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Abstract
Provers based on the connection method can become much more powerful than currently believed. We

substantiate this thesis with certain generalizations of known techniques. In particular, we generalize

proof structure enumeration interwoven with unification – the proceeding of goal-driven connection

and clausal tableaux provers – to an interplay of goal- and axiom-driven processing. It permits lemma

re-use and heuristic restrictions known from saturating provers. Proof structure terms, proof objects that

allow to specify and implement various ways of building proofs, are central for our approach. Meredith’s

condensed detachment represents the prototypical base case of such proof structure terms. Hence, we

focus on condensed detachment problems, first-order Horn problems of a specific form. Experiments

show that for this problem class the approach keeps up with state-of-the-art first-order provers, leads to

remarkably short proofs, solves an ATP challenge problem, and is useful in machine learning for ATP. A

general aim is to make ATP more accessible to systematic investigations in the space between calculi

and implementation aspects.

1. Introduction

Our thesis is that provers based on the connection method (CM) can become much more

powerful than currently believed. We substantiate this with certain generalizations of known

techniques.

Current realizations of the CM operate by enumerating proof structures, interwoven with

unification of atomic formulas that are associated with nodes in the structure. The scope of

variables in these formulas includes the whole structure; in technical terms, they are rigid [1].

Failure of unification on a partially built-up structure effects backtracking. All those structures

that would extend this partial structure are abandoned at once.

As the proof structures are often represented in a tree form as clausal tableaux [2], we

call provers that proceed in this way CM-CT provers, for Connection Method/Clausal Tableaux.

Examples are the Prolog Technology Theorem Prover [3], SETHEO [4], leanCoP [5, 6] and

CMProver [7, 8, 9]. Aside of the CM and clausal tableaux also model elimination [10] is a

conceptual model that covers such provers. The underlying principle of enumerating proof

structures in combination with unification is already present in [11, 12], as an improvement

compared to enumerating formula instantiations. In [13, Sect. 3] resolution theorem proving is

contrasted as a formula enumeration process with tableau enumeration. With techniques based

on proof structure enumeration, each proof structure usually appears at most once, while, e.g.,

in proof search by resolution the same subproof may appear several times.
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Typically, CM-CT provers perform the structure enumeration wrapped in iterative deepening

upon themaximal value of some structure sizemeasure. A basic motivation there is completeness

while avoiding the storage requirements of breadth-first search [3]. In addition, alternate depth

measures are explored as heuristics variations, e.g., [4, Sect. 6.2].

CM-CT provers proceed goal-driven through an initially instantiated goal formula at the top

of the proof structure, e.g., with a ground clause obtained from Skolemizing universal variables

in the original goal formula.

Structure-generating first-order theorem proving as discussed here generalizes these principles.

One major influence is the consideration of proof structure terms in Carew A. Meredith’s

condensed detachment (CD) [14]. These are full binary trees,1 called D-terms [15], referring to

their convenient presentation as terms with the binary function symbol D. A D-term permits to

associate a most general formula that is proven by it if the constants or leaf nodes are associated

with given axioms. See, e.g., [16] for original examples. D-terms allow to specify many useful

operations on proof structures in immediate and straightforward ways. For example, notions

of proof size. Or proof composition: proofs of lemmas can simply be inserted into an overall

proof term. Such a composition of proofs is, for example, necessary to obtain an overall proof

in the case where precomputed and preselected lemmas are supplied as additional axioms to

the theorem prover [17]. Also decomposition of proofs is straightforward: Each subterm of a

D-term is itself a D-term that represents the proof of a lemma.

CD plays a core role in witness theory [18] and is known [19] as the first technical approach

to the Curry-Howard correspondence or “formulas as types” [20, 21]. It provides the basis of

Metamath2 [22, 23], a rather successful computer-processable language for verifying, archiving,

and presenting mathematical proofs. The problems covered by CD form a subclass of first-order

Horn problems. Although many historic successes in ATP were achieved involving CD problems

[24, 25, 26, 27, 28, 29, 30, 31, 32], CD was in ATP mostly considered just as a restricted form of

hyperresolution. Emphasis on its proof structures became prevalent in ATP only later, based on

observing parallels to the CM [33, 15].

Thus our investigations focuses on CD problems, for which these D-terms are readily available,

and we call our prototypical system to investigate the approach SGCD – Structure-Generating

theorem proving for Condensed Detachment. Our starting point is enumerating proof structures,

interwoven with unification, as performed by the CM-CT provers. SGCD computes proofs in

increasing levels, characterized for example by some size measure of the D-terms, e.g., number

of nodes or height, similar to the iterative deepening in CM-CT provers. The simple form of the

D-terms, just full binary trees, allows to find precise upper bounds of the search space growth

for increasing levels in the The On-Line Encyclopedia of Integer Sequences (OEIS) [34]. Also

measures that were so far hardly considered for CM-CT provers can be taken into account. For

example compacted size, that is, the number of nodes of the minimal DAG representation of the

proof tree. Or we can characterize sets of structures level by level in some inductive way. With

one specific such characterization, the so-called PSP-level (PSP for Proof-SubProof ), SGCD finds

a strikingly short proof of a historic problem by Łukasiewicz [15] and a proof of a problem that

was solved by Meredith but was so far very hard for ATP [17, 31].

1A binary tree is full if each node has 2 or 0 children.
2https://us.metamath.org/.
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Another issue to address is the purely goal-driven operation of the CM-CT provers. Their

depth-first search effects that subgoals are re-proven again and again. Moreover, information

about the goal in form of the initial goal instantiation is often propagated only to a few subgoals

that are very close to the overall goal.

From our enumeration view, instantiating the top node with a given goal is just an optional

possibility. We can also leave it with variables and collect their bindings in each enumerated

structure. Under such a binding, the goal is a lemma formula that can be proven by the structure

in a given level from given axioms. Alternate proof structures yield alternate bindings, alternate

lemmas. We call this mode axiom-driven. SETHEOwas used for bottom-up preprocessing in this

way [35]. Hypertableaux [36] may be viewed as proving by maintaining such derived lemmas

in a specific way. SGCD can be invoked in a loop where goal-driven phases alternate with

axiom-driven phases, for increasing levels. The parameters that control this loop are highly

configurable. Unit lemmas obtained by the axiom-driven phases are cached and available in

later phases, both axiom- and goal-driven. They can be deleted on the basis of heuristics that are

well-known from saturating theorem proving, for example deleting lemmas whose term height

exceeds a threshold. Such heuristics are usually not available in CM-CT provers, because the

atom instances maintained by them are deeper instantiated, impacted always from the overall

proof structure in contrast to just the substructure that proves the lemma.

In a typical configuration SGCD starts with an empty cache and proceeds in a main loop

over a “current” level initialized with 0. As level we may, e.g., assume tree size, the number of

inner nodes of the proof tree. In each iteration of the loop SGCD first tries to prove the goal in

the goal-driven way with iterative deepening upon a level that starts with the current level, is

incremented in each deepening step by one, and ends with, say, the current level plus 2. Much

like a CM-CT prover with iterative deepening except that: (1) Iterative deepening starts at the

current level and is only tried for two more levels; (2) In addition to the original axioms also

cached lemmas are used to solve subgoals. If no proof is found in the goal-driven phase, SGCD

invokes the axiom-driven mode to generate lemmas in the current level, which are then put

into the cache. For generating these lemmas it solves subgoals by lemmas in smaller levels that

were cached in previous iterations of the main loop. With a generated lemma not just its proof

but also its level is recorded. The level is then available to control the search when the lemma is

used to solve a subgoal in either goal- or axiom-driven mode. If, for example, the search is for

an overall proof with tree size 10 where the fragment under construction already has tree size 8,
then only lemmas with a tree size of at most 2 may be attached to the fragment. After placing

the lemmas generated by the axiom-driven phase in the cache the current level is incremented

by one and SGCD moves to the next iteration of its main loop.

In the recent terminology of [37], our approach combines the following features: Cs (separa-

tion of proof structural information from the formula), Cm (mixed manner of operation, that

combines starting from the goal theorem (Cg) and starting from the axioms), and a form of Cc

(cut) through unit lemmas.

In the following Sect. 2 we provide more background on condensed detachment. Then, in

Sect. 3 we explicate our approach with presenting the system SGCD (Structure-Generating

theorem proving for Condensed Detachment), covering the range from general concepts to

implementation aspects and experimental results. In Sect. 4 we discus some particular open

issues and speculative ideas concerning the approach. Section 5 concludes the paper.
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Detailed descriptions of experiments are provided in [38] and [17].

The system is available as free software from http://cs.christophwernhard.com/cdtools/,

where also additional data and presentations for the experiments can be found, including

HTML-formatted comprehensive result tables and full logs.

2. Background: Condensed Detachment for ATP

CD was developed in the mid-1950s by Carew A. Meredith as an evolution of the method of

substitution and detachment practiced by Łukasiewicz [14, 39, 40, 41]. Reasoning steps are by

detachment, or modus ponens, under implicit substitution by most general unifiers. Its basic

application field is the investigation of axiomatizations of propositional logics from a first-order

meta level. Some of the most advanced formal proofs ever developed by humans were such

applications of CD by Meredith and some other researchers. From a first-order ATP perspective,

a CD problem consists of proper axioms (briefly axioms), that is, positive unit clauses, a goal

theorem, that is, a single negative ground unit clause (representing a universally quantified

atomic goal theorem after Skolemization), and the following ternary Horn clause that models

detachment.

Det def= P(i(x, y)) ∧ P(x) → P(y).

The premises of Det are called major and minor premise, respectively. All atoms in the problem

have the same predicate P, which is unary and stands for something like provable. The formulas

of the investigated propositional logic are expressed as terms, where the binary function symbol i

stands for implies.

CD may be considered as an inference rule. With this view, the most straightforward way to

describe aCD inference step from anATP perspective is to consider it as a positive hyperresolution

step such that from Det and two positive unit clauses, used as major and minor premise, a

third positive unit clause is inferred. A CD proof is a proof of a CD problem constructed with

the CD inference rule, in contrast to, for example, a proof involving binary resolution steps

involving Det that yield non-unit resolvents. Prover9 [42] actually by default chooses positive

hyperresolution as inference rule for CD problems and thus produces CD proofs for these.

The structure of CD proofs can be represented in a very simple and convenient way as full

binary trees or terms, which can be directly taken into account as objects in proving. In ATP

we find this aspect in the connection methods (CM) [43, 44, 45], where the proof structure as a

whole is in the focus, in contrast to extending a set of formulas by inferred formulas. This view

of CD has been made precise and elaborated in [33, 15].

As already mentioned, we call the structure representations of CD proofsD-terms. A D-term is

a term built from D as binary function symbol and atom labels as constant symbols or primitive

D-Terms, labels of axioms. In other words, it is a full binary tree where the leaf nodes are labels

of axioms. The following line shows four example D-terms for axiom labels 1, 2.

1, 2, D(1, 1), D(D(2, 1),D(1,D(2, 1))).

The mapping between the representation of CD proofs in terms of CD inference steps and

D-terms is straightforward: The use of an axiom corresponds to a primitive D-term. A CD
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inference step corresponds to a D-term D(d1, d2) where d1 is the D-term that proves the unit

clause for the major premise and d2 is the D-term that proves the unit clause for the minor

premise.

A CD proof in full is represented by a D-term (which just describes structure) taken together

with an axiom assignment, that is, a mapping of primitive D-terms to axioms. It proves from the

axioms all instances of a most general formula that is associated through unification, constrained

by the axioms for the leaf nodes and the requirements imposed by Det for the inner nodes.3

Following [15], we call this formula the most general theorem (MGT) of the D-term with respect

to the axiom assignment. The MGT is unique, modulo renaming of variables. Of course, for a

given axiom assignment not all D-terms necessarily have an MGT. If the unification constraints

imposed by the axioms and Det cannot be satisfied, we say the D-term has no MGT. And, of

course, also depending on the axiom assignment, it is well possible that two different D-terms

have the same MGT or that the MGT of one is subsumed by the MGT of the other. A CD problem

also includes a goal theorem, a ground atom. A D-term is a proof of the problem if its MGT

with respect to the axioms subsumes the goal theorem.

Example 1. Consider the axiom assignment α def= {1 7→ P(i(x, i(x, x)))} declaring the primitive

D-term 1 as label of the axiom known as Mingle [32]. The MGT of the primitive D-term 1 is then

just this axiom. The MGT of the D-term D(1, 1) is P(y)σ where σ is the most general unifier of

the set of pairs

{{P(i(x, y)), P(i(x′, i(x′, x′)))}, {P(x), P(i(x′′, i(x′′, x′′)))}}.

The most general unifier of these pairs is σ = {x 7→ i(x′′, i(x′′, x′′)), x′ 7→ i(x′′, i(x′′, x′′)), y 7→
i(i(x′′, i(x′′, x′′)), i(x′′, i(x′′, x′′))).}. Hence, after renaming variables (recall that the MGT is just

characterized modulo renaming of variables) the MGT of D(1, 1) is P(i(x, i(x, x)), i(x, i(x, x))).
A D-term proves as goal theorems all ground instances of its MGT, which is defined with respect

to an axiom assignment. So here D(1, 1) proves P(i(a, i(a, a)), i(a, i(a, a))), and also, for example

P(i(i(a, b), i(i(a, b), i(a, b))), i(i(a, b), i(i(a, b), i(a, b)))).

D-terms, full binary trees, facilitate characterizing and investigating structural properties of

proofs. While, for a variety of reasons, it is far from obvious how to measure the size of proofs

by ATP systems in general, for D-terms there are three immediate size measures:

• The tree size of a D-term is the number of its inner nodes.

• The height of a D-term is the number of edges of the longest downward path from the

root to a leaf.

• The compacted size of a D-term is the number of distinct compound subterms, or, in other

words, the number of inner nodes of its minimal DAG.4

In the literature compacted size is also called length, height level and tree size CDcount [29].

3There is actually some fine-print here with respect to the usual notion of most general unifier [33, 15, 20].
4It is well known that a tree or set of trees is represented by a unique (modulo isomorphism) minimal DAG, which is

maximally factored (it has no multiple occurrences of the same subtree) or, equivalently, is minimal with respect to

the number of nodes.
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Example 2. The D-term

D(D(1,D(1, 1)),D(D(1,D(1, 1)),D(D(1, 1), 1)))

has tree size 8, height 4 and compacted size 5. If we replace the second occurrence of 1 from left

with 2 we obtain

D(D(1,D(2, 1)),D(D(1,D(1, 1)),D(D(1, 1), 1))).

Tree size and height remain unaltered, but the compacted size is then 7.

CD proofs suggest and allow a specific form of lemmas, which we call unit/subtree lemmas,

reflecting two views: As formulas, they are positive unit clauses, which can be re-used in

different CD inference steps. In the structural view, they are subterms (or subtrees5) of the

overall D-term. If they occur multiply there, they would be factored in the minimal DAG of

the overall D-term. Both views are linked in that the formula of a lemma is the MGT of its

D-term. The most adequate size measure for D-terms that takes the compression achieved by

unit/subtree lemmas into account is compacted size. From the perspective of proof structure

compression methods, unit/subtree lemmas have the property that the compression target is

unique, simply because each tree is represented by a unique minimal DAG.

A textual representation of a D-term that respects its compacted size, the DAG compression

by unit/subtree lemmas, is provided by a list of factor equations. There, distinct subproofs

with multiple incoming edges in the DAG receive numeric labels by which they are referenced.

Meredith uses such a form with Polish notation for D-terms and their MGTs, e.g., in [16], which

is discussed in [15].

Example 3. Consider the D-termD(D(1,D(1, 1)),D(D(1,D(1, 1)),D(D(1, 1), 1))) from Exam-

ple 2. As a list of factor equations it can be represented as follows.

2 = D(1, 1)
3 = D(1, 2)
4 = D(3,D(3,D(2, 1)))

Here we assume that labels 2–4 are not used for axioms and thus are free for use as reference labels.

Label 4, which is not referenced, is associated with the root or the overall D-term.

Compared to general first-order ATP problems, CD problems are restricted: viewed as a

CNF to be refuted, the problem has positive unit clauses, a single negative ground clause, and

a single ternary Horn clause. Also equality is not explicitly considered. Nevertheless, core

characteristics of general first-order ATP problems are present: first-order variables, a binary

function symbol, and cyclic predicate dependency.6

5We use subtree with the meaning common in computer science and matching the notion of subterm: A subtree of a

tree T is a tree consisting of a node in T and all of its descendants in T .
6In the sense of the dependency graph of a logic program. It has an edge from predicate p to predicate q if there is a

clause with a body atom whose predicate is p and with a head whose predicate is q.
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3. SGCD – Structure-Generating Theorem Proving for

Condensed Detachment

We explicate our approach by means of describing the SGCD system, which is implemented

in SWI-Prolog [46]. There we enter the space between calculi and “system descriptions”. In

a sense, the calculus (e.g., condensed detachment as some inference system) just tells us in

an inductive way how proof structures are built-up and relate to proven formulas or MGTs.

Although the inductive specification suggests a construction, for theorem proving in practice,

there are many ways in which the proof structures can actually be built. We think, this is not

merely the domain of ad-hoc low-level heuristics, but a potentially large field that should be

systematically approached as well.

The programming language Prolog is inherently rather close to proof structure enumeration

with incorporated unification. In fact, it expresses arbitrary computations according to this

principle. A predicate (or nondeterministic procedure) enumerates alternate bindings of output

variables, each corresponding to a different (implicitly represented) proof of the “predicate”,

viewed as a goal unit clause with free output variables. Thus, Prolog is for SGCD not just

suitable as an implementation language, but also to abstractly describe the involved methods.

3.1. The Core Enumeration Predicate, its Modes and the Cache

We assume CD problems with D-terms as proof structures. Further we assume that the set of

D-terms is grouped into levels, possibly but not necessarily disjoint, where each strict subterm

of a given D-term is in some strictly lower level than the given D-term. The set of the sets of all

D-terms with a specific tree size is an example of such a level grouping. We then say that the

level is characterized by the tree size.

At the core of SGCD is a ternary predicate that, for a given level, enumerates all pairs of a

D-term in the level and a formula such that the formula is the MGT of the D-term, with respect

to some assumed axioms that do not explicitly appear as parameter.

enum_dterm_mgt_pairs(+Level, ?D-term, ?Formula)

Depending on the mode in which enum_dterm_mgt_pairs is invoked, that is, which of the

D-term and Formula arguments are inputs or outputs, it realizes different functionalities. We

assume there that as an input argument Formula is ground, representing a universally quantified

theorem after Skolemization, whereas, as an output argument it is just the MGT of D-term,

which may involve variables.

• If D-term and Formula are both input arguments, then the predicate verifies that D-term

is a proof of Formula. The predicate then either succeeds (enumerates the empty binding

as sole value) or fails.

• If only D-term is an input and Formula an output, it computes the MGT of D-term. The

predicate then either enumerates a single value for Formula or, in case D-term has no

MGT, fails.

• If only Formula is an input and D-term is an output, it acts as a goal-driven prover,

enumerating proofs of Formula.
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• If both D-term and Formula are outputs, it enumerates pairs of a proof and its MGT, that

is, it generates lemmas with proofs in an axiom-driven way.

Invoked goal-driven, i.e., with Formula as input and D-term as output, for increasing values

of Level it is in essence a CM-CT prover with iterative deepening, specialized to CD problems.

To process the lemmas enumerated by axiom-driven invocations, i.e., with both D-term and

Formula as outputs, SGCD maintains a cache of 〈Level,D-term, Formula〉 triples, solutions of
enum_dterm_mgt_pairs(Level, D-term, Formula). If lemmas are computed and cached for

increasing levels, this cache can be usedwithin the implementation of enum_dterm_mgt_pairs

to solve subproblems from the cache instead of recomputing them, if they are for a lower level

than that of the top call. This is possible not just within axiom-driven top calls, but also within

goal-driven invocations. A part of the proof search is then replaced by retrieval from the cache.7

Moreover, the cache can be subjected to heuristic restrictions based on formulas, the MGTs,

as known from resolution-based (or more generally, saturating) provers. There, for example,

lemmas with formulas that are subsumed by an already present lemma or whose term height

exceeds some threshold are discarded. Such heuristic restrictions are not possible with conven-

tional CM-CT provers, because these do not have MGTs at hand, but rather just formulas that

are due to rigid variables more deeper instantiated, in dependence of the context where they

occur in the proof (this is discussed in more depth as IPT vs. MGT in [15]). With such heuristic

restrictions, the replacement of search by lemmas realized with SGCD’s cache then effects an

actual modification, a heuristically motivated restriction, of the explored search space.

3.2. Level Characterizations

SGCD can be used with alternate versions of enum_dterm_mgt_pairs for different level

characterizations, including by tree size, height, maximal tree size, and maximal height. The

number of distinct D-terms for increasing values of some size measure gives an upper bound of

the number of trees to consider in proof search by enumerating D-terms level-by-level. This

number is just an upper bound, because it does not take into account that D-term enumeration

is interwoven with unification. Through the unification, which is constrained by given axioms

and possibly a given goal, fragments of D-terms for which unifiability fails are immediately

discarded and D-terms extending them are skipped in the enumeration. Heuristic restrictions

may further limit the number of enumerated structures.

The number of distinct D-terms for increasing values of some size measure also indicates a

measure-specific size value up to which it is easily possible to compute for given axioms all

proofs, together with the lemma formulas proven by them.

If we assume a single axiom such that we can identify D-terms with full binary trees without

any additional labeling, the sequences of the number of distinct D-terms for increasing tree

size, height, or compacted size are well-known and can be found in the OEIS, with identifiers

A000108, A001699, and A254789, respectively, as shown in Table 1.

Aside of these “conventional” criteria, our use of proof structure terms also permits inductive

structure specifications as level characterizations. Particularly prospective there is the PSP-level

(indicating Proof-SubProof ), specified as follows.

7This realizes a replacing form of lemma application [47, 17]
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Table 1

The numbers of distinct D-terms for a single axiom (or full binary trees) of given size n for different size

measures.

n 0 1 2 3 4 5 6

Tree size oeis:A000108 1 1 2 5 14 42 132

Height oeis:A001699 1 1 3 21 651 457,653 210,065,930,571

Compacted size oeis:A254789 1 1 3 15 111 1,119 14,487

Table 2

The numbers of distinct D-terms for a single axiom (or full binary trees) in PSP-level n and of compacted

size n.

n 0 1 2 3 4 5 6 7 8

|PSPLevel(n)| oeis:A001147 1 1 3 15 105 945 10,395 135,135 2,027,025

Compacted size oeis:A254789 1 1 3 15 111 1,119 14,487 230,943 4,395,855

(i) Structures in PSP-level 0 are the axiom identifiers.

(ii) Structures in PSP-level n + 1 are all structures D(d1, d2) and D(d2, d1) where d1 is a

structure in PSP-level n and d2 is a (not necessarily strict) subterm of d1 or an axiom

identifier.

The PSP-level was motivated by an analysis [15] of Meredith’s variant [16] of Łukasiewicz’s

completeness proof for his shortest single axiom for implicational logic [48], where it was

observed that most steps in Meredith’s proof can be ascribed to the relationship between levels

that underlies the PSP-level. As an inferencing technique it is “global” in the sense that it takes

whole proof structures and combines them to a new proof structure. For this reason it may so

far have escaped the traditional inference systems, which are more locally oriented, e.g., by

extending a branch based on properties of the leaf node or adding the resolvent of two clauses.

PSP-levels are disjoint. All D-terms in PSP-level n have compacted size n. However, the

cardinality of D-terms in PSP-level n grows slower than that of D-terms of compacted size n,

according to OEIS sequence A001147 in contrast to A254789. Table 2 compares the initial values

of both sequences. It follows that the enumeration of D-terms according to the PSP-level is

“incomplete”, that is, there are D-terms that are not a member of any PSP-level.

Experimental successes involving enumeration by PSP-level include relatively short proofs

for problems where exhaustive search for a shortest proof seems unfeasible [38, Sect. 4.5], a

short proof for Łukasiewicz’s shortest axiom, LCL038-1 [38, Sect. 4.6][15], and an automatically

found proof of a challenge problem, the “Meredith single axiom” LCL073-1 [17].

3.3. Combining Goal- and Axiom-Driven Reasoning

SGCD combines goal- and axiom-driven invocation of enum_dterm_mgt_pairs by proceed-

ing in two nested loops, as informally outlined in the introduction and shown in Fig. 1. The

goal formula, in Skolemized ground form, is given as input parameter g. The parameters

maxLevel and preAddMaxLevel are specified with the configuration. The core predicate

enum_dterm_mgt_pairs is for some particular assumed level characterization, for exam-

ple by tree size. It enumerates argument bindings nondeterministically. If it succeeds once in

the inner loop, the exception proof_found(d) returns the bound D-term d.
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Cache := ∅;
for l := 0 to maxLevel do begin

for m := l to l + preAddMaxLevel do begin

enum_dterm_mgt_pairs(m, d, g);

throw proof_found(d)

end;

News := {〈l, d, f〉 | enum_dterm_mgt_pairs(l, d, f)};
if News = ∅ then throw exhausted;

Cache := merge_news_into_cache(News ,Cache)

end

Figure 1: The nested loops of the SGCD theorem proving method.

The procedure merge_news_into_cache(News,Cache) merges the newly generated

〈Level,D-term, Formula〉

triples News with the cache Cache , optionally taking into account configured heuristics. For

example, sorting the union of the triples according to increasing term height of the lemma

formulas and truncating the sorted list after, say, 1,000 entries.

If maxLevel is configured as 0, the method proceeds purely in goal-driven mode with the

inner loop performing iterative deepening upon the level m from 0 up to preAddMaxLevel .

The similarity to CM-CT provers can even be shown empirically by comparing the sets of solved

TPTP problems (see Sect. 3.5.3). If combined with axiom-driven lemma generation, generally

successful configurations of preAddMaxLevel typically have rather low values, about 0–3.

Of course, also variations of the basic schema of Fig. 1 can be useful. For example to enumerate

alternate proofs instead of exiting with the first found proof through the throw statement.

For lemma generation [17], SGCD can be run with some resource bound, e.g. a timeout or

a Prolog inference limit, or until axiom-driven enumeration exhausts by heuristic limitations.

After SGCD terminates, the content of the cache represents a set of generated lemmas. Lemmas

deleted at merge_news_into_cache may be maintained in a separate “passive” store which

can be used for example in lemma generation (Sect. 3.5.2) and theorem finding (Sect. 3.5.4).

“Hybrid” configurations are possible, where different level characterizations are used for the

goal- and axiom-driven phases. The cache has initially not to be empty: It is possible to initialize

it with externally generated lemmas (possibly by another invocation of SGCD) and modify the

initial settings of the l and m parameters. We call this lemma injection. Search at lower levels is

then completely replaced by retrieval from these external lemmas. SGCD with lemma injection

was used successfully for lemmas selected with the help of machine learning [17].

3.4. Implementation Aspects and the CD Tools Environment

SGCD is integrated in CD Tools, an environment to experiment with CD, which is embedded

in SWI-Prolog8 and utilizes PIE [8, 9] as basic support for first-order ATP. For experimenting

8No efforts were made to support other Prolog systems. Brief tries with free systems reckoned as particularly fast,

notably YAP and Eclipse, unfortunately gave the impression that these are broken in their recent versions. SWI-Prolog

provides some library predicates that proved very useful, for example variant_sha1/3 or term_factorized/3.
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with machine learning [17] SGCD was invoked via Bash scripts, also in portfolio settings where

different configurations are run in parallel.

CD Tools provides various interfaces to external worlds. It supports, for example, conversion

to and from Łukasiewicz’s Polish notation. There are means to enumerate and test TPTP

problems whether they represent a CD problem and to canonicalize the vocabulary of such CD

problems. A pre-defined association of about 170 common names for about 120 well-known

formulas and combinators, e.g., from [40, 32], helps to specify these as axioms and to detect

them among computed lemmas. Also some support for handling combinators and λ-terms is

implemented, which is used, e.g., for the second included prover CCS [49].

CD Tools includes implementations of many concepts and operations introduced or discussed

in [15], including D-term comparison by ≥c, various notions of regularity, variations of the

organic property (based on calling a SAT solver9 or based on previously proven lemmas), the

prime property, and n-simplification, that is, replacing complex subproofs of minor premises

whose goal is irrelevant for the conclusion with a primitive subproof.

Many of these operations are available to SGCD for heuristic restrictions that can be optionally

configured to be applied either immediately to the results of axiom-driven invocations of

enum_dterm_mgt_pairs or when merging new results into the cache.

Attempting to introduce at least a little bit of goal-direction in the axiom-driven mode, an

experimental heuristic restriction takes the number of distinct subterms in a formula that do

not appear in the goal as a negative criterion.

For handling large (millions of tree nodes) proof terms, CD Tools provides an implementation

of MGT computation and verification that transparently operates on a factored representation.

3.5. Experimental Results

SGCD was evaluated in various experiments, most of them on the 196 pure CD problems in

TPTP 8.0.0 (there are 10 further CD problems in the TPTP with status satisfiable or a more

complex problem form). We call this problem corpus TPTPCD. The report [38] describes several

experiments with SGCD on that corpus. Additional experiments with machine learning for ATP

and proving a challenge problem for ATP, the “Meredith single axiom” LCL073-1, are described

in [17]. Experiments with CCS, the second prover included in CD Tools, are reported in [49].

Comprehensive result tables and log files can be found at http://cs.christophwernhard.com/

cdtools/. Here we give brief summaries of the experiments with SGCD.

3.5.1. SGCD in Generally Successful Configurations

In generic configurations SGCD solves 176 of the 196 TPTPCD problems. This may be compared

with Prover9, which also creates CD proofs, like SGCD but differently from most other general

first-order provers. Prover9 solves 168 of the problems. SGCD fails on five problems that

Prover9 can solve. In the generally successful configurations SGCD solves no “new” problems,

i.e., problems rated in the TPTP with 1.00, but 93% of the problems that are solvable at all by a

first-order prover and 95% of the problems that can be solved by E [51]. See [38, Sect. 4.1].

9Via PIE, which provides a call interface to SAT and QBF solvers by translating between PIE’s Prolog term represen-

tation of formulas and DIMACS or QDIMACS files. In experiments we used MiniSat [50].

74

http://cs.christophwernhard.com/cdtools/
http://cs.christophwernhard.com/cdtools/


These 176 solutions are obtained as the joint results of SGCD in four configurations whose key

settings are as follows. Configuration 1: level characterization by tree size; maximally 1000 cache

entries; goal-driven phases upon 2 levels (preAddMaxLevel = 1); 165 solutions. Configuration 2:

similar to configuration 1 but height as level characterization; 109 solutions. Configuration 3:

similar to configuration 1 but maximally 3000 cache entries; 161 solutions. Configuration 4:

similar to configuration 1 but goal-driven phases just upon 1 level (preAddMaxLevel = 0) and

strong limitations of the formula size of the cached lemmas just slightly above the maximal

sizes found in the input problems; 80 solutions.

3.5.2. SGCD in Specialized Settings with Lemma Injection

In specialized settings with lemma injection, SGCD solves more difficult problems, including the

1.00-rated LCL073-1 [17]. With or without lemma injection it outperforms Vampire [52] (without

lemma injection 285 vs. 263 solutions for the 312 problems considered in [17]; with lemma

injection 289; Vampire, when given lemmas obtained from SGCD is boosted from 263 to 285

solutions). For an overall comparison of SGCD with and without lemma injection with various

provers, invoked with and without lemmas provided by SGCD, see http://cs.christophwernhard.

com/cdtools/exp-lemmas/lemmas.html. An excerpt of this table is reproduced in [53, App. E].

3.5.3. SGCD in Purely Goal-Driven Configurations

In purely goal-driven configurations SGCD is indeed very similar to the CM-CT provers and

can solve roughly the same TPTPCD problems. In two purely goal-driven configurations SGCD

solves 89 of the 196 TPTPCD problems, compared to 92 solvable by various CM-CT provers

according to previously reported experiments. With 86 problems, the overlap of problems

that are solved by both SGCD and CM-CT provers is rather large. See [38, Sect. 4.2] and

http://cs.christophwernhard.com/cdtools/exp-tptpcd-2022-07/table_3.html. The 92 solutions

by CM-CT provers could be stretched to a superset of 96 solutions, obtained by CMProver in

nine configurations in an experiment with a longer timeout of 1 hour per problem and prover

configuration. Also the well-known leanCoP 2.1 [6] was tried. With a single exception, the

196 TPTPCD problems are provided in the TPTP CNF format, which is not accepted by leanCoP,

such that we had to take conversions to TPTP FOF format (with axioms and goal conjecture

distinguished). Experiments with a 1 hour timeout per problem led to 72 or 51 solutions,

depending on whether the major or minor subgoal appears first in axiom Det in the FOF input.

3.5.4. SGCD for Theorem Finding

In purely axiom-driven configurations SGCD can perform theorem finding. It finds proofs

of Łukasiewicz’s 68 Theses in a single run in 2.5 minutes. These theses from a textbook by

Łukasiewicz were used extensively with OTTER [54] by Larry Wos [25, 26, 27, 28]. They could

be solved by OTTER in a single run after the introduction of weight templates [25, 27]. In [28]

the focus was finding proofs with small compacted size for sets of goals, subsets of the theses

that represent axiom systems. With respect to compacted size, the proofs obtained in our brief

experiments cannot compete with the carefully developed proofs from [28]. However, the tree

size of our proofs is for all considered axiom systems smaller. See [38, Sect. 4.3].
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3.5.5. SGCD and Proof Size

Prover9 computes for CD problems CD proofs that can be represented by D-terms. Hence we can

directly compare Prover9’s proofs with the D-terms output by SGCD. In general, SGCD finds

smaller proofs than Prover9 in its default mode, moderately smaller with respect to compacted

size and height, and drastically smaller with respect to tree size. See [38, Sect. 4.4].

CCS can be applied in a configuration that returns proofs with ascertainedminimal compacted

size by exhaustive search [49]. This means that the method then guarantees that the problem

has no proof whose compacted size is strictly smaller than that of the returned proof. This

succeeds for about 44% problems of the TPTPCD corpus. SGCD with enumeration by PSP-level

is particularly useful to find proofs with small compacted size in cases where the exhaustive

search for ascertained minimal compacted size appears to be unfeasible. See [38, Sect. 4.5].

3.5.6. SGCD with Enumeration by PSP-Level for Specific Problems and for Lemma

Generation

With enumeration by PSP-level, SGCD finds a short proof of LCL038-1, the most difficult

of the three subproblems of proving completeness of Łukasiewicz’s shortest single axiom for

implicational logic. Short extensions of this proof that solve the other two easier subproblems

were then performed with naive structure enumeration predicates provided by CD Tools.

SGCD’s proof of LCL038-1 is drastically shorter than proofs by other ATP systems and even

substantially shorter than the proofs by Łukasiewicz and Meredith. The combined proof for all

three subproblems is a few steps shorter than the proofs by these logicians. See [38, Sect. 4.6]

and also [15].

For proving LCL073-1, SGCD was first invoked purely axiom-driven by PSP-level to generate

about 100k lemmas. These were ranked by general heuristic features, mostly size properties

of the lemma formula, smaller preferred. Then SGCD was invoked a second time, now for

proving, with alternating goal- and axiom-driven phases, initialized by lemma injection with

the best-ranked 3k of the previously genrerated lemmas. The configuration of the phases was

there “hybrid”: while the axiom-driven phases were again by PSP-level, the goal-driven phases

were by height as level characterization. For more details, see [17].

Enumeration by PSP-level for lemma generation in general led to good results in the machine

learning scenario [17]. It appears to supply to other provers useful lemmas that would not be

found by their own calculi.

4. Some Issues Requiring Further Research

The approach of structure-generating theorem proving in its current state of development raises

questions that require further investigations. We outline some of these, organized into two

major topics.

4.1. Stronger Proof Compressions

SGCD so far focuses on unit/subtree lemmas, which correspond to the sharing of subtrees in

DAGs. There are stronger proof compressions that correspond to shared trees with “holes”.
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Technically this can be expressed with binary resolution that results in Horn clauses (the

body atoms correspond to the “holes”), with tree grammar compressions where nonterminals

may contain variables (the “holes”), or with combinators, where the “holes” are mapped to

subtree sharing in DAGs (by getting rid of the variables through combinators) [49]. The

combinator representation is particularly suitable for proof structure enumeration, interwoven

with unification, initialized with a goal, as in SGCD when operated goal-driven. This is realized

with CCS [49], our second experimental prover in CD Tools. This prover may be viewed as

implementing the connection structure calculus [55], restricted to CD problems. Depending on

the permitted combinators or proof term patterns involving combinators, it can simulate other

calculi, in particular goal-driven versions of binary resolution.

The most immediate level characterization for enumeration with the combinator representa-

tion is compacted size. We then obtain in essence DAG enumeration, with iterative deepening

upon the DAG size. Allowing combinators to enter the D-terms is only justified if they permit

proofs with smaller compacted size. That is, if the proving D-term with combinators has smaller

compacted size than those without combinators. Systematic enumeration of proof DAGs is

not as simple as tree enumeration because it requires to maintain subtrees and the lemmas

proven by them which already appear in the proof under construction.10 Rigid variables are not

sufficient, some copying or forgetting [55] of variables is required.

So far, CCS has been tried only in goal-driven mode. It is not clear, how enumeration by

compacted size transfers to SGCD with its axiom-driven mode. The level characterizations

for SGCD are determined for a given proof structure “globally”, independently from context:

tree size, height, PSP-level. During enumeration by compacted size, a given structure has to be

assessed differently, context depending: if it already occurred in the partially built-up structure,

its cost value is zero – it can be attached again without increasing the overall compacted size. Is

the PSP-level a version of compacted size that is limited in a certain sense such that it permits

global value assessment? If so, is it a distinguished best version within that limitation?

CCS performs roughly comparable with CM-CT provers. If configuredwithout combinators, it

yields as a bonus proofs with guaranteed minimal compacted size. While stronger compressions

can in principle achieve drastic savings, it is not clear what role this may play in practice.

4.2. Systematization of Level Characterizations

It seems desirable to formally specify and systematize criteria and possibilities of level charac-

terizations for SGCD. Levels may be disjoint (e.g., tree size, height, compacted size, PSP-level)

or cumulative (e.g., tree size less or equal than the level index). There is an interplay with the

subterm relationship among proof terms. There may be gaps with respect to given axioms: some

level may have no member with MGT, but the next level has members with MGT. A method

that incrementally generates levels then may exhaust too early. The level characterization may

be incomplete, as observed for the PSP-level in Sect. 3.2. As noted in Sect. 4.1, compacted size is

in a sense context dependent and seems to bear a certain relationship to PSP-level enumeration.

How can different level characterizations be combined? Abstractly into a single new level

characterization? The experiment with LCL073-1 shows that “hybrid” configurations with

10As outlined in [49], the DAG enumeration by CCS is with a variation of the value-number method [56, 57].
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different level characterizations for the goal- and axiom-driven phases are important. A trivial

pragmatic approach to combine different level characterizations is invoking prover instances for

each of them in portfolio mode. Also “heuristic” limitations like, e.g., maximal term height of

lemma formulas, which are so far handled in SGCD orthogonally to the level characterizations,

might be incorporated into level characterizations.

In semi-naive evaluation (e.g., [58]) certain recursive invocations of enumeration predicates

are replaced with accesses to “delta” predicates that represent results newly obtained in the

immediately preceding round. This realizes a forward-reasoning trigger effect: a subgoal with a

delta predicate is evaluated first; only for its results, that is, the new results from the preceding

round, the remaining subgoals are considered. A related effect can be observed in some cases

for our proof/formula pair enumeration predicate, where recursive invocations are for the

given level minus one. But so far, such effects and their consequences for improving SGCD’s

enumeration algorithms have not been systematically studied.

The grouping into levels suggests a “bulk view” on first-order ATP, where instead of proving a

single theorem from axioms the objective is to derive from the axioms all lemmas in some given

level. This perspective hides a key difficulty in goal-driven proceeding to prove a single theorem,

which precludes decomposing a problem – an open subgoal – into subproblems – further

subgoals – that are independent from each other: The subgoals obtained in the decomposition,

e.g., for the major and minor premise of a CD problem, may share variables. The bulk view

may explain the success of axiom-driven proceeding and its adequacy for theorem finding

(Sect. 3.5.4). It also may facilitate interfacing with techniques for machine learning that are

based on problem decomposition into independent subproblems.

The view of enumeration by level suggests to try in ATP research also an “empirical” style of

pattern-observing, inspired by physics, as exemplified for combinatory logic in [59].

5. Conclusion

We have generalized the proof structure enumeration interwoven with unification as performed

by goal-driven CM-CT provers to an interplay of goal- and axiom-driven processing. It makes

heuristic restrictions known from saturating provers applicable. The approach was evaluated

with SGCD, an experimental system.

Proof structure terms, proof objects that allow to specify and implement various ways of

building proofs, were a central tool. Meredith’s CD represents the prototypical base case of

such proof structure terms. Hence, so far we focused on the CD problems, a subclass of the

first-order Horn problems with a binary function symbol, and cyclic predicate dependency.

From the view of first-order ATP, CD provides a simplified setting that inspired and facilitated

our work. We expect that our main techniques and results can be transferred to first-order

ATP in general. Incorporation of dedicated equality handling should through the axiom-driven

operation be possible without resorting to lazy variants of paramodulation.

Another view on generalization is to explore the potential scope of CD. Generalizing CD to

arbitrary first-order Horn problems is straightforward and has been realized [49] in a system

related to SGCD. Typical applications of CD are investigating axiomatizations of propositional

logics whose formulas are expressed as first-order terms. Proving problems are then first-order
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problems with a single predicate. If the axiomatized logic is classical propositional logic, this

covers theorem proving in that logic, although with an incomparably weaker performance

than that of a SAT solver. Nevertheless, with a generalization of CD to take quantification into

account, this approach is used very successfully by Metamath to formalize mathematics [22].

The mismatch between this CD approach and current ATP systems (a generalization of the

mentioned ways to perform propositional reasoning via CD vs. a SAT solver) has recently been

observed and addressed in different ways [23]. Dedicated CD-based reasoning, as represented

by our SGCD system, may be a further way to combineMetamath – with its inherent generality

– with ATP. Theoretical results concerning the extension of CD to first-order logic in general

can be found in [18]. The CM and the connection structure calculus offer proof representations

for first-order logic in general, which possibly may be used like the D-terms of CD [33, 15, 49].

Concerning related proving techniques, similarly to SGCD an implementation [60] of hy-

pertableaux [36] creates lemmas axiom-driven level-by-level. This approach is, however, much

less flexibly configurable and it incorporates goal-driven phases only in a rudimentary way, by

termination before a level is completed as soon as a clause subsuming the goal is generated. A

recent enhancement of E by machine learning supplements a classification based on derivation

history as clause selection guidance [61]. Since in structure-generating proving the D-term

itself, or, so-to-speak, the derivation history, provides the main guidance, this enhancement

might possibly be viewed as introducing a little bit of structure-generating proving into E.

Experiments show that on CD problems the structure-generating approach keeps up with

state-of-the-art first-order provers and results in comparatively short proofs, which, moreover,

are gap-free and in a simple calculus. In powerful configurations, state-of-the-art provers such

as E and Vampire do not emit gap-free proofs. Further particular strengths of the approach show

up with two problems that were extensively investigated in ATP. For the first, never solved by a

CM-CT prover, SGCD quickly finds a proof that is shorter than all known ones. For the second,

which escapes all state-of-the-art provers, SGCD, in a specific configuration, is able to find a

proof. In both cases the key is a novel proof structure enumeration strategy.

As demonstrated in [17], the structure-generating approach is also useful in machine learning

for ATP. It supports a data flow centered around proof structure terms, D-terms. Features of

formulas can be complemented by features of proof structures. In purely axiom-driven mode

SGCD is well suited to generate a large number of proven lemmas from which a small subset is

then selected on the basis of learning and passed as auxiliary input to arbitrary provers.

Open issues that require further research include the incorporation of stronger proof compres-

sions and a systematic investigation of the possibilities to group proof structures into ordered

“levels” governing the enumeration order of SGCD.
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