each 
assurance action is performed. 𝑠𝑖

′ is the next state of 
each microservice. The framework and process of the 
two microservices are shown in Figure 3. Each 
microservice corresponds to an independent "action 
decision" module and a shared "value decision" 
module. There are two strategy networks with same 
structure in one "action decision" module: Target 
strategy 𝜇𝑖

′  and evaluation strategy 𝜇𝑖 , which are
used to assurance decision making based on local 
microservice state: 

1. Target strategy 𝜇𝑖
′  takes the next state of 

local microservice 𝑠𝑖
′  as input, and outputs the

assurance action 𝑎𝑖
′ corresponding to 𝑠𝑖

′:

𝑎𝑖
′ = 𝜇𝑖

′(𝑠𝑖
′|𝜃𝑡𝑎𝑟𝑔𝑒𝑡

𝜇
) 

The target strategy 𝜇𝑖
′ does not actively train, but 

periodically updates it with the parameters of the 
continuously learning evaluation trategy 𝜇𝑖 , 
thereby increasing the stability of the learning 
process. 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  is the parameter of 

𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐. 

2. Evaluation strategy 𝜇𝑖  takes the current 
state of local microservice 𝑠𝑖  as input, and 
outputs the assurance action 𝑎𝑖  corresponding to 
𝑠𝑖:

𝑎𝑖 = 𝜇𝑖(𝑠𝑖  |𝜃𝑒𝑣𝑎𝑙
𝜇

) 

The evaluation strategy 𝜇𝑖  is continuously 
trained and learned based on the feedback of Q-
value from "value decision" module. 𝜃𝑒𝑣𝑎𝑙  is the 
parameter of 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖c. 
Although decentralized decision-making, each 

microservice is closely related in business logic, so the 
service effect of each microservice is mostly 
comprehensive evaluation. Therefore, compared with 
MADDPG, which designs a critic module for each agent, 
this paper designs a shared critic module (i.e., "value 
decision" module) for all microservices, and outputs 
the corresponding Q-value of each microservice 
according to the comprehensive reward function. The 
"value decision" module designs two neural networks 
with the same structure: Value decision target 
network 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 and Value decision 
evaluation network 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐, which are 
used to output the Q-value of each microservice 
assurance action based on the global state of the 
microservice system: 

1. 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 takes the next state of the
microservice system (𝑠1

′ , 𝑠2
′ , … , 𝑠𝑛

′ )  and the
corresponding (𝑎1

′ , 𝑎2
′ , … , 𝑎𝑛

′ ) as the input, and 
outputs the Q-value corresponding to the next state

of each microservice:
𝑄1

′  (𝑠𝑖
′, 𝑎𝑖

′ |𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

) 

where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  is the parameter of 

𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐. 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 does not 
actively train and learn, but periodically updates it 
with the continuously learned parameters of 
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 to increase the stability of 
the learning process. 
2. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 takes the current
state of the microservice system (𝑠1, 𝑠2, … , 𝑠𝑛) 
and the corresponding (𝑎1, 𝑎2, … , 𝑎𝑛)  as input,
and outputs the Q-value corresponding to the
current state of each microservice value:

𝑄𝑖  (𝑠𝑖 , 𝑎𝑖  |𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

) 
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where 𝜃𝑒𝑣𝑎𝑙  is the parameter of 
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖c. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 
periodically selects several state transition records 
randomly from the experience replay pool for 
training and learning, let’s say 𝑁. The process of 
training and learning is the process of continuously 
optimizing the difference between the estimated 
Q-value and the actual Q-value. The loss function is 
defined as: 

𝐿(𝜃𝑒𝑣𝑎𝑙) =
1

𝑁
∑(𝑟 + 𝛾 ∗ 𝑄𝑖

′(𝑠𝑖
′, 𝑎𝑖

′|𝜃𝑡𝑎𝑟𝑔𝑒𝑡
𝑄

)

− 𝑄𝑖(𝑠𝑖 , 𝑎𝑖|𝜃𝑒𝑣𝑎𝑙
𝑄

))
2

where 𝛾  is the learning rate, 𝛾 ∈ [0,1] . The 
larger the 𝛾 , the more emphasis on long-term 
rewards in the learning process. The evaluation 
strategy of each microservice 𝜇𝑖  updates the 
parameters according to gradient descent (J1 and 
J2 in Figure 3): 

∇𝐽 ≈
1

𝑁
∑ ∇𝜇𝑖(𝑠𝑖|𝜃𝑒𝑣𝑎𝑙

𝜇
) ∙ ∇ 𝑄𝑖(𝑠𝑖 , 𝑎𝑖 , 𝜃𝑒𝑣𝑎𝑙)

4. Experiments

4.1. Experimental scene 

In order to verify the effectiveness of RL-SAMS, we 
build a user-information-querying system consisting 
five microservices with "VMware Workstation 16 Pro", 
as shown in Figure 4. The system includes three 
business microservices, one configuration center 
microservice and one registry center microservice. 
Each microservice is developed based on "Spring 
Cloud" framework[22] and deployed on an 
independent VMware virtual machine. The 
configuration of each virtual machine is as follows: 
memory 1GB, number of processors 1, hard disk (SCSI) 
20GB, operating system Ubuntu-16.04.  

Three business microservices include: 
1. Two client microservices, 𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and 
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 which are used to receive 
requests for querying user information, and call 
the 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice to return the
result to the requesting user. There is no difference
in business logic between the two microservices,
just to verify that the RL-SAMS has the ability to 

guarantee core business priority, one of the two 
client microservices is selected as the core
business microservice. 
2. One 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice, 
responsible for background business processing. 
The microservice receives user information query 
requests, and returns the query results. In order to 
simulate the performance bottleneck of each 
microservice, set the 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟 microservice 
to execute the information query service after 
sleeping for one second. 
We simulate high concurrent business requests

based on the performance testing framework "Locust". 
In the experiment, we deploy three pressure 

simulation modules for three business function 
microservices: 𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡, 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡, and 
𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟_𝑢𝑠𝑒𝑟. We set three simulation modules with 
different pressure cycles to simulate different 
pressure sources of the microservice system to verify 
the core business priority assurance capability of RL-
SAMS in the face of different pressure sources. 

4.2. Experimental Design 

The experiment takes whether the two request 
microservices perform service degrade as action space, 
𝑎𝑐𝑜𝑟𝑒 ∈ [on, off] , 𝑎𝑛𝑜𝑛_𝑐𝑜𝑟𝑒 ∈ [on, off] , and compares 
the average reward value of all heartbeat monitoring 
requests for two client microservices within 15s after 
each assurance action. 𝑎𝑐𝑜𝑟𝑒 = 𝑜𝑛 means that the 
service degradation mechanism is enabled to ensure 
service continuity, and 𝑎𝑐𝑜𝑟𝑒 = 𝑜𝑓𝑓  means the 
opposite. Reward function is defined as: 

𝑅 =
∑ 𝑅CC

𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
+

∑ 𝑅NC

𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
Where， 

𝑅CC = {

4, 𝑛𝑜𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
1, 𝑑𝑒𝑔𝑟𝑎𝑑𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
−3, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒

 

𝑅NC = {

1, 𝑛𝑜𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
0, 𝑑𝑒𝑔𝑟𝑎𝑑𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒
−1, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒

 

𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 are the 
total number of microservice state heartbeat 
monitoring requests sent randomly in the 
corresponding period, ∑ 𝑅CC  and ∑ 𝑅NC  are the 
sum of the heartbeat monitoring request rewards for 
𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 respectively. Three 
responses are as following:  

• 𝑛𝑜𝑟𝑚𝑎𝑙_𝑠𝑒𝑟𝑣𝑖𝑐𝑒. Returning the correct 
request result within the specified time;
• 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑_𝑠𝑒𝑟𝑣𝑖𝑐𝑒. The microservice is 
degraded and in this experiment, it is designed that 
a default value is returned without actually
processing; 
• 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑓𝑎𝑖𝑙𝑢𝑟𝑒. Timing out or returning 
error. Different reward value is designed between 
𝐶𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 and the 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑐𝑙𝑖𝑒𝑛𝑡 to 
encouraging business-critical service assurance. 
In RL, a 2-layer 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 and

𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 are constructed based on 
TensorFlow. 𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 updates the 
parameters to 𝑁𝑒𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑟𝑖𝑡𝑖𝑐 every 200 learning. 
The optimization of the neural network adopts 
RMSprop optimizer. The learning rate 𝛾 is set to 0.9, 
and the exploration strategy 𝜀  is set to 0.8. The 
capacity of the experience replay pool is 200, and 
𝑁𝑒𝑡_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 randomly selects 32 sets of 
state transition records from the experience replay 
pool every 5 steps as training samples for learning, and 
simultaneously trains two behavioral decision 
evaluation strategies. 
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Figure 4: Experimental Scene 

Table 1  
Comparative Experiment Scenarios 

Service risk scenarios 
Core_client 

Concurrent users 
Non_core_client 
Concurrent users 

Expectation 

Action RCC RNC R 

HJC-HCC-LNC 200 50 [acore = on, anon_core = off] 1 1 2 
HJC-LCC-HNC 50 200 [acore = off, anon_core = on] 4 0 4 
LJC-LCC-LNC 50 50 [acore = off, anon_core = off] 4 1 5 
HJC-LCC-LNC 100 100 [acore = off, anon_core = on] 4 0 4 
HJC-HCC-HNC 200 200 [acore = on, anon_core = off] 1 0 1 

4.3. Comparative Experiment  

Experiment takes the widely used Hystrix[23] as 
baseline method, and compares assurance effect 
between the Hytrix service circuit breaker mechanism 
and RL-SAMS in five service risk scenarios shown in 
Table 1. In addition, the service effect without any 
assurance method, named "Blank" in Figure 5, will be 
compared as another baseline to verify the successful 
implementation of Hystrix and RL-SAMS.Table 1 shows 
five different service risk scenarios and expected 
optimal decision action and average reward. The name 
of service risk scenarios is combined by three fields, 
𝑋1𝐽𝐶−𝑋2𝐶𝐶−𝑋3𝑁𝐶, corresponding different concurrent 
pressure models. 𝑋1𝐽𝐶 is joint concurrent field, 
meaning if requests from both 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 together will achieve 
performance saturation. 𝑋2𝐶𝐶 and 𝑋3𝑁𝐶 is independent 
concurrent fields, meaning if requests from 
𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 or 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 respectively 
will achieve performance saturation. H means high 
concurrent pressure. L means low concurrent 
pressure. The preliminary experiments indicate that 
around 150 concurrent users can subject the 
microservices in this experiment to high concurrency 
pressure. 

Figure 5: Comparative Experiment 
The average reward value of heartbeat monitoring 

requests for three different service assurance methods 
in five service risk scenarios is shown in Figure 5. 

In all 𝐻𝐽𝐶 scenarios: (1) The “Blank” method will 
cause the response time of all requests to time out. 
According to the reward function, the average reward 
value is -4. (2) Using the "Hystrix" method, whether it 
is high independent concurrency (𝐻𝐶𝐶 or 𝐻𝑁𝐶), will 
activate circuit breakers of both two request 
microservices. The average reward value is 1. Due to 
the existence of the retransmission mechanism in 
"Hystrix", the average reward value fluctuates in the 
range of 1+0.2. (3) By comparing the effects of 
𝐻𝐽𝐶−𝐻𝐶𝐶−𝐿𝑁𝐶, 𝐻𝐽𝐶−𝐿𝐶𝐶−𝐻𝑁𝐶, 𝐻𝐽𝐶−𝐿𝐶𝐶−𝐿𝑁𝐶, it is verified 
that the decision model trained by the RL-SAMS will 
intelligently and selectively execute the degrade of the 
microservices according to source of pressure. In 

 4.3.1. Effectiveness Analysis 
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𝐻𝐽𝐶−𝐻𝐶𝐶−𝐿𝑁𝐶, since 𝐻𝐶𝐶 causes 𝐻𝐽𝐶, 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is 
impossible to assurance. So, it is best to degrade its 
service to assurance 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠; In 
𝐻𝐽𝐶−𝐿𝐶𝐶−𝐻𝑁𝐶, since 𝐻𝑁𝐶 causes 𝐻𝐽𝐶, it is best to degrade 
𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 to assurance 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠; In 
𝐻𝐽𝐶−𝐿𝐶𝐶−𝐿𝑁𝐶, 𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 
together cause 𝐻𝐽 𝐶, it is also best to degrade and 
sacrifice 𝑁𝑜𝑛_𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 to assurance 
𝐶𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠, according to reward function. 

The experiment verify that RL-SAMS can not only 
effectively select the assurance action, but also 
distinguish the degraded objects according to the 
source of the service risk, so as to realize intelligent 
elastic Microservice System assurance. 

Figure 6: RL process in HJC-LCC-HNC 

4.3.2. Model Accuracy and Training
Process Analysis

During the model training process, two Locust 
modules for handling requests as microservices 
continuously simulate concurrent request pressures 
with a random cycle duration of 1800 seconds. 
Considering coverage of risk scenarios for five types of 
services and RL state space control to shorten the 
learning cycle, the random range for concurrent users 
is set to [0, 50, 100, 150, 200]. Logs record the state of 
each step and the selection of safeguarding actions 
during the model training process. Taking service risk 
scenario HJC-LCC-HNC as an example, Figure 6 presents 
the proportion of assurance actions at each stage of 
training.Due to the random nature of simulating 
concurrent request pressures, HJC-LCC-HNC does not 
occur continuously. The number of cycles in Figure 6 
refers to the extraction of all assurance action selection 
records when HJC-LCC-HNC occurs throughout the entire 
training process. These records are sorted 
chronologically, and every 100 data points are used to 
calculate the proportion of assurance actions in a 
Period. The decision of whether to degrade Core_client 
and Non_core_client microservices to break their 
concurrent requests will be made. As shown in Figure 
6, in Period 1, the intelligent agents of the two request 
microservices almost randomly decide whether to 
activate the degradation. Since both client 
microservices experience low concurrent pressure, 
they both exhibit a trend of not activating degradation 
in Period 2, resulting in an increase in the proportion 
of [acore = off, anon_core = off]. Under the influence of 
the "value decision" module, Core_client and 

Non_core_client will receive the maximum reward 
values with [acore = off, anon_core = on] , and their 
corresponding Q-values will also be the highest. 
Therefore, as training progresses, the proportion of 
[acore = off, anon_core = on] increases. After Period 6, 
the proportion of [acore = off, anon_core = on] 
exceeds 90% and stabilizes, reaching 98% in Period 8. 
In other words, in service risk scenario HJC-LCC-HNC, RL-
SAMS can, with a probability of 98% * 98% = 96%, 
ensure the normal service of the Core_client by only 
degrading the concurrent requests of the 
Non_core_client. The accuracy performance in other 
service risk scenarios is similar. 

5. Conclusion

This paper introduces an innovative decision-making 
method for microservice systems, leveraging 
reinforcement learning principles. It seamlessly 
incorporates the core concept of "enhancing 
performance through experiential learning" into 
service assurance processes within the microservices 
architecture. The flexible assurance capability 
targeting critical assurance components paves the way 
for novel approaches to intelligent service assurance 
and maintenance. Through a thorough analysis and 
validation via case experiments, RL-SAMS 
demonstrates its prowess across various service risk 
scenarios, particularly excelling in its ability to 
intelligently differentiate key assurance elements and 
proactively ensure the continuity of core business 
operations. 

While this paper has introduced reinforcement 
learning methods into service assurance activities 
within microservice systems, there are still many 
aspects that require further research and exploration. 
These include: 
• Efficient Learning with Expanding State and 

Action Spaces: Reinforcement learning is 
fundamentally about accumulating experiential 
knowledge to maximize rewards and minimize 
losses. As the state and action spaces grow, the
cost of model training and learning also increases 
rapidly. It will be necessary to investigate and 
improve methods for accumulating positive
experiences more efficiently and enhancing 
convergence rates.

• Decentralized Training and Centralized Learning: 
The approach taken in this paper involves 
centralized training and learning. However, in 
real-world scenarios where microservices come 
from different providers, there may be obstacles 
to sharing operational data. Addressing how to 
limit data sharing while enabling decentralized 
training for individual microservices and 
centralized learning of experiences is a pressing 
challenge. 

• Integration with Log Analysis and Risk Prediction: 
Exploring how to combine reinforcement learning 
with log analysis and risk prediction to leverage 
prior knowledge and accelerate learning 
efficiency is an area worth investigating. 
Integrating reinforcement learning with existing 
systems for proactive risk management and 
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incident response can enhance the overall 
effectiveness of service assurance activities. 

These areas of research and improvement will 
contribute to the further development and refinement 
of reinforcement learning methods in the context of 
microservices and service assurance. 
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