
Identifying Vulnerable Functions from Source Code using
Vulnerability Reports
Rabaya Sultana Mim, Toukir Ahammed and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Abstract
Software vulnerability represents a flaw within a software product that can be exploited to cause the system to violate
its security. In the context of large and evolving software systems, developers find it challenging to identify vulnerable
functions effectively when a new vulnerability is reported. Existing studies have underutilized vulnerability reports which
can be a good source of contextual information in identifying vulnerable functions in source code. This study proposes an
information retrieval based method called Vulnerable Functions Detector (VFDetector) for identifying vulnerable functions
from source code and vulnerability reports. VFDetector ranks vulnerable functions based on the textual similarity between
the vulnerability report corpora and the source code corpora. This ranking is achieved modifying conventional Vector Space
Model to incorporate the size of a function which is known as the tweaked Vector Space Model (tVSM). As an initial study, the
approach has been evaluated by analysing 10 vulnerability reports from six popular open-source projects. The result shows
that VFDetector ranks the actual vulnerable function at first position in 40% cases. Moreover, it ranks the actual vulnerable
function within rank 5 in 90% cases and within rank 7 for all analysed reports. Therefore, developers can use these results to
implement successful patches on vulnerable functions more quickly .

Keywords
vulnerability identification, vulnerable function, vulnerability report, source code, vector space model

1. Introduction
A software vulnerability is a flaw, weakness, or error in
a computer program or system that can be exploited by
malicious attackers to compromise its integrity, availabil-
ity, or confidentiality [1]. Software vulnerabilities make
software systems increasingly vulnerable to attack and
damage, which raises security concerns [2].

Developers need to spend a lot of time in identifying
vulnerable function from large codespace when a new
vulnerability is reported. Identifying vulnerable func-
tions effectively is a perquisite of writing a patch for the
reported vulnerability. This is essential for enhancing
software security by addressing vulnerabilities to miti-
gate potential risks and threats more effectively at earliest
time.

Existing studies have focused on detecting software
vulnerabilities employing text-based [3, 4, 5] or graph-
based [6, 7] approaches. These approaches either treat
source code as plain text or apply graph analysis by rep-
resenting the source code as graph. In practice, prior
text-based studies treat source code as plain text and
apply static program analysis or natural language pro-
cessing. However, the performance of these approaches
is not optimal for disregarding the source code seman-
tics. On the other hand, graph based approaches conduct

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, Korea
$ msse1730@iit.du.ac.bd (R. S. Mim); toukir@iit.du.ac.bd
(T. Ahammed); sakib@iit.du.ac.bd (K. Sakib)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

program analysis which represent the source code seman-
tics as a graph, and then apply graph analysis methods
such as Graph Neural Networks (GNN) [8] to identify
vulnerabilities. Although these graph-based approaches
are more efficient at identifying vulnerabilities taking
into account the semantic relationship of various lines
of source code but their scalability is substantially less
than that of text-based approaches.

However, existing studies have underutilized vulnera-
bility reports which can be a good source of contextual
information to detect vulnerability in source code. In
this context, the current study aims to verify the role of
vulnerability reports in identifying vulnerable function.
Vulnerability report can contain contextual information
about a vulnerability which may be used to identify vul-
nerable functions. When a function is vulnerable against
a scenario some keywords should be shared between that
function and the vulnerability report. These motivate the
authors to study whether vulnerable functions can be
identified by analysing the source code and vulnerability
report.

For this purpose, this study proposes a technique of
automatic software vulnerable function identification
namely VFDetector. It takes all source code files of a
system as input. First, it extracts all source code func-
tions of that system. Then static analysis is performed
to extract the contents of those functions. Several text
pre-processing analysis such as tokenization, stopwords
removal, multiword splitting, semantic meaning extrac-
tion and lemmatization are applied on these source code
along with the vulnerability report to produce code and

66

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:msse1730@iit.du.ac.bd
mailto:toukir@iit.du.ac.bd
mailto:sakib@iit.du.ac.bd
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

report corpora. In addition, programming language spe-
cific keywords is removed for generating code corpora.
Finally, to rank the vulnerable functions, similarity scores
are measured between the code corpora of the functions
and report corpora by a modified version of Vector Space
Model (tVSM) where larger methods get more weight
while ranking.

In experiments, as an initial study ten Common Vul-
nerabilities and Exposures (CVE) reports are chosen ran-
domly from six open source GitHub repositories. Based
on the commit link available in reports we crawled
the corresponding projects before the vulnerability was
patched. The result analysis shows that VFDetector ranks
the vulnerable functions at the first position in 40% cases,
whereas it ranks the actual vulnerable function within
top 5 in 90% cases and within top 7 in 100% cases.

It is evident from the results that VFDetector performs
promisingly in detecting vulnerable functions against a
vulnerability report in a large scale software systems. It
is also observed that in Top 5 and Top 7 ranking, the
functions which ranks above the actual vulnerable func-
tion are the related functions of that vulnerability which
acquires higher similarity. It guides a developer to patch
those related functions too in order to mitigate that vul-
nerability from the system.

The remainder of this paper is structured as follows:
Section 2 gives an overview of previous studies on vul-
nerability detection at file level or function level. Section
3 describes our methodology for detecting vulnerable
functions in a project. Section 4 reports our experimental
findings and the analysis thereof. Section 5 demonstrates
the threats to validity of our work. Section 6 motivates
future research directions and concludes this paper.

2. Related Work
In recent years, the research community has directed
significant attention toward the issue of vulnerability
detection, primarily due to the complex challenges it
presents. The existing body of literature has introduced
numerous methodologies in response to these challenges.
These methods can be classified into three distinct cate-
gories based on the degree of automation: manual, semi-
automatic, and fully automatic techniques.

Manual techniques rely on human experts to create
vulnerability patterns. However, all patterns can not be
generated manually, which leads to reduced detection effi-
ciency in practical scenarios. In contrast, semi-automatic
techniques involve human experts in the extraction of
specific features like API symbols [9] and function calls
[10], which are then fed into traditional machine learn-
ing models for vulnerability detection. Full-automatic
techniques utilize Deep Learning (DL) to automatically
extract features and construct vulnerability patterns with-

out manual expert intervention. Recently, DL based tech-
niques [11, 12, 13] has gained extensive use in detecting
source code vulnerabilities due to its ability to automati-
cally extract features from source code. DL based meth-
ods can be categorized into text-based and graph-based
methods.
Text based methods: The text-based approach in

vulnerability detection treats a program’s source code as
text and employs natural language processing techniques
to identify vulnerabilities. Russell et al. [3] introduced
the TokenCNN model, which utilizes lexical analysis to
acquire source code tokens and employs a Convolutional
Neural Network (CNN) to detect vulnerabilities.

Li et al. [4] proposed Vuldeepecker, a method that
collects code gadgets by slicing programs and transforms
them into vector representations, training a Bidirectional
Long Short Term Memory (BLSTM) model for vulnera-
bility recognition.

Zhou et al. [5] introduced µVulDeePecker, which en-
hances Vuldeepecker by incorporating code attention
with control dependence to detect multi-class vulnera-
bilities. However, the performance of these text-based
approaches is limited because they rely solely on static
source code analysis and do not account for the program
semantics.
Graph based methods: To address the limitations

of text-based methods, researchers have turned to dy-
namic program analysis to convert a program’s source
code semantics into a graph representation facilitating
vulnerability detection through graph analysis. Zhou et
al. [6] introduced Devign which employs a graph neural
network for vulnerability identification. This approach
includes a convolutional module that efficiently extracts
critical features for graph-level classification from the
learned node representations. By pooling the nodes, a
comprehensive representation for graph-level classifica-
tion is achieved.

Cheng et al. [7] introduced a different approach named
Deepwukong which divides the program dependency
graph into various subgraphs after distilling the program
semantics based on program points of interest. These
subgraphs are then utilized to train a vulnerability de-
tector through a graph neural network. While these
graph-based techniques prove more effective in identify-
ing vulnerabilities but it is important to note that their
scalability is worse than text based methods due to large
number of graph nodes in complex program.

Exploring the existing literature, it is evident that text-
based methods lacks in incorporating program semantics
while graph-based methods achieve high accuracy consid-
ering source code semantics but have scalability issues in
complex scenarios. Moreover, due to the underutilization
of contextual information like vulnerability reports with
source code existing methods fails to detect complicated
vulnerabilities in real-world projects. Because whenever

67

a new vulnerability is reported in a system it is hard to
detect in which function the vulnerability exist as the
system consist of huge volume of functions. Before using
vulnerable reports as a source of contextual information
in existing methods, it is important to verify whether
vulnerable functions can be identified effectively using
these reports. Moreover, identifying vulnerable functions
using vulnerability reports can play an effective role to
minimize the search space in existing methods.

3. Methodology
This study proposes an approach which detects vulner-
able functions from huge volume of files of a large soft-
ware system using vulnerability reports. The overall
process of this approach consist of three distinct steps
and those are Source Code Corpora Generation, Vulnera-
bility Report Corpora Generation, Ranking Vulnerable
Functions. Each of these steps encompasses a series of
tasks as illustrated in Figure 1. At first, all files and their
corresponding functions are extracted from a particular
version of a software system. Then these source code is
processed to create code corpora. Similarly vulnerability
report is processed to produce report corpora. Finally,
similarity between the report and code corpora is mea-
sured using tweaked Vector Space Model (tVSM) to rank
the vulnerable source code functions.

3.1. Dataset
We used the benchmark dataset Big-Vul1 developed by
Fan et al. [14]. This dataset comprises reliable and com-
prehensive code vulnerabilities which are directly linked
to the publicly accessible CVE database. Notably, the cre-
ation of this dataset involved a significant investment of
manual resources to ensure its high quality. Furthermore,
this dataset is noteworthy for its substantial scale, being
one of the most extensive vulnerability datasets avail-
able. It is derived from a collection of 348 open-source
Github projects, encompassing a time span from 2002
to 2019, and covers 91 distinct Common Weakness Enu-
meration (CWE) categories. This comprehensive dataset
comprises approximately 188,600 C/C++ functions, with
5.6% of them identified as vulnerable (equivalent to 10,500
vulnerable functions). This dataset provides granular
ground-truth information at the function level, specify-
ing which functions within a codebase are susceptible to
vulnerabilities.

1https://github.com/ZeoVan/MSR_20_Code_vulnerability_
CSV_Dataset

3.2. Source Code Corpora Generation
Source code corpora consist of source code terms used
to assess similarity with vulnerability report corpora.
Therefore, the precision of code corpora generation di-
rectly impacts the precision of matching, consequently
enhancing the accuracy of vulnerability localization. In
this step all the folders are extracted from a system with
their corresponding C/C++ files. From each of these files
all functions are extracted automatically in individual C
files which ensures function level analysis. For Example:
CVE-2014-2038 of Linux version 3.13.5 consist of 15,675
files which has total 229,682 functions.

This stage generates a vector of lexical tokens by do-
ing lexical analysis on every source code file. There are
unnecessary tokens in source code which do not contain
any vulnerability related information. These tokens are
discarded from source code such as programming lan-
guage specific keywords (e.g., int, if, float, switch, case,
struct), stop words (e.g., all, and, an, the). Many words in
the source code may include multiple words. For exam-
ple, the term "addRequest" consists of the keywords "add"
and "Request". Mutiwords are separated using multi word
identifier. Furthermore, statements are divided according
to certain syntax-specific separators like ‘ , ’, ‘=’, ‘(’, ‘)’, ‘{’,
‘}’, ‘/’, and so on. WordNet2 is used to derive each word’s
semantic meanings because a term might have more than
one synonym. In specific cases, developers and Quality
Assurance (QA) personnel may employ different termi-
nology, even though they are referring to the same sce-
nario with equivalent meanings. For example, the term
‘finalize’ may have multiple synonyms such as ‘conclude’
or ‘complete.’ When describing a situation, if a developer
uses ‘finalize’ but QA opts for ‘conclude’, it’s challenging
for the system to identify these variances without consid-
ering the semantic meanings of these words. Therefore,
the extraction of semantic meaning is crucial in achieving
accurate rankings for vulnerable functions.

The final stage of code corpora generation incorpo-
rates WordNet lemmatization, a technique that normal-
izes words to their base or dictionary form. WordNet
lemmatization utilizes the comprehensive WordNet lex-
ical database, organizing words into synonymous sets
called synsets. This method identifies word lemmas based
on the word’s part of speech and context within Word-
Net, offering a more context-aware approach to lemma-
tization. As a result, it considers a word’s meaning and
contextual usage, allowing for precise reduction of words.
For instance, it transforms "running" to "run" and "better"
to "good" based on their meanings and parts of speech,
unlike standard lemmatization that typically relies on
suffix removal.

2https://wordnet.princeton.edu/

68

https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://wordnet.princeton.edu/

Figure 1: Overview of VFDetector

3.3. Vulnerability Report Corpora
A software vulnerability report contains information like
description about the vulnerability, severity rating, vul-
nerability identifier (CVE-ID), reference to additional
sources which gives valuable insights about a software
vulnerability issue. However, these reports can also in-
clude irrelevant terms such as stop words and words in
various tenses (present, past, or future). To refine vulner-
ability reports, pre-processing is necessary. In the initial
stage of vulnerability report corpora creation, stop words
are eliminated. We apply WordNet Lemmatizer, similar
to what’s used for source code corpora generation, to
generate refined report corpora containing only relevant
terms.

3.4. Ranking Vulnerable Functions
In this step, relevant vulnerable functions are ranked
based on the textual similarity between the query (re-
port corpus) and each of the function in the code corpus.
Vulnerable functions are ranked by applying tVSM. We

employ tVSM, which modifies the Vector Space Model
(VSM) by emphasising large-scale functions. In tradi-
tional VSM, the cosine similarity is used to measure the
ranking score between the associated vector representa-
tions of a report corpus (r) and function (f), according to
Equation 1.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑟, 𝑓) = 𝑐𝑜𝑠(𝑟, 𝑓) =
𝑉�⃗� · 𝑉�⃗�

|𝑉�⃗�| · |𝑉�⃗� |
(1)

Here, 𝑉�⃗� and 𝑉�⃗� are the term vectors for the vulner-
ability report (r) corpus and function (f) corpus respec-
tively. Throughout the years, numerous adaptations of
the tf(t,d) function have been introduced with the aim of
enhancing the VSM model’s effectiveness. These encom-
pass logarithmic, augmented, and Boolean modifications
of the traditional VSM [15]. It has been noted that the
logarithmic version can yield improved performance, as
indicated by prior studies [16, 17, 18]. From that point of
view, tVSM modified Equation 1 and uses the logarithm
of term frequency (tf) and iff(inverse function frequency)
to give more importance on rare terms in the functions.

69

Thus tf and iff are calculated using Equation 2 and 3
respectively.

𝑡𝑓(𝑡, 𝑓) = 1 + 𝑙𝑜𝑔𝑓𝑡𝑓 (2)

𝑖𝑓𝑓 = 𝑙𝑜𝑔(
#𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑡
) (3)

Here, 𝑓𝑡𝑓 represents the frequency of a term 𝑡 appearing
in a function 𝑓 , #𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 denotes the total count of
functions within the search space, 𝑛𝑡 signifies the overall
number of functions that include the term 𝑡. Thus in
equation 4 each term weight is calculated as follows:

𝑤𝑒𝑖𝑔ℎ𝑡𝑡∈𝑓 = (𝑡𝑓)𝑡𝑓 × (𝑖𝑓𝑓)𝑡

= (1 + 𝑙𝑜𝑔𝑓𝑡𝑓)× 𝑙𝑜𝑔(
#𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑡
)

(4)

The VSM score is calculated using equation 5.

𝑐𝑜𝑠(𝑟, 𝑓) =
∑︁

𝑡∈𝑟∩𝑓

(1 + log 𝑓𝑡𝑟)× (1 + log 𝑓𝑡𝑓)× 𝑖𝑓𝑓2×

1√︀∑︀
(1 + log 𝑓𝑡𝑟)× 𝑖𝑓𝑓2

× 1√︀∑︀
(1 + log 𝑓𝑡𝑓)× 𝑖𝑓𝑓2

(5)

Traditional VSM tends to give preference to smaller
functions when ranking them, which can be problem-
atic for large functions because they may receive lower
similarity scores. Past research [19, 20, 21] has indicated
that larger source code files are more likely to contain
vulnerabilities. Therefore, in the context of vulnerability
localization, it’s crucial to prioritize larger functions in
our ranking. To address this issue, we introduce a func-
tion denoted as ’x’ (as shown in Equation 6) within the
tVSM model, aiming to account for the function’s length.

𝑥(𝑡𝑒𝑟𝑚𝑠) = 1− 𝑒−𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(#𝑡𝑒𝑟𝑚𝑠) (6)

Equation 6 represents a logistic function, specifically an
inverse logit function, designed to ensure that larger func-
tions receive higher rankings. We employ Equation 6 to

Table 1
List of Analyzed Open Source Projects

Project Name CVE ID Source Code

1 Chrome CVE-2011-3916 github.com/chromium/chromium/tree/f1a59e0513d63758588298e98500cac82ddccb67
2 Radare2 CVE-2017-16359 github.com/radareorg/radare2/tree/1f5050868eedabcbf2eda510a05c93577e1c2cd5
3 Linux CVE-2013-6763 github.com/torvalds/linux/tree/f9ec2e6f7991e748e75e324ed05ca2a7ec360ebb
4 Linux CVE-2013-2094 github.com/torvalds/linux/tree/41ef2d5678d83af030125550329b6ae8b74618fa
5 Linux CVE-2014-2038 github.com/torvalds/linux/tree/a9ab5e840669b19aca2974e2c771a77df2876434
6 ImageMagick CVE-2017-15033 github.com/ImageMagick/ImageMagick/tree/c29d15c70d0eda9d7ffe26a0ccc181f4f0a07ca5
7 Tcpdump CVE-2017-13000 github.com/the-tcpdump-group/tcpdump/tree/a7e5f58f402e6919ec444a57946bade7dfd6b184
8 Tcpdump CVE-2018-14470 github.com/the-tcpdump-group/tcpdump/tree/aa3e54f594385ce7e1e319b0c84999e51192578b
9 FFmpeg CVE-2016-10190 github.com/FFmpeg/FFmpeg/tree/51020adcecf4004c1586a708d96acc6cbddd050a
10 FFmpeg CVE-2019-11339 github.com/FFmpeg/FFmpeg/tree/3f086a2f665f9906e0f6197cddbfacc2f4b093a1

calculate the length value for each source code function
based on the number of terms contained within the func-
tion. Here we apply the normalized value of ’#terms’
as the argument for the exponential function 𝑒−𝑥. The
normalization process is defined in Equation 7.

Let z denote a set of data, with 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 rep-
resenting the maximum and minimum values of z term,
respectively. The normalized value for z term is deter-
mined as:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑧) =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧 − 𝑧𝑚𝑎𝑥
(7)

Considering the above analysis, tVSM score is calculated
by multiplying the weight of each function, denoted as
x(terms), with the cosine similarity score represented by
cos(r, f), as described in Equation 8:

𝑡𝑉 𝑆𝑀(𝑟, 𝑓) = 𝑥(𝑡𝑒𝑟𝑚𝑠)× 𝑐𝑜𝑠(𝑟, 𝑓) (8)

Once the tVSM score for each function has been com-
puted, a list of vulnerable functions is arranged in de-
scending order of scores. The function with the highest
similarity score is positioned at the top of the ranked list.

4. Experiment and Result Analysis
This section provides information on the practical imple-
mentation, the criteria used for evaluation and experi-
mental result analysis of this study.

4.1. Implementation
The proposed method is implemented in python (version
3.11.5). The experiment was conducted on an Windows
server equipped with an Intel(R) Core(TM) i5-10300H
CPU processor @3.0GHz and having 64GB of RAM. The
implementation involves various python libraries and
NLTK (Natural Language Toolkit) libraries for text pro-
cessing and feature extraction. It takes function files
as input and provides ranking of suspicious vulnerable
functions as output.

70

Table 2
Summary of Tested Projects

CVE ID Total Commits Total Files Total Functions Vulnerable Functions VFDetector Ranking

CVE-2017-13000 4,466 180 638 extract_header_length() 1
CVE-2018-14470 4,548 185 640 babel_print_V2() 1
CVE-2017-15033 12,558 586 4,694 ReadYUVImage() 1
CVE-2017-16359 16,362 965 9,197 store_versioninfo_gnu_verdef() 1
CVE-2011-3916 93,104 4,929 15,042 WebGLObject() 2
CVE-2019-11339 93,322 2,572 16,724 mpeg4_decode_studio_block() 2
CVE-2016-10190 82,768 2,286 14,713 http_buf_read() 3
CVE-2014-2038 413,259 15,674 229,682 nfs_can_extend_write() 4
CVE-2013-2094 362,534 18,358 257,550 perf_swevent_init() 5
CVE-2013-6763 401,141 19,260 273,898 uio_mmap_physical() 7

4.2. Evaluation
To conduct this research we used the extensive Big-Vul
dataset which contains large scale vulnerability reports
of C/C++ code from open source GitHub projects. Other
C/C++ datasets can also be used. Based on the highest
number of vulnerabilities reported, we choosed top six
well known projects from this dataset which are Chrome,
Linux, Radare2, ImageMagick, Tcpdump and FFmpeg
as shown in Table 1. As the selected projects are open-
source in nature and are hosted on GitHub, serving as
the primary platform for storing code and managing
version control. It allows us to extract all essential com-
mits for our analysis. Additional information about the
repositories can be found in Table 2. As an initial study,
VFDetector was evaluated using ten vulnerability reports
from these six open-source projects which are chosen
randomly from the dataset. Table 1 lists the analysed
project name, CVE ID of report, and the source code link.

To measure the effectiveness of the proposed vulnera-
bility detection method, we use the Top N Rank metric.
This metric signifies the count of vulnerable functions
ranked in the top N (where N can be 1, 5, or 7) in the ob-
tained results. When assessing a reported vulnerability,
if the top N query results include at least one function
that corresponds to the location where the vulnerability
needs to be addressed, we determine that the vulnerable
function is detected successfully. Table 2 includes ten
vulnerability reports from six open source projects with
their number of commits, total files, total functions, ac-
tual vulnerable functions name and finally VFDetector
ranking in Top N ranked functions in output. The re-
sults of Table 2 shows that among the ten CVE reports
VFDetector ranks the actual vulnerable function at the
1st position for four (40%) reports which are CVE ID
#13000, #14470, #15033, #16359. For five reports (50%)
with CVE ID #3916, #2094, #2038, #10190 and #11339 it
ranks the vulnerable function in Top 5 rank. It indicates
that nine (90%) reports are ranked in Top 5. For one
report CVE-2013-6763 of Linux Kernel version 3.12.1 it
ranks the vulnerable function in Top 7 rank i.e., in 7th

position out of total 273,898 functions. Upon manual
inspection, we observed that the six functions preceding
the vulnerable function exhibit a higher similarity score
compared to the actual vulnerable function. The reason
behind this can be the inter-connectedness of these six
functions with the vulnerable function through function
calls. It is also noticeable that projects with less number
of functions ranks the vulnerable function in 1st position
and with large number of functions the ranking decreases
slightly. The reason behind this is larger projects might
contain more associated functions which are needed to
be fixed in order to address a particular vulnerability.

In summary, the experimental results show that VFDe-
tector can detect vulnerable functions from a huge vol-
ume of functions and can also suggest developers with
the related functions having highest similarity scores
which might need to be patched to address the reported
vulnerability. Moreover, to the best of our knowledge
we are the first to incorporate vulnerability reports in
software vulnerability detection from the concept that
vulnerability report’s description contain conceptual in-
formation about a reported vulnerability. Based on the
promising results in this initial evaluation, the future
work can be analyzing more vulnerable reports from
diverse projects to make the approach comparable and
generalizable.

5. Threats to Validity
In this section, we discussed the potential threats which
may affect the validity of this study.
Threats to external validity: The generalizability

of the acquired results poses a threat to external validity.
The dataset that we used in our research was gathered
from open-source. Open-source projects may contain
data that differs from those created by software compa-
nies with sound management practices. Seven Apache
projects are examined in this study. More projects from
other systems are needed to be evaluated for the gener-
alisation. However, to overcome this threat large-scale

71

diversified projects with long change history is to be
chosen.
Threats to internal validity: One limitation of our

approach is its reliance on sound programming practices
when naming variables, methods, and classes. If a de-
veloper uses non-meaningful names, it could have an
adverse impact on the effectiveness of vulnerability de-
tection.ay not fully represent the characteristics of the
whole program. Additionally, our model is evaluated
with C/C++ functions and it may encounter challenges
in detecting vulnerabilities in other programming lan-
guages.

Threats to construct validity: We used the WordNet
database and lemmatizer of NLTK library as essential
components in text pre-processing to extract word se-
mantics and reduce words to their base forms. Since
these resources are well known for their usefulness in
NLP, we relied on their accuracy. Moreover, vulnerabil-
ity reports offer essential information that developers
rely on to address and patch vulnerable functions. A bad
vulnerability report delays the fixing process. It’s worth
noting that our approach is dependent on the quality of
these reports. If a vulnerability report lacks sufficient
information or contains misleading details, it can have a
detrimental impact on the performance of VFDetector.

6. Conclusion
Once a new vulnerability is reported, developers need to
know which files and particular which function should
be modified to fix the issues. This can be especially chal-
lenging in large software projects, where examining nu-
merous source code files can be time-consuming and
costly.

In this paper, a software vulnerability detection tech-
nique has been proposed named as VFDetector for detect-
ing relevant vulnerable functions based on vulnerability
reports. Since detecting vulnerabilities from vulnerability
report is an information retrieval process, we apply static
analysis on both source code and vulnerability reports to
create code and report corpora. Finally, VFDetector lever-
ages a tweaked Vector Space Model (tVSM) to rank the
source code functions based on the similarity. Our evalu-
ation conducted on six real-world open source projects
show that VFDetector ranks vulnerable functions at the
1st position in most cases.

In future, VFDetector can be applied to industrial
projects to access the generalization of the results in prac-
tice. Besides, dynamic analysis can be incorporated in
this approach to improve detection performance. More-
over, minimizing the search space in a function and pin-
pointing statement-level vulnerabilities is also a potential
future scope.

References
[1] J. Han, D. Gao, R. H. Deng, On the effectiveness

of software diversity: A systematic study on real-
world vulnerabilities, in: International Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment, Springer, 2009, pp. 127–146.

[2] H. Alves, B. Fonseca, N. Antunes, Software met-
rics and security vulnerabilities: dataset and ex-
ploratory study, in: 2016 12th European Depend-
able Computing Conference (EDCC), IEEE, 2016,
pp. 37–44.

[3] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, M. McConley, Auto-
mated vulnerability detection in source code using
deep representation learning, in: 2018 17th IEEE
international conference on machine learning and
applications (ICMLA), IEEE, 2018, pp. 757–762.

[4] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
Y. Zhong, Vuldeepecker: A deep learning-based
system for vulnerability detection, in: Proceedings
of the 25th Annual Network and Distributed System
Security Symposium, 2018.

[5] D. Zou, S. Wang, S. Xu, Z. Li, H. Jin, 𝜇 vuldeepecker:
A deep learning-based system for multiclass vulner-
ability detection, IEEE Transactions on Dependable
and Secure Computing 18 (2019) 2224–2236.

[6] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effec-
tive vulnerability identification by learning compre-
hensive program semantics via graph neural net-
works, Advances in neural information processing
systems 32 (2019).

[7] X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui, Deep-
wukong: Statically detecting software vulnerabili-
ties using deep graph neural network, ACM Trans-
actions on Software Engineering and Methodology
(TOSEM) 30 (2021) 1–33.

[8] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling
and discovering vulnerabilities with code property
graphs, in: 2014 IEEE Symposium on Security and
Privacy, IEEE, 2014, pp. 590–604.

[9] F. Yamaguchi, M. Lottmann, K. Rieck, Generalized
vulnerability extrapolation using abstract syntax
trees, in: Proceedings of the 28th annual computer
security applications conference, 2012, pp. 359–368.

[10] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller,
Predicting vulnerable software components, in:
Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007, pp. 529–
540.

[11] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sy-
sevr: A framework for using deep learning to de-
tect software vulnerabilities, IEEE Transactions
on Dependable and Secure Computing 19 (2021)
2244–2258.

72

[12] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, H. Jin, Vul-
cnn: An image-inspired scalable vulnerability de-
tection system, in: Proceedings of the 44th Interna-
tional Conference on Software Engineering, 2022,
pp. 2365–2376.

[13] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Y. Zhang, Z. Chen,
D. Li, Vuldeelocator: A deep learning-based system
for detecting and locating software vulnerabilities,
IEEE Transactions on Dependable and Secure Com-
puting (2021).

[14] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A c/c++ code
vulnerability dataset with code changes and cve
summaries, in: Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories,
2020, pp. 508–512.

[15] H. Schütze, C. D. Manning, P. Raghavan, Introduc-
tion to information retrieval, volume 39, Cambridge
University Press Cambridge, 2008.

[16] W. B. Croft, D. Metzler, T. Strohman, Search en-
gines: Information retrieval in practice, volume 520,
Addison-Wesley Reading, 2010.

[17] S. Rahman, K. Sakib, An appropriate method rank-
ing approach for localizing bugs using minimized
search space., in: ENASE, 2016, pp. 303–309.

[18] S. Rahman, M. M. Rahman, K. Sakib, A statement
level bug localization technique using statement
dependency graph., in: ENASE, 2017, pp. 171–178.

[19] N. E. Fenton, N. Ohlsson, Quantitative analysis
of faults and failures in a complex software sys-
tem, IEEE Transactions on Software engineering
26 (2000) 797–814.

[20] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Predicting
the location and number of faults in large software
systems, IEEE Transactions on Software Engineer-
ing 31 (2005) 340–355.

[21] H. Zhang, An investigation of the relationships
between lines of code and defects, in: 2009 IEEE
international conference on software maintenance,
IEEE, 2009, pp. 274–283.

73

