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Abstract

Coyote C++ is an automated testing tool that uses a sophisticated concolic-execution-based approach to realize fully automated
unit testing for C and C++. While concolic testing has proven effective for languages such as C and Java, tools have struggled
to achieve a practical level of automation for C++ due to its many syntactical intricacies and overall complexity. Coyote
C++ is the first automated testing tool to breach the barrier and bring automated unit testing for C++ to a practical level
suitable for industrial adoption, consistently reaching around 90% code coverage. Notably, this testing process requires no
user involvement and performs test harness generation, test case generation and test execution with “one-click” automation.
In this paper, we introduce Coyote C++ by outlining its high-level structure and discussing the core design decisions that
shaped the implementation of its concolic execution engine. Finally, we demonstrate that Coyote C++ is capable of achieving
high coverage results within a reasonable timespan by presenting the results from experiments on both open-source and

industrial software.
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1. Introduction

The significance of testing in software engineering is con-
tinuously escalating, necessitating thorough validation
methods such as white-box testing. However, given the
rapid increase in code scale and complexity in the soft-
ware industry, white-box testing can be time-consuming
and resource-intensive[1], often leading to budget con-
straints. For this reason, there has been a long-standing
need for automation in white-box testing.

Lately, efforts to automate white-box unit testing are
approaching practical feasibility, with automated test-
ing showing promising results for Java [2, 3], C [4, 5, 6],
binary code [7, 8], and a few other programming lan-
guages [9, 10, 11]. Conversely, adopting this technol-
ogy for C++ has proven to be challenging due to the
language’s unique features and overall complexity [12].
Implicitly invoked copy or move constructors and tem-
plates with all their intricacies are just two examples
of C++ language features that are especially difficult to
handle in automated white-box unit testing.

In this paper, we introduce Coyote C++, an automated
unit testing tool designed for C/C++. With a single click,
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Coyote C++ streamlines the entire testing process, from
harness generation and test case generation to test execu-
tion. The automated test case generation is based on con-
colic execution, a modern variant of symbolic execution,
and features exquisite harness generation capabilities.

The paper outlines the underlying technologies on
which Coyote C++ achieves a practical level of high cov-
erage through test case generation. In order to practically
utilize automated unit testing tools in the field, we pro-
pose that a testing speed of around 10,000 logical LOC of
executable statements per hour with statement coverage
above 90% and branch coverage above 80% should be
desirable. Currently, Coyote C++ is achieving elevated
levels of coverage and performance according to these
criteria, and is thus being effectively applied and utilized
by our customers in the automotive industry.

The rest of this paper is organized as follows. We
first look at research on concolic-execution-based unit
testing and then examine design decisions made by exist-
ing systems to build efficient concolic execution engines
in related works. Next, we provide an overview of the
implementation of Coyote C++, and present test results
obtained from open-source projects and real-world indus-
trial projects. Finally, we conclude the paper by outlining
our plans for further improving Coyote C++.

2. Related works

Symbolic execution [13] is a static program analysis tech-
nique that interprets programs with symbolic values
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rather than concrete values. Due to scalability issues
with symbolic execution, this technique has been ex-
tended into concolic execution [5, 6]. The main idea of
concolic execution is to compute test inputs from path
conditions which are obtained by tracking both concrete
values and symbolic values. Concolic execution has been
anticipated in the automated testing domain due to its
known success in test case generation. However, this
research has not yet reached a practical level of test gen-
eration for whole programs.

Nevertheless, concolic execution is known to be re-
markably successful in unit test generation, e.g. for
Java [2, 3] and C [4, 5, 6]. For C++ however, automated
testing has still been far from viable for industrial pur-
poses despite recent research efforts [14, 12].

When implementing concolic execution there are many
options for realizing various aspects of the engine [15].
Especially the engine’s execution mode, analysis target,
handling of the path explosion problem, and its memory
model can largely affect the performance of the concolic
execution engine in terms of coverage and execution
time.

2.1. Online/Offline Mode

Concolic execution can be implemented in online or of-
fline mode. In online mode, the concolic execution en-
gine explores multiple paths in a single run by forking on
branch points. The advantage of this method is that there
is no need to re-execute the common prefixes of multi-
ple paths. However, it requires a substantial amount of
memory to store all the states of multiple paths. Offline
mode on the other hand explores only one path in a sin-
gle run. This method requires less memory than online
mode, making it better suited for parallelization. How-
ever, since offline mode always starts at the beginning
of the program for every path, it spends a considerable
amount of time on re-examining common path prefixes.
Prominent tools using online mode are KLEE [16], MAY-
HEM [17], and SE [18], whereas SAGE [7] utilizes offline
concolic execution.

2.2. Emulation/Instrumentation

There are two main methods for collecting information
about the execution path taken during concrete execution
of the program under test. The first method performs
symbolic execution at the same time as concrete exe-
cution by running the program under test inside of an
emulator such as QEMU [19]. The second method in-
stead instruments the program under test with code that
handles symbolic execution and the collection of informa-
tion about the concrete execution of the program. Well-
known emulator-based tools are angr [20] and KLEE [16],

while QSYM [21] and CREST [22] are instrumentation-
based.

2.3. Mitigating Path Explosion

Another important design decision is how to deal with the
path explosion problem commonly encountered when
performing concolic execution on programs with com-
plex control flow. In such situations, the search space
of concolic execution can grow exponentially due to the
many possible combinations of branches. To avoid this is-
sue, concolic execution engines use a variety of heuristic
search strategies. Notable search strategies include DFS
(depth-first search), BFS (breadth-first search), random
path selection, coverage-optimized search, and adaptive
heuristics [15, 23].

2.4. Memory Model

When modelling the symbolic memory of a concolic exe-
cution engine, one can choose between treating memory
addresses as symbolic or concrete values. The symbolic
approach can theoretically handle all possible paths, but
this approach may cause path constraints to become too
complex for current SMT solvers. On the other hand, us-
ing concrete addresses might not cover all possible paths
due to overly simplified path conditions. In practice, a
fully symbolic model is used by tools like KLEE [16], and
a concrete address model is used by SAGE [7] among oth-
ers. Additionally, there are tools like MAYHEM [17] that
use a combination of symbolic and concrete addressing
schemes.

3. The Design of Coyote C++

3.1. Overview

In this chapter, we present an overview of Coyote C++
and discuss the core decisions that influenced its design.
As shown in the diagram in Fig. 1, the Coyote C++ tool
is divided into two main parts. The first part builds ex-
ecutable test files based on harness generation, while
the second part handles generating test cases through
concolic execution.

In the first phase, Coyote C++ uses a harness genera-
tor module to automatically generate test stubs and test
drivers for test execution and inserts instrumentation
code for concolic execution. This instrumentation is per-
formed on LLVM IR level. Next, the binary generation
module compiles the created testbed to executable files
used in the second part.

While running the executable test file in the second
phase, the instrumentation code produces trace files con-
taining information about the concrete program execu-
tion on the level of LLVM IR instructions. These trace
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Figure 1: Overview of Coyote C++.

files are then used to reconstruct their respective execu-
tion paths, and with this information symbolic execution
is performed on the LLVM IR level to generate new test
input data. When this concolic execution cycle termi-
nates, the achieved test coverage is calculated based on
the generated trace files.

3.2. Design Decisions of Coyote C++

While implementing Coyote C++, many important de-
sign decisions had to made. In the modules responsi-
ble for the testable binary generation, these decisions
were generally made with the goal of enabling a wide
range of transformations on intermediate code models
while retaining a sufficiently strong connection between
these models and the original source code. Most design
decisions affecting the testcase generation phase were
strongly influenced by the need to find a suitable tradeoff
between the achieved code coverage and performance in
terms of test time or resource consumption.

A fundamental design decision made in Coyote C++ is
using LLVM IR as its symbolic execution target. This al-
lows for more precision than doing source level symbolic
execution while retaining more information about the
original source code that would be lost when lowering
even further to the assembly level. Also, using LLVM as
a foundation for Coyote C++ allows for greater freedom
in code transformations during harness generation, by-
passing syntactic constraints present on the source code
level.

We decided to implement offline testing by inserting in-
strumentation code into the LLVM IR code of the testbed

during testable binary generation. The main reason for
choosing offline testing over online testing is that it is
more suitable for parallelization, which is essential for
providing good testing performance. Additionally, offline
testing is more advantageous from a memory manage-
ment standpoint.

A key factor for achieving high code coverage is the
search strategy that controls in which order the possi-
ble execution paths of a program are explored. During
testcase generation, the test files are initially executed
with all test inputs set to default values. The trace files
generated from this are then analyzed using concolic
execution techniques to create new test case inputs for
visiting new paths. As our search strategy for exploring
of candidate paths, we adopted a hybrid approach that
combines CCS (Code Coverage Search) and DFS. CCS
focuses on exploring code areas that have not been tra-
versed yet, making it advantageous for quickly reaching
high coverage. However, because CCS performs rather
aggressive pruning on execution paths, it may produce
unsatisfiable path conditions in certain situations. To
make up for these issues, we also use the DFS strategy
in addition to CCS. DFS is a search strategy that has the
potential to cover code areas not covered by CCS, but it
comes with the drawback of substantial time consump-
tion. Usually, either of these strategies terminates once
every branch it has discovered has been explored. Con-
colic execution may however also be terminated early if
a designated amount of test cases has been generated or
if a timeout has been reached.

Finally, a significant factor influencing the performance
of concolic execution in C++ is the memory model. Sim-
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Table 1
Results on Open-Source Projects

Project Info Coverage Test Time
Name (C/C++) Files | Functions | Statements | Branches | Statement | Branch [m]
nuklear (C) 39 609 9,284 4,309 93.7% 87.1% 55
libsodium (C) 94 887 8,003 1,651 96.5% 89.7% 6
mathc (C) 1 843 4,192 190 99.9% 100.0% 3
aubio (C) 53 520 5,916 1,797 95.7% 92.4% 14
s2n-tls (C) 175 1,621 16,734 15,512 86.7% 81.3% 68
yaml-cpp (C++) 32 367 3,050 1,300 96.9% 95.5% 11
gnite (C++) 48 637 4,294 1,035 95.2% 89.1% 37
json-voorhees (C++) 21 451 2,507 764 92.5% 88.7% 5
QPULIb (C++) 24 278 3,561 1,398 87.8% 83.8% 3
jsoncpp (C++) 3 309 2,802 1,148 91.2% 86.3% 11
Total 490 6,522 60,343 29,104 93.6% 89.4% 213
Table 2
Coverage Results from Hyundai KEFICO
Project Info Coverage Test Time
Name Files | Functions | Statements | Branches | Statement | Branch
Target A 1,855 5,129 129,131 40,718 92.8% 86.8%
Target B 83 1,774 11,828 3,078 97.4% 90.7% N/A
Target C 69 375 6,526 2,339 85.5% 79.9%
Total 2,007 7,278 147,485 46,135 929% | 86.7%

ilar to MAYHEM, the approach implemented in Coyote
C++reads values from memory symbolically but writes
values to concrete memory addresses. Utilizing sym-
bolic reads in contrast to reading from concrete addresses
leads to a more faithful representation of path constraints,
thereby enhancing the potential for generating appropri-
ate test cases. For write operations however, we chose
to rely on concrete addresses because symbolic writes
are prone to making the process of solving the path con-
straints overly expensive.

4. Experimental Results

To showcase the performance of Coyote C++, we present
experimental results for a set of diverse open-source
projects as well as several industrial software projects
from one of our customers, Hyundai KEFICO. While our
tool allows user to add test cases and write driver func-
tions for achieving higher coverage, all experimental re-
sults were obtained through one-click automation with-
out any user intervention.

4.1. Experiment on Open-Source Projects

For the first evaluation, we chose to reuse the test set
curated by Shin and Yoo for a survey on white-box au-
tomated testing tools [24], as it contains open-source
projects written in C and C++ from a wide variety of
application domains and was composed specifically for
the evaluation of automated testing tools such as Coy-
ote C++. This survey also concluded that currently no
other commercial tools truly support automated testing
for C++ programs. Among open-source tools for C++,
CITRUS [12] is no longer publicly available, and we were
not able to successfully apply UTBot [14] to the selected
test projects due to its rather limited support for the
C++ syntax. Thus, unfortunately there were no suitable
candidates to compare Coyote C++ against in terms of
coverage and test time.

Table 1 shows the statement' and branch coverage
results achieved by Coyote C++ on the ten open-source
projects in the test set as well as the time needed for
conducting the automated test generation and execution
for each project. Coyote C++ achieves statement cover-
ages between 86.7% (s2n-tls) and 99.9% (mathc) as well

!As statements we consider only executable lines of code. In
contrast to physical lines of code, this excludes e.g. whitespace,
comments, and type declarations.
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as branch coverages between 81.3% (s2n-tls) and 100%
(mathc). Summing up the number of overall covered
lines/branches and dividing them by the total number
of lines and branches in all ten projects yields a remark-
able combined statement coverage of 92.5% and branch
coverage of 84.9%.

The test times presented in table 1 were attained from
an Intel Core 17-13700 system with 64GB of RAM run-
ning Ubuntu 20.04. Overall, the test of all ten projects
combined only took about three and a half hours, with
individual testing times ranging between three minutes
(mathc) and just above one hour (s2n-tls). That makes it
more than six times faster than the test times reported
in the previously mentioned study [24], which we con-
sider a significant improvement despite possible minor
differences between test setups. Furthermore, with the
exception of the qgnite project, the testing speed on all
projects surpasses our definition of practicality, with an
overall testing speed of roughly 17,000 statements per
hour.

4.2. Results on Industry Projects

Table 2 presents testing results produced by Coyote C++
on automotive control software projects from our cus-
tomer Hyundai KEFICO, a member of Hyundai Motors
Group. As details about these projects such as their ac-
tual names are strictly internal information, we will refer
to them as target A, B and C.

The coverage results for these industrial projects are
quite similar to the open-source projects, with an average
statement coverage of 92.9% and an average branch cov-
erage of 86.7%. At our customer, Coyote C++ is employed
not in a controlled test environment but rather in a busi-
ness setting on multiple machines with varying hardware
specifications. Due to these circumstances and the fact
that a subset of the test results were produced incremen-
tally over a longer period of time, we presently do not
have any meaningful test time measurements available
to report for these projects.

While project C individually yields a slightly subpar
coverage, our notion of practicality in terms of cover-
age achieved (statement coverage >90%, branch coverage
>80%) is upheld both by projects A and B individually
as well as all three projects combined. This again rein-
forces our claim that Coyote C++ is not simply a research
prototype which only works on a limited set of specially
curated programs but is rather a mature tool that can
also handle more challenging industry software. Also, it
should be noted that automated testing with such high
coverage results for these projects is only possible be-
cause Coyote C++ has explicit handling for some common
code patterns in embedded software that would usually
make automated testing difficult or plainly impossible,
such as the usage of fixed memory addresses in code.

5. Conclusion and Future Work

In this paper, we presented Coyote C++, an industry-
grade automated testing tool based on concolic execu-
tion. After describing the general tool architecture, we
discussed the core design decisions for our implementa-
tion of its concolic testing engine. Finally, we evaluated
the performance of Coyote C++ in terms of achieved
coverage and testing time on both a test set of diverse
open-source projects and industry code from one of our
corporate customers. We were able to demonstrate that
Coyote C++ can achieve high statement/branch coverage
of around 90% or higher in a reasonable amount of time
for software projects from a wide variety of application
domains.

While Coyote C++ is already yielding promising re-
sults both on open-source projects and in real industry
applications, it is our plan to continuously improve the
tool both in terms of reliably achieving high coverage
results and broadening its capabilities in the field of au-
tomated testing.

One goal for the near future is target testing for embed-
ded software. Our tool currently performs host testing,
meaning tests are not executed on the hardware that
would run the program under test in a production envi-
ronment, but rather on a separate computer, e.g., a test
engineer’s computer or a test server. Especially in the
embedded domain however, the discrepancy between em-
bedded hardware in the production environment and the
consumer or server hardware in the testing environment
may lead to inaccurate test results. Thus, we are planning
to implement target testing support so that tests may be
run directly on production hardware.

Approaching the goal of increasing automated test
coverage from a different perspective, we also strive to
provide users of our tool with feedback as to how they
should change their code so that Coyote C++ will likely
yield better coverage results for it. While we would like
to give such guidance on the basis of code metrics, our
initial investigations have shown that traditional code
metrics such as cyclomatic complexity have little to no
correlation with automated test coverage. Thus, we see
the need for more thorough research involving the de-
velopment of new code metrics that can serve as a better
estimate for the coverage results produced by automated
testing and Coyote C++ in particular.
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