
Software Defect Prediction based on JavaBERT and
CNN-BiLSTM

Kun Cheng1, Shingo Takada2

1Grad. School of Science and Technology, Keio University Yokohama, Japan
2Grad. School of Science and Technology, Keio University Yokohama, Japan

Abstract
Software defects can lead to severe issues in software systems, such as software errors, security vulnerabilities, and decreased
software performance. Early prediction of software defects can prevent these problems, reduce development costs, and enhance
system reliability. However, existing methods often focus on manually crafted code features and overlook the rich semantic and
contextual information in program code. In this paper, we propose a novel approach that integrates JavaBERT-based embeddings
with a CNN-BiLSTM model for software defect prediction. Our model considers code context and captures code patterns
and dependencies throughout the code, thereby improving prediction performance. We incorporate Optuna to find optimal
hyperparameters. We conducted experiments on the PROMISE dataset, which demonstrated that our approach outperforms
baseline models, particularly in leveraging code semantics to enhance defect prediction performance.

Keywords
Software defect prediction, JavaBERT, CNN, BiLSTM, Optuna,

1. Introduction
Software defects present significant challenges to the relia-
bility and performance of software systems, often leading
to critical issues such as slow software operation, frequent
security vulnerabilities, and software crashes. To address
these challenges, researchers have turned their attention
to software defect prediction (SDP), a key research area
aimed at identifying potentially problematic code early in
the development process.

Software Defect Prediction (SDP) is a structured pro-
cess involving data preprocessing, feature extraction,
model building, and evaluation[1]. Feature extraction
plays a pivotal role in SDP as it determines the model’s
data representation. SDP methods have traditionally relied
on manual feature engineering, a process involving time-
consuming and laborious manual design. However, this
approach faces challenges in capturing complex semantics
and contextual information embedded in software code
as systems become more complex. As a result, there’s a
growing demand for advanced techniques that can effec-
tively exploit the intrinsic semantic and structural meaning
of code, along with its statistical properties.

Recent advances in SDP have shifted towards leverag-
ing structural and semantic features directly from source
code or through parsing into an abstract syntax tree
(AST)[2]. These modern methods employ these features

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea
$ chengkun@keio.jp (K. Cheng); michigan@ics.keio.ac.jp
(S. Takada)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

in combination with various classification methods, en-
compassing both traditional algorithms and deep learning
techniques.

SDP encompasses two primary domains: Cross-Project
Defect Prediction (CPDP) and Within-Project Defect Pre-
diction (WPDP). CPDP involves training a model on one
project and applying it to another, addressing the chal-
lenge of generalization across different software environ-
ments. In contrast, WPDP focuses on building models
within the same project, enhancing defect prediction per-
formance by considering unique project characteristics
and evolution patterns. For the purpose of this study, our
primary focus lies on WPDP, aiming to improve defect
prediction performance within a single project.

In this paper, we introduce an innovative approach to
SDP that combines Java Bidirectional Encoder Represen-
tations of Transformers (JavaBERT) and Convolutional
Neural Networks with Bidirectional Long Short-Term
Memory (CNN-BiLSTM). By harnessing JavaBERT’s
contextual understanding of text data and CNN-BiLSTM’s
capacity to capture structural features, we improve defect
prediction performance. Furthermore, we optimize the
model’s hyperparameters by introducing Optuna, further
refining our predictive model.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 presents the
design of our proposed approach. Section 4 covers the
implementation details based on the design, and Section
5 offers the evaluation results along with a discussion of
potential threats to validity. Finally, Section 6 concludes
the paper and discusses future work.

51

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:chengkun@keio.jp
mailto:michigan@ics.keio.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Related Work
Researchers have explored various models for feature ex-
traction in software defect prediction, from traditional ma-
chine learning to deep learning. Initially, Support Vector
Machines (SVM), as employed by Elish et al.[3], gained
prominence for identifying defective modules using static
code metrics. However, it struggled to uncover deep se-
mantics within the source code. Deep Belief Networks
(DBN), introduced by Wang et al.[4], aimed to extract
more complex features from code through unsupervised
learning. Yet, its limited depth posed challenges in reveal-
ing intricate relationships within the source code. Con-
volutional Neural Networks (CNNs) were used by Li et
al.[5] to predict software defects by analyzing structural
correlations between code tokens. While proficient in
capturing local patterns, CNNs faced challenges in captur-
ing longer-range connections. Wang et al.[6] introduced
an RNN (Recurrent Neural Network)-based model for
predicting software reliability. Deng et al.[7] and Liang
et al.[8] expanded Long Short-Term Memory (LSTM)
models in software defect prediction, capturing temporal
patterns in code sequences. However, a single LSTM can
only capture one direction temporal pattern in the code
sequence. Bidirectional LSTM (BiLSTM) models with
attention mechanisms emerged. Wang et al.[9] introduced
a gated hierarchical BiLSTM model. Uddin et al.[10]
combined BiLSTM with attention and BERT-based em-
beddings.

In short, SVM has difficulty discovering the deep se-
mantics of the source code, DBN has limited depth so it
is difficult to understand the complex relationships in the
source code, CNN has difficulty capturing long-distance
correlations, and RNN and LSTM can only capture a sin-
gle temporal pattern. BiLSTM may have challenges in
capturing local patterns.

To solve these problems, we combine the advantages
of CNN in detecting local patterns with the advantages
of BiLSTM in processing sequences, allowing for com-
prehensive code inspection. We further incorporate Jav-
aBERT to dynamically adjust token embeddings based
on the entire input sequence, thereby deepening the rep-
resentation and capturing interdependencies among code
tokens.

3. Proposed Methodology
Our software defect prediction method consists of several
key steps, all aimed at improving prediction performance.
As shown in Figure 1, we first use JavaBERT to convert
the code into vector representations. Next, we employ
the CNN-BiLSTM model for feature extraction, focusing
on local patterns and context. We also incorporate sta-
tistical features to fully utilize all available information.

Optuna automatically executes the above combination of
JavaBERT and CNN-BiLSTM multiple times, and outputs
the best hyperparameter values through these executions.
Then we retrain the model in another version of the code
based on the obtained hyperparameters and test the model
performance.

3.1. Embedding with JavaBERT
BERT (Bidirectional Encoder Representations from
Transformers)[11] is a language model widely employed
in natural language processing (NLP) tasks. Unlike con-
ventional embeddings, BERT excels at capturing intri-
cate contextual associations. Traditional methods like
Word2Vec[12] and GloVe[13] generate static contextual
representations, whereas BERT, utilizing multi-layer bidi-
rectional transformers, enables tokens to gather informa-
tion from both preceding and succeeding tokens.

In our approach, we leverage a pretrained BERT model,
JavaBERT[14], fine-tuned for Java code. JavaBERT has
been trained on a dataset of 2,998,345 Java files from
GitHub open source projects. JavaBERT’s transformer ar-
chitecture dynamically adapts token embeddings based on
the entire input sequence, enhancing representation depth
and capturing code token interdependencies. The Jav-
aBERT embeddings, denoted as 𝐸JavaBERT, are computed
by applying the model’s encoder to tokenized Java code.
For a sequence of code tokens 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛},
JavaBERT embeddings are computed as:

𝐸JavaBERT = EncoderJavaBERT(𝑐1, 𝑐2, . . . , 𝑐𝑛)

Models typically cannot process code text sequences
directly. Through JavaBERT, we embed code text into a
continuous vector space, using these vectors as inputs to
the model, making it easier for the model to compute and
understand the code.

3.2. Feature Extraction using
CNN-BiLSTM

We combine Convolutional Neural Networks (CNN) and
Bidirectional Long Short-Term Memory networks (BiL-
STM) to extract features. This is the key part of our
approach, where after extracting features with CNN, it is
refined with the sequential capabilities of BiLSTM.

3.2.1. Feature Extraction with CNN

Utilizing Convolutional Neural Networks (CNN)[15] for
feature extraction involves sliding a small window, known
as a filter, over various parts of the code. This filter exam-
ines a small segment of the code at a time, calculating a
value at each sliding position to create a "feature map."

52



Figure 1: Overview of Methodology

The positions in the code correspond to positions in the
feature map. The observed code segment within the fil-
ter’s scope is termed the "input sequence slice." As the
filter traverses the entire code, it analyzes these input se-
quence slices, effectively capturing distinct features that
characterize the code’s structural and syntactical elements.

The process of feature extraction using CNN is mathe-
matically expressed as:

𝑦[𝑖, 𝑗] = 𝜎

(︃∑︁
𝑚

∑︁
𝑛

𝑥[𝑖+𝑚, 𝑗 + 𝑛] · 𝑤[𝑚,𝑛] + 𝑏

)︃

where 𝑥[𝑖, 𝑗] is the input at position (𝑖, 𝑗), 𝑤[𝑚,𝑛] rep-
resents the kernel at position (𝑚,𝑛), 𝑏 is the bias, and 𝜎
signifies the activation function.

3.2.2. Refinement of Features with BiLSTM

The Bidirectional Long Short-Term Memory
(BiLSTM)[16] layer enhances the features extracted by
the Convolutional Neural Networks (CNN). What sets
BiLSTM apart is its capability to capture both short-term
and long-term dependencies within the code, which
perfectly complements the local feature extraction carried
out by CNN.

The forward and backward computations in BiLSTM
can be unified into a single mathematical representation:

ℎ𝑡 = BiLSTM(𝑥𝑡, ℎ𝑡−1, ℎ𝑡+1)

In this equation, ℎ𝑡 represents the hidden state at time
step 𝑡 in the Bidirectional Long Short-Term Memory (BiL-
STM) model. It is computed based on the input 𝑥𝑡 at the
current time step, the previous hidden state ℎ𝑡−1, and

the next time step 𝑡 + 1’s hidden state ℎ𝑡+1. The BiL-
STM model effectively captures sequential patterns and
dependencies in data by considering information from
both directions. It analyzes the sequence of tokens, cap-
turing dependencies extending both backward and for-
ward within the code. This dynamic construction of code
features considers token order, revealing evolving pat-
terns and connections over time, amplifying the feature
representation. In summary, we refine the feature maps
obtained from CNN using BiLSTM to achieve a com-
prehensive code representation. This fusion of capturing
local patterns and accounting for temporal dependencies
improves software defect prediction performance.

3.3. Integration with Statistical Features
Our methodology integrates the refined BiLSTM outputs
with statistical features (such as shown in Table 2) ex-
tracted from dataset. This step concatenates the vectors
obtained from the BiLSTM and the vectors of statisti-
cal features obtained from the dataset into longer vectors,
making full use of the description information of the code.

3.4. Hyperparameter Optimization by
Optuna

Optuna, a powerful hyperparameter optimization frame-
work developed by Akiba et al.[17], plays a vital role in
our approach by automating hyperparameter tuning for the
CNN-BiLSTM model. There are similar frameworks such
as Ray Tune, etc., but Optuna is more lightweight and
easier to use. It employs the Tree-structured Parzen Esti-
mator (TPE) algorithm to efficiently explore and exploit
the hyperparameter space, enhancing the performance of
our Software Defect Prediction task.

53



In this section, we will discuss a crucial step in our
methodology: determining optimal hyperparameters by
leveraging shared features among different versions of the
same project. Usually, code with similar version numbers
exhibits a high degree of similarity. By harnessing these
inherent similarities, we attempt to find hyperparameters
that can generalize across various versions, ultimately
enhancing model performance.

Using the Ant project as an example, our aim is to
demonstrate the transferability of hyperparameters ob-
tained from training on one version (e.g., 1.5) to another
(e.g., 1.6). This transferability is valid as both versions
originate from the same project, sharing similar code struc-
tures and functionalities. This enables the hyperparame-
ters obtained from one version to serve as a foundation for
other versions within the same project, thereby solidifying
our model configuration.

We start by selecting version pairs, using the Ant
project as an illustration. Here, we designate version
1.5 for training and version 1.6 for testing. Next, we de-
fine the performance metric to optimize, such as the F1
score. Subsequently, Optuna conducts multiple experi-
ments, traversing various hyperparameter combinations
and evaluating their performance on the designated test-
ing dataset. Through these iterative experimentation and
evaluation stages, Optuna determines the hyperparameter
set that maximizes the chosen performance metric.

This process can be represented as:

𝐻𝑥 = Optuna 𝑓(Ant 1.5,Ant 1.6)

Here, 𝑓(Ant 1.5,Ant 1.6) embodies the objective func-
tion maximized during the hyperparameter optimization
process, with Ant 1.5 as the training dataset and Ant 1.6
as the testing dataset. After obtaining optimal hyperpa-
rameters 𝐻𝑥 through the Optuna process, we seamlessly
transfer them across different project versions. 𝐻𝑥 is
applied to reconfigure the training and testing sets. For
instance, in the Ant project, 𝐻𝑥 is then used on different
version pairs, such as training on Ant 1.6 with 𝐻𝑥 and
testing on Ant 1.7.

This operation optimizes hyperparameters across ver-
sion pairs, contributing to enhanced model adaptability
and performance in varying project iterations.

4. Experimental Setup

4.1. Research Questions
Our experiment addresses the following research ques-
tions (RQ) :

RQ1: How does the performance of our CNN-BiLSTM
model compare against baseline models?

Table 1
Selected Projects in the PROMISE Java Dataset

Project Versions (Buggy Rate)

Ant 1.5, 1.6, 1.7 (0.109, 0.263, 0.224)
Camel 1.2, 1.4, 1.6 (0.36, 0.171, 0.201)
JEdit 3.2, 4.0, 4.1 (0.346, 0.256, 0.263)
Lucene 2.0, 2.2, 2.4 (0.489, 0.611, 0.615)
Poi 2.0, 2.5, 3.0 (0.120, 0.654, 0.641)
Synapse 1.0, 1.1, 1.2 (0.102, 0.270, 0.336)
Xalan 2.4, 2.5, 2.6 (0.163, 0.509, 0.468)

RQ2: How does the performance of the proposed model
vary across different software projects and within the dif-
ferent versions of each project in the PROMISE dataset?

RQ3: How do different hyperparameter settings impact
the performance of the combined CNN-BiLSTM model
in code defect prediction?

4.2. Dataset and Data Preprocessing
Our study uses the PROMISE[18] dataset, exclusively
comprised of Java projects. This dataset spans various
domains and project scales, providing project details like
name, description, version, and bug rate. Table 1 shows an
overview of the projects we use that are in the PROMISE
Java Dataset. Since Optuna’s process of finding hyperpa-
rameters takes a lot of time, we only selected a part of the
projects in the PROMISE data set. Statistical features also
play a vital role in code analysis, offering insights into
code composition and behavior. To enhance our study, we
carefully selected a subset of these features, as shown in
Table 2.

To prepare the data for analysis, we conducted thor-
ough data preprocessing. Using the "javalang"[19] Python
library, we removed redundant code elements such as
comments, white spaces, and unnecessary details. This
process allowed us to extract essential token sequences,
capturing the code’s semantics. To address class imbal-
ance in software defect prediction, we implemented ran-
dom oversampling exclusively on the "Bug" class files.
This deliberate strategy generated synthetic data instances,
improving class distribution and mitigating potential bias
towards the majority class.

4.3. Experimental Settings
For each project listed in Table 1, we selected the smallest
two version numbers to serve as versions Y and Y+1
for Optuna’s hyperparameter optimization process. The
search space for the hyperparameters was specified as
shown in Table 3. The number of trials for each project
was set to 30. After completing these experiments, each
project will produce a different set of hyperparameters

54



Table 2
Selected Statistical Features

Measure of Functional Abstraction (MFA)
Coupling Between Methods (CBM)
Data Access Metric (DAM)
Coupling Between Object classCA (CBO)
Lines Of Code (LOC)
Afferent Couplings (CA)
Number Of Children (NOC)
Lack of COhesion in Methods (LCOM)
Average Method Complexity (AMC)
Inheritance Coupling (IC)
Response For a Class (RFC)
Efferent Couplings (CE)
Measure Of Aggregation (MOA)
Weighted Methods per Class (WMC)
Depth of Inheritance Tree (DIT)
Lack of COhesion in Methods (LCOM3)
Cohesion Among Methods of class (CAM)
Number of Public Methods (NPM)

that allow the model to output the highest F1 score, and a
model trained on these parameters using version Y. These
hyperparameters were then applied to train new models
on version Y+1 for each project. Then the model trained
on version Y and the model trained on version Y+1 were
evaluated against the code of version Y+2. We conducted
each evaluation test three times and calculated the mean
to obtain the experimental result.

Table 3
Search Space for Hyperparameters

Hyperparameter Search Range

Number of Epochs 3 to 10
Batch Size [16, 32, 64, 128]
Learning Rate 1 × 10−5 to 1 × 10−2 (Log-

uniform)
Filter Sizes [3, 5, 7, 9, 11]
Number of Filters 32 to 512
Hidden Units [16, 32, 64, 128, 256, 512,

1024]

4.4. Baseline Models
We compare our proposed approach against the following
baseline models:

• Support Vector Machine (SVM): SVM, a classic
and widely adopted machine learning algorithm,
excels in both linear and non-linear classification
tasks and is known for its effectiveness in handling
high-dimensional data.

• Convolutional Neural Network (CNN): CNNs ex-
cel at extracting hierarchical features from struc-
tured data, making them suitable for capturing
local patterns in software defect prediction.

• Bidirectional Long Short-Term Memory (BiL-
STM): BiLSTM enhances LSTM by considering
bidirectional information flow, enabling it to cap-
ture both past and future contexts.

In assessing the predictive performance, this paper uti-
lizes three widely accepted metrics: precision, recall, and
the F1-score.

5. Results and Discussion
In this section, we present the results of our study and dis-
cuss their implications, addressing the research questions
(RQ) that guide our investigation.

5.1. Impact of JavaBERT-based
Embeddings with CNN-BiLSTM
Model

To address RQ1, we assessed the performance of our
model in comparison to baseline models. Table 4 presents
a detailed performance comparison between our CNN-
BiLSTM model and the baseline models concerning pre-
cision, recall, and F1-score. For instance, "ant_1.5_1.6"
represents the experimental results obtained by using ver-
sion 1.5 of Ant as the training dataset and version 1.6
as the test dataset. The results demonstrate a consistent
outperformance of our model across all metrics. Figure
2 complements the table by providing a visual represen-
tation of the F1 scores, where the x-axis represents pairs
of software versions used for training and testing (e.g.,
ant_1.5_1.6), and the y-axis represents the corresponding
F1 values obtained during testing. This figure shows that
the F1 of our model is higher than the base model most of
the time.

5.2. Model Performance Variability
Across PROMISE Projects and
Versions

To address RQ2, Figure 3 presents the F1 scores of our
model across different projects and their respective ver-
sions in the PROMISE dataset. In this figure, the x-axis
represents pairs of software versions used for training and
testing (e.g., ant_1.5_1.6), while the y-axis represents the
corresponding F1 values obtained during testing. When
we examined the model’s performance across different
projects and its various versions, we observed certain
noteworthy patterns. Specifically, within the same project,

55



Table 4
Comparison of Experimental Results with Baseline Models

project SVM CNN BiLSTM CNN-BiLSTM
P R F1 P R F1 P R F1 P R F1

ant_1.5_1.6 0.5133 0.6304 0.5659 0.5526 0.4565 0.5000 0.5120 0.6957 0.5899 0.6364 0.6848 0.6597
ant_1.6_1.7 0.5849 0.5602 0.5723 0.5230 0.5482 0.5353 0.2486 0.5241 0.3372 0.5868 0.5904 0.5886
ant_1.5_1.7 0.4297 0.6807 0.5268 0.3653 0.7349 0.4880 0.4194 0.7048 0.5258 0.5531 0.5964 0.5739
camel_1.2_1.4 0.3645 0.5103 0.4253 0.5625 0.4966 0.5275 0.3186 0.4966 0.3881 0.4647 0.7724 0.5803
camel_1.4_1.6 0.2687 0.0957 0.1412 0.5392 0.2926 0.3793 0.2908 0.3883 0.3326 0.4957 0.3032 0.3762
camel_1.2_1.6 0.5000 0.1915 0.2769 0.3571 0.1862 0.2448 0.2908 0.3883 0.3326 0.3976 0.5266 0.4531
jedit_3.2_4.0 0.4333 0.1733 0.2476 0.4715 0.7733 0.5859 0.5208 0.6667 0.5848 0.4741 0.8533 0.6095
jedit_4.0_4.1 0.3835 0.7727 0.5126 0.5889 0.6709 0.6272 0.5517 0.7273 0.6275 0.7838 0.3671 0.5000
jedit_3.2_4.1 0.4783 0.1667 0.2472 0.5039 0.8101 0.6214 0.5455 0.7273 0.6234 0.4803 0.7722 0.5922
lucene_2.0_2.2 0.7681 0.4454 0.5638 0.6918 0.7692 0.7285 0.7571 0.4454 0.5608 0.6371 0.9875 0.7745
lucene_2.2_2.4 0.6923 0.7310 0.7111 0.6329 0.6650 0.6485 0.7739 0.4518 0.5705 0.6204 0.9806 0.7600
lucene_2.0_2.4 0.6120 0.9848 0.7549 0.6339 0.7208 0.6746 0.7768 0.4416 0.5631 0.6204 0.9806 0.7600
poi_2.0_2.5 0.6996 0.6573 0.6778 0.6781 0.3992 0.5025 0.8053 0.7339 0.7679 0.7240 0.9839 0.8342
poi_2.5_3.0 0.8560 0.7429 0.7954 0.7038 0.7214 0.7125 0.8547 0.7143 0.7782 0.6943 0.9571 0.8048
poi_2.0_3.0 0.7436 0.7250 0.7342 0.7333 0.5893 0.6535 0.8559 0.7214 0.7829 0.7034 0.9571 0.8109
synapse_1.0_1.1 0.4815 0.2281 0.3095 0.5946 0.3860 0.4681 0.5000 0.3158 0.3871 0.5077 0.5789 0.5410
synapse_1.1_1.2 0.5152 0.3953 0.4474 0.5417 0.4535 0.4937 0.5439 0.3605 0.4336 0.5190 0.4767 0.4970
synapse_1.0_1.2 0.5455 0.2791 0.3692 0.5634 0.4651 0.5096 0.5273 0.3372 0.4113 0.4483 0.4535 0.4509
xalan_2.4_2.5 0.6609 0.4258 0.5179 0.5922 0.4059 0.4817 0.5721 0.3221 0.4122 0.5957 0.7176 0.6510
xalan_2.5_2.6 0.6494 0.5221 0.5788 0.6274 0.6397 0.6335 0.5344 0.3431 0.4179 0.5804 0.8848 0.7010
xalan_2.4_2.6 0.6333 0.5123 0.5664 0.6506 0.2647 0.3763 0.5344 0.3431 0.4179 0.5983 0.8431 0.6999

Average 0.5626 0.4967 0.5020 0.5766 0.5452 0.5425 0.5588 0.5166 0.5164 0.5772 0.7270 0.6295

Figure 2: F1 Score Comparison Visualization

such as Lucene, POI, and Xalan, our models show a high
degree of performance consistency across different ver-
sions. This shows that our model is able to predict re-
sults consistently when dealing with different versions
of certain projects. This consistency can be partially at-
tributed to the higher code similarity found between ver-
sions within the same project, making it easier for models
to capture shared features and patterns.

There are some differences between versions of Ant
and Synapse, these differences are relatively minor. In
contrast, projects such as Camel and JEdit show more per-
formance fluctuations, even within the same project. This

suggests that the predictive performance of our model
tends to vary when applied to certain projects. Although
we cannot pinpoint the exact reasons behind these changes
at this time, we speculate that they may have been influ-
enced by a variety of factors, including project-specific
characteristics, code complexity, and domain-related dif-
ferences.

Figure 3: F1 Score Across PROMISE Projects

56



Table 5
Hyperparameter combinations obtained through Optuna

proj Optuna Time num_epochs batch_size learning_rate filter_size num_filters rnn_hidden
ant_1.5_1.6 8.18h 8 64 0.000185 3 186 256
camel_1.2_1.4 30.92h 7 32 0.000148 7 120 1024
jedit_3.2_4.0 4.32h 6 32 0.000251 11 157 64
lucene_2.0_2.2 1.21h 3 128 0.008864 9 178 128
poi_2.0_2.5 3.93h 6 128 0.000015 3 240 256
synapse_1.0_1.1 3.09h 7 64 0.000458 5 346 64
xalan_2.4_2.5 35.23h 5 128 0.000232 5 194 16

5.3. The impact of hyperparameters on
the performance of CNN-BiLSTM
model

To address RQ3, in this section, we study the impact of hy-
perparameters on the performance of the CNN-BiLSTM
model for code defect prediction. Initially, we set the
hyperparameters to the following values: the number of
epochs is 10, the batch size is 64, the learning rate is 1e-4,
the number of CNN filters is 128, the number of BiLSTM
hidden units is 256, and the CNN filter size is 5 . After
that, we fixed other hyperparameters, and then gradually
manually adjust one of the other parameters, the CNN
filter or the number of BiLSTM hidden units, to observe
changes in model performance.

Figure 4 and Figure 5 show our experimental results,
the x-axis is the change in the number of CNN filters
and BiLSTM hidden units, and the y-axis shows the F1
score. We can see that the model performance fluctuates
greatly when a single parameter changes. For example,
the smaller the number of CNN filters, the better the per-
formance of the model. In Figure 5, the F1 score drops
after BiLSTM hidden unit is 16, but performs better and
tends to be stable after 256. Exploring the impact of each
hyperparameter individually would be a time-consuming
task, and it is difficult to predict how the model will be-
have when these hyperparameters are combined. So we
used Optuna, which will constantly try to search for hyper-
parameters that can make the model perform better based
on the search algorithm.

Figures 6 and 7 show the F1 score (y-axis) for a certain
number of trials (x-axis). Specifically, Figure 6 is a scatter
plot, representing the F1 score that was obtained in each
trial, e.g., when the trial number is 5, the F1 score is the
value for the fifth trial. Figure 7 represents the best model
performance that can be achieved based on the search
until the current trial model is executed. So, in figure
7, when the trial number is 5, the F1 score is the best
F1 score from the first to the fifth trial. We can observe
that through continuous repetition and search, Optuna can
gradually search for better results. The entire process is
automated, which greatly simplifies our hyperparameter
tuning process.

Table 5 provides a summary of hyperparameter com-
binations obtained through Optuna. These combinations
have been identified to bring better performance for our
code defect prediction model.

Figure 4: Effect of CNN Filter Length on F1 Score

Figure 5: Effect of BiLSTM Hidden Units on F1 Score

5.4. Threats to Validity
In our research, we have identified and addressed several
potential threats to the validity of our findings.

The implementation of our Python experimental code
for processing source code text and building models poses
a potential threat due to the possibility of bugs. To mitigate
this, we took measures by leveraging mature third-party

57



Figure 6: Scatter Plot of F1 Scores Across Optuna Trials

Figure 7: Progressive Improvement of Best Model Perfor-
mance

libraries (such as javalang and PyTorch) and conducting
thorough code inspections. Additionally, we applied ran-
dom oversampling during data preprocessing, which could
introduce bias. Future work will explore alternative meth-
ods to handle class imbalance and assess their impact on
results. Moreover, the use of Optuna for hyperparameter
optimization introduces potential variability in results due
to different search spaces and numbers of trials. To reduce
these threats, we plan to conduct more extensive searches
and explore larger search spaces.

Our choice of a subset of projects from the PROMISE
dataset due to time constraints may impact the generaliz-
ability of our findings, as the results may not generalize
well to other projects. To address this, we intend to include
a broader range of projects in future research.

We evaluated our models using a limited set of per-
formance metrics, specifically precision, recall, and F1
measure. To reduce these threats, we will consider in-
corporating additional metrics such as AUC-ROC and
MCC, among others, to provide a more comprehensive
assessment of model performance.

6. Conclusion and Future Work
In this research, we have introduced a novel approach
that leverages JavaBERT-based embeddings with a CNN-
BiLSTM model for software defect prediction. Our ap-
proach harnesses semantic and contextual information in
program code to enhance prediction accuracy. Through
comprehensive experiments on the PROMISE dataset,
we have demonstrated the superiority of our model over
baseline models based on precision, recall, and F1-score
metrics.

Although our study improves the performance of soft-
ware defect prediction compared to baseline models, we
still have many future works to do. In addition to what we
discussed in the "threats to validity" session, we can also
train the BERT model in different languages to adapt our
methods to different programming languages.

References
[1] S. Omri, C. Sinz, Deep learning for software de-

fect prediction: A survey, in: Proceedings of the
IEEE/ACM 42nd international conference on soft-
ware engineering workshops, 2020, pp. 209–214.

[2] F. Meng, R. Huang, J. Wang, A survey of soft-
ware defects research based on deep learning, in:
2023 6th International Conference on Information
Systems and Computer Networks (ISCON), IEEE,
2023, pp. 1–5.

[3] K. O. Elish, M. O. Elish, Predicting defect-prone
software modules using support vector machines,
Journal of Systems and Software 81 (2008) 649–
660.

[4] S. Wang, T. Liu, L. Tan, Automatically learning
semantic features for defect prediction, in: Pro-
ceedings of the 38th International Conference on
Software Engineering, 2016, pp. 297–308.

[5] J. Li, P. He, J. Zhu, M. R. Lyu, Software defect pre-
diction via convolutional neural network, in: 2017
IEEE international conference on software quality,
reliability and security (QRS), IEEE, 2017, pp. 318–
328.

[6] J. Wang, C. Zhang, Software reliability prediction
using a deep learning model based on the RNN
encoder–decoder, Reliability Engineering & System
Safety 170 (2018) 73–82.

[7] J. Deng, L. Lu, S. Qiu, Software defect prediction
via LSTM, IET software 14 (2020) 443–450.

[8] H. Liang, Y. Yu, L. Jiang, Z. Xie, Seml: A semantic
LSTM model for software defect prediction, IEEE
Access 7 (2019) 83812–83824.

[9] H. Wang, W. Zhuang, X. Zhang, Software defect pre-
diction based on gated hierarchical LSTMs, IEEE
Transactions on Reliability 70 (2021) 711–727.

58



[10] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan,
I. Zada, Software defect prediction employing BiL-
STM and BERT-based semantic feature, Soft Com-
puting 26 (2022) 7877–7891.

[11] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
BERT: Pre-training of deep bidirectional transform-
ers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
J. Dean, Distributed representations of words and
phrases and their compositionality, Advances in
neural information processing systems 26 (2013).

[13] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, in: Proceed-
ings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp.
1532–1543.

[14] N. T. De Sousa, W. Hasselbring, JavaBERT: Train-
ing a transformer-based model for the Java program-
ming language, in: 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing Workshops (ASEW), IEEE, 2021, pp. 90–95.

[15] K. Fukushima, Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position, Biologi-
cal cybernetics 36 (1980) 193–202.

[16] M. Schuster, K. K. Paliwal, Bidirectional recur-
rent neural networks, IEEE transactions on Signal
Processing 45 (1997) 2673–2681.

[17] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama,
Optuna: A next-generation hyperparameter opti-
mization framework, in: Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, 2019, pp. 2623–
2631.

[18] J. Sayyad Shirabad, T. Menzies, The PROMISE
Repository of Software Engineering Databases.,
School of Information Technology and Engineer-
ing, University of Ottawa, Canada, 2005. URL:
http://promise.site.uottawa.ca/SERepository.

[19] C. Thunes, javalang: pure Python Java parser and
tools, 2020.

59

http://promise.site.uottawa.ca/SERepository

