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Abstract
We present a tool for the detection of biased behaviours in AI systems. Using a specific probability-based
algorithm, we provide the means to compare the action of the user’s algorithm of choice on a specific
feature that they deem “sensible” with respect to fixed classes and to a known optimal behaviour.
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1. Introduction

The project BRIO aims at developing formal and conceptual frameworks for the analysis of
AI systems and for the advancement of the technical and philosophical understanding of the
notions of Bias, Risk and Opacity in AI, with the ultimate objective of generally contributing to
the development of trustworthy AI.1

The aim of the collaboration between BRIO and Alkemy is to produce software applications
for the analysis of bias, risk and opacity with regard to AI technologies which often rely on
non-deterministic computations and are opaque in nature. One of the most challenging aspects
of modern AI systems, indeed, is that they do not guarantee specification correctness, and they
are not transparent, in the sense that a general formal description of their behaviour might not
be available. Even in absence of a formally specified correct behaviour, one might want to check
whether a system performs as desirable, and even statistical convergence towards the behavior
dictated by the training set might be undesirable when the latter is biased or unbalanced.

We present a first tool developed within the BRIOxAlkemy collaboration for the detection
and analysis of biased behaviours in AI systems. The tool is aimed at developers and data
scientists who wish to test their algorithms relying on probabilistic and learning mechanisms
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in order to detect misbehaviours related to biases and collect data about them. The ultimate
goal is to provide them with useful insights and data for the improvement of their AI systems.

The introduced system is based on the foundational works presented in [1, 2, 3], and in this
paper we discuss the formal ideas behind its development (Section 2), the technical details of its
implementation (Section 3), the data obtained from a case study that validates the usefulness of
the software (Section 4), and planned further developments aimed at integrating the software
in larger tool for the analysis of AI systems (Section 5).

Related literature

We conclude this introduction with a brief comparison with other projects having similar
purposes. Given the sensitivity and the urgency of the topic, with an ever-growing literature,
our exposition has no claim of being exhaustive, although we point to a few surveys that might
help systematize known approaches.

Our tool is of the so-called “post-processing” kind [4], meaning that the algorithm is treated as
a black box and one can only observe its behaviour and intervene ex post. Many post-processing
tools define appropriate loss/cost functions {0, 1}2 → R meant to measure at each pair of labels
(𝑦, 𝑦) the “undesirability” of predicting 𝑦 when the correct label is 𝑦, and then try to minimize
that. This is the case, for example, of [5, 6, 7] and others. This approach requires that such a
comparison can be made, while we do not assume anything on the “correct” label and we only
relate frequencies, having no suppositions on single outputs but instead comparing them (either
with one another, or with respect to a single, optimal one) according to what is usually called
“(conditional) statistical parity” or “demographic parity” [8].

The fact that our tool is not concerned with local mistakes but focuses on the presence of
biases at the abstract level of the predictive model’s global behaviour on a whole input dataset
implies also that our tool does not come equipped with any native mitigation mechanism, as
the outcome of our analysis does not necessarily make it clear on which points one should focus
to solve one’s problem.

Though our approach might seem related, at least in its scope, to what in the literature is
often called feature weighting [9], it is in fact very different, and possibly orthogonal in its
intention: while feature weighting aims at measuring how much a single feature influences the
result of an algorithm, our detection tool wishes to quantify possible imbalances in the output.
Mechanisms intimately related to feature weighting, nevertheless, will be a central component
of an additional module concerning the measurement of the degree of opacity of a predictive
model, which is currently under development by the authors of the present work.

Given the above remarks, the presented tool computes a notion of bias which sits within
the quantitative approaches to fairness [10, 11, 12] and it qualifies as an observational measure
which quantifies bias only based on post-hoc analysis of prediction distributions. Moreover, as
mentioned, the measure remains blind with respect to the ground truth of the interested labels.
Finally, for a list of available tools for fairness metrics we refer to [13].



2. Theory

The basic workflow of the BRIOxAlkemy tool is the following. It takes as input an AI model’s
output and a set of user’s selected parameter settings: the former is encoded as a set of datapoints
with their associated features, the latter include the designation of a sensitive feature. In output
our tool returns an evaluation of the possibility that the AI model under consideration is biased
with respect to the features designated as sensitive by the user. Note that what we call “sensitive
feature” also appears with the name of protected attribute [14]: we keep the specific name
because we do not wish to impress any normative connotation to our work, and because in our
case it is in fact a feature in the dataset.

The system closely guides the user in the process of setting the parameters, whose conceptual
significance is illustrated with detailed explanations, remaining customisable with respect to the
mathematical details of the analysis. The analyses conducted by our system are of two kinds:

1. comparison between the behaviour of the AI system and a target desirable behaviour
(expressed as “freq-vs-ref” in the implementation), and

2. comparison between the behaviour of the AI system with respect to a sensitive class
𝑐1 ∈ 𝐹 and the behaviour of the AI system with respect to another sensitive class 𝑐2 ∈ 𝐹
related to the same sensitive feature 𝐹 (expressed as “freq-vs-freq” in the implementation).

Whenever the second analysis alerts of a possibly biased behaviour, a subsequent check
follows on some (or all) of the subclasses of the considered sensitive classes. This second check
is meant to verify whether the bias encountered at the level of the classes can be explained away
by other features of the relevant individuals that are not related to the sensitive feature at hand.

Before we delve into the technical details, let us give a little example:

Example 1. Consider a database containing details of individuals, with their age, gender, and
level of education. Consider an algorithm which predicts the likelihood of default on credit. We
wish to check if age is a sensitive factor in such prediction. We feed the tool with our dataset and
the output of the run of the predictive algorithm. The user might want to consider whether the
feature age as sensitive for the decision making process and therefore selects it in the interface as
such. The program allows us to compare either how the behaviour of the algorithm with respect to
age differs from an “optimal” behaviour (in this case, we might consider optimal the case where
each age group equally succeeds), or how different age groups perform with respect to one another.

2.1. Divergences

The comparisons above are computed on probability distributions, each taken to express the
behaviour of a stochastic system. In order to compute the difference between the behaviour of
the AI system under investigation – denoted by the probability distribution 𝑄 – and a fixed
behaviour 𝑃 (either the optimal behaviour, when available, or the behaviour with respect to a
different class) various means of comparison might be considered. Depending on the analysis
one wishes to conduct, one or more divergences or distances are made available in the tool.
Notice that all divergences and distances are made to take values in [0, 1] in order to be compared
with the threshold described in Section 2.3. In the following we briefly illustrate them.



Kullback-Leibler divergence When we wish to compare how the system behaves with
respect to an a priori optimal behaviour 𝑃 , we use the Kullback–Leibler divergence 𝐷KL:

𝐷KL(𝑃 ‖ 𝑄) =
∑︁
𝑥∈𝑋

𝑃 (𝑥) · log2
(︁𝑃 (𝑥)

𝑄(𝑥)

)︁
.

It was first introduced in [15] in the context of information theory, and it intuitively indicates
the difference, in probabilistic terms, between the input-output behaviour of the AI system
at hand and a reference probability distribution. It sums up all the differences computed for
each possible output of the AI system weighted by the actual probability of correctly obtaining
that output. Notice that this is not symmetric and takes values in [0,+∞]: the asymmetry
accounts for the fact that the behaviour we are monitoring is, in fact, non symmetric – as 𝑃 is a
theoretical distribution that we know, or consider to be, optimal, while 𝑄 is our observed one –
while to make it fit the unit interval we adjust the divergence as follows.

𝐷′
KL(𝑃 ‖ 𝑄) = 1− exp(−𝐷KL(𝑃 ‖ 𝑄))

Jensen-Shannon divergence When we wish to compare classes, instead, a certain symmetry
is required. First, we consider the Jensen-Shannon divergence

𝐷JS(𝑃 ‖ 𝑄) =
𝐷KL(𝑃 ‖ 𝑀) +𝐷KL(𝑄 ‖ 𝑀)

2
,

with 𝑀 = (𝑃 + 𝑄)/2. This was introduced in [16] as a well-behaved symmetrization of
Kullback-Leibler. It takes values in [0, 1].

Total variation distance Another choice for comparing classes is provided by the total
variation distance of 𝑃 and 𝑄, meaning

𝐷TV(𝑃,𝑄) = sup
𝑥∈𝑋

|𝑃 (𝑥)−𝑄(𝑥)|,

which computes the largest difference between the probability of obtaining an output 𝑜 given in
input individuals of distinct sensitive classes 𝑐1 ∈ 𝐹 and 𝑐2 ∈ 𝐹 .2 It, too, takes values in [0, 1].

How total variation relates to Jensen-Shannon can be formulated as follows:

Theorem ([17, Prop. 4.2],[16, Thm. 3]). Let 𝑃 and 𝑄 probability distributions over 𝑋 . Then the
following two statements are true:

1. 𝐷TV(𝑃,𝑄) = 1
2

∑︀
𝑥∈𝑋 |𝑃 (𝑥)−𝑄(𝑥)|;

2. 𝐷JS(𝑃 ‖ 𝑄) ≤ 𝐷TV(𝑃,𝑄).

This suggests that Jensen-Shannon is less sensitive to differences in the comparing sets, and
can therefore be used for preliminary analyses.

2We write the argument (𝑃,𝑄) instead of 𝑃 ‖ 𝑄 to remark that this is in fact a distance, and not a divergence.



2.2. How to handle sensitive features corresponding to more than two classes

Since the divergences the system uses are binary functions, it is not obvious how to handle the
case in which the sensitive feature we are considering partitions the domain in three or more
classes. It is, indeed, easy to compute the divergence for pairs of classes, but we also need, in
this case, a sensible way of aggregating the obtained results in one value, to describe how the AI
model behaves with respect to the sensitive feature under consideration. Several ways of doing
so are possible, and each of them tells us something of value if we wish to reach a meaningful
conclusion about the AI model.

Suppose that we are studying the behaviour of the model with respect to the feature 𝐹 =
{𝑐1, . . . , 𝑐𝑛} which induces a partition of our domain of individuals into the classes 𝑐1, . . . , 𝑐𝑛.
The first step is the pairwise calculation of the divergences with respect to the different classes
induced by 𝐹 . Hence, for each pair (𝑐𝑖 ‖ 𝑐𝑗) such that 𝑐𝑖, 𝑐𝑗 ∈ 𝐹 , we compute 𝐷(𝑐𝑖 ‖ 𝑐𝑗) where
𝐷 is the preselected divergence and consider the set {𝐷(𝑐𝑖 ‖ 𝑐𝑗) : 𝑐𝑖, 𝑐𝑗 ∈ 𝐹 & 𝑖 ̸= 𝑗}. For
instance, if we are considering age as our feature 𝐹 and we partition our domain into three age
groups, we might have

𝐹 = {over_50_yo, between_40_and_50_yo, below_40_yo}.

We can then use the following ways of aggregating the obtained values.

Maximal divergence

max({𝐷(𝑐𝑖 ‖ 𝑐𝑗) : 𝑐𝑖, 𝑐𝑗 ∈ 𝐶 & 𝑖 ̸= 𝑗})

Maximal divergence corresponds to the worst case scenario with respect to the bias of our AI
system. This measure indicates how much the AI system favours the most favoured class with
respect to the least favoured class related to our sensitive feature.

Minimal divergence

min({𝐷(𝑐𝑖 ‖ 𝑐𝑗) : 𝑐𝑖, 𝑐𝑗 ∈ 𝐶 & 𝑖 ̸= 𝑗})

Minimal divergence, on the other hand, corresponds to the best case scenario. This measure
indicates the minimal bias expressed by our AI system with respect to the sensitive feature. If
this measure is 0, we do not know much, but if it is much above our threshold, then we know
that the AI system under analyis expresses strong biases with respect to all classes related to
the sensitive feature.

Average of the divergences ∑︁
𝑐𝑖,𝑐𝑗∈𝐶

𝐷(𝑐𝑖 ‖ 𝑐𝑗)/

(︂
| 𝐶 |
2

)︂
i.e. the sum of the divergences between the two elements of each pair 𝑐𝑖, 𝑐𝑗 ∈ 𝐶 divided by the
total number

(︀|𝐶|
2

)︀
of these pairs. This measure indicates the average bias expressed by the AI



system. Unlike the previous measures, this one meaningfully combines information about the
behaviour of the system with respect to all classes related to the sensitive feature. What this
measure still does not tell us, though, is the variability of the behaviour of the system in terms
of bias. The same average, indeed, could be due to a few very biased behaviours or to many
mildly biased behaviours.

Standard deviation of the divergences⎯⎸⎸⎷(
∑︁

𝑐𝑖,𝑐𝑗∈𝐶
(𝐷(𝑐𝑖 ‖ 𝑐𝑗)− 𝜇)2/

(︂
| 𝐶 |
2

)︂
)

where 𝜇 =
∑︀

𝑐𝑖,𝑐𝑗∈𝐶 𝐷(𝑐𝑖 ‖ 𝑐𝑗)/
(︀|𝐶|

2

)︀
. That is, the square root of the average of the squares of

the divergences between each value 𝐷(𝑐𝑖 ‖ 𝑐𝑗) and the average value of 𝐷(𝑐𝑖 ‖ 𝑐𝑗) for each
pair 𝑐𝑖, 𝑐𝑗 . In other terms, we calculate the average of the divergences, then the difference of
each divergence with respect to their average, then we square this differences and calculate
their average. Finally, we compute the square root of this average. This measure indicates
the variability of the bias expressed by the AI system we are inspecting. That is, how much
difference there is between the cases in which the system is behaving in a very biased way and
the cases in which the system is behaving in a mildly biased way. This information complements
the information we can gather by computing the previous measure.

2.3. Parametrisation of the threshold for the divergence

Whenever the system computes a divergence between the results of the model and a reference
distribution or the results of the model for distinct classes, a threshold is employed to check
whether the divergence is significant – in which case it should be treated as a possible violation
of our fairness criteria – or negligible – in which case should be simply ignored. Obviously,
fixing this threshold once and for all would give a rather inflexible system. For instance, setting
the threshold to 1/100 might be reasonable if we are considering the results of the model on a
set of 100 individuals, but it is clearly too strict if our domain only contains 40 individuals. In
the latter case, even a difference only concerning one individual would constitute a mistake
much greater than the one admitted by the threshold. This is why we parametrise the threshold
on the basis of several factors. The resulting threshold 𝜖 will be computed as a function of three
parameters: 𝜖 = 𝑓(𝑟, 𝑛𝐶 , 𝑛𝐷).

First, the user has to decide how much rigour is required when analysing the behaviour of the
model with respect to the feature indicated as sensitive for the present analysis. Two settings
are possible:

• 𝑟 = high: it implies that the considered feature is very sensitive and that the system
should be extra attentive about the behaviour of the model in relation to it;

• 𝑟 = low: it implies that differences in the behaviour of the model with respect to the
considered feature are significant only if they are particularly strong or extreme. This
setting distinguishes between a thorough and rigorous investigation and a simple routine
check, one might say.



The second factor considered in computing the threshold is the number 𝑛𝐶 of classes related
to the sensitive feature under consideration. We call this the granularity of the predicates related
to the sensitive feature, and it indicates how specific the predicates determining the studied
classes are. Specific predicates describe in more detail the objects of our domain and determine
more specific classes. When the classes under consideration are very specific, the divergence
generated by the bias of the model can be spread over several of them. Hence, we need to be
more attentive about the small divergences that appear locally – that is, when we check pairs
of these classes. In this case, the threshold should be stricter.

Finally, each time we compute a divergence relative to two classes, we scale the threshold
with respect to the cardinality 𝑛𝐷 of the two classes. Large classes require a stricter threshold.
This is a rather obvious choice related to the fact that statistical data related to a large number
of individuals tend to be more precise and fine grained. We already gave an example of this few
lines ago.

Technically, the threshold is always between 0.05 and 0.005, the setting 𝑟 = high restricts
this range to the interval [0.005, 0.0275] and the setting 𝑟 = low to the interval [0.0275, 0.05].
The number 𝑛𝐶 of classes related to the sensitive feature and the number 𝑛𝐷 of individuals in
our local domain (that is, the cardinality of the union of the two classes with respect to which
we are computing the divergence) are used to decrease the threshold (in other words, to make
it stricter) proportionally with respect to the interval selected. The greater the number 𝑛𝐶 ,
the smaller the threshold, the greater the number 𝑛𝐷, again, the smaller the threshold. The
threshold is then computed as

𝜖 = 𝑓(𝑟, 𝑛𝐶 , 𝑛𝐷) = (𝑛𝐶 · 𝑛𝐷) ·𝑚+ (1− (𝑛𝐶 · 𝑛𝐷)) ·𝑀

where 𝑚 is the lower limit of our interval (determined by the argument 𝑟 ∈ {high, low}) and
𝑀 is its upper limit.

3. Implementation

A first Minimum Viable Product (MVP) for the outlined bias detection tool has been implemented
using the programming language Python (3.x) and can be found at the following URL: https:
//github.com/DLBD-Department/BRIO_x_Alkemy. We present in this Section the most relevant
aspects of the implementation.

3.1. Backend

In terms of software architecture, the tool leverages on Docker in order to reach full portability.
Currently it uses a simple python:3.10 image sufficient for early developments. The tool is
developed following the Object Oriented Programming (OOP) paradigm in order to allow easy
extensions for the upcoming functionalities both for bias and opacity detection. In this section
a few details about the implemented classes are provided.

BiasDetector class This class contains the methods shared by both bias detection tasks
described in Section 2, namely freqs-vs-ref and freqs-vs-freqs. In particular, this class

https://github.com/DLBD-Department/BRIO_x_Alkemy
https://github.com/DLBD-Department/BRIO_x_Alkemy


contains the method get_frequencies_list which is used compute the distribution of the
dataframe units with respect to the target feature (target_variable in the code), the output
of a predictive machine learning model, conditioned to the categories of the sensitive features
(root_variable in the code).

Freqs-vs-RefBiasDetector class This class inherits from BiasDetector and im-
plements the freqs-vs-ref analysis described in Section 2. The constructor of the class provides
the option for the normalization of the KL divergence. The KL divergence calculation is imple-
mented in the method compute_distance_from_reference. Currently only the discrete
version of KL is implemented.

The method compare_root_variable_groups computes the distance, in terms of nor-
malized KL divergence, of the observed distribution of target_variable conditioned to
root_variable with respect to a reference distribution that is passed as parameter.

The method compare_root_variable_conditioned_groups performs the same calcu-
lation described above but for each sub-group implied by the Cartesian product of the categories
of conditioning_variables, a list of available features present in dataframe and selected
by the user. The computation is performed only if the sub-groups are composed of at least
min_obs_per_group observations, with a default of 30.

FreqVsFreqBiasDetector class This class inherits from BiasDetector and imple-
ments the freqs-vs-freqs analysis described in Section 2. The constructor of the class provides
the options for setting up the aggregation function for the multi-class case (see Section 2.2), for
the selection of the A1 parameter value for the parametric threshold (see Section 2.3) and for the
distance definition to be used for the calculations. Currently only JS and TVD are supported.

The method compute_distance_between_frequencies computes the JS divergence or
the TV distance as selected for the observed_distribution, an array with the distribution
of the target_variable conditioned to root_variable. The final value is provided using
the selected aggregation function, relevant in case of multi-classes root variables.

The method compare_root_variable_groups computes the mutual distance, in terms
of JS or TVD, of the categories of the observed distribution of target_variable conditioned
to root_variable.

The method compare_root_variable_conditioned_groups performs the same cal-
culation described above but for each sub-group implied by the Cartesian product of
the categories of conditioning_variables, with the same constraints as for the
Freqs-Vs-RefBiasDetector class.

Threshold calculator When the threshold is not provided by the user, the tool computes
it using the treshold_calculator function, which implements the algorithm described in
Section 2.3.

3.2. Frontend

For the frontend implementation, the tool relies on Flask, a framework for building web ap-
plications in Python. It provides great flexibility and modularity with the routing mechanism,



allowing the user to select which URL should trigger which python function. This makes it
straightforward to create distinct endpoints for various parts of the application. Routes that
respond to different HTTP methods (GET, POST, etc.) and render dynamic content can thus be
easily created.

The user can investigate and analyse bias behaviour in a given AI system by accessing the
Bias section of the frontend. They have the possibility to upload either an already preprocessed
dataframe, or a raw dataset together with a customised preprocessing pipeline, see Figure 1.

Figure 1: Upload options for the bias detection tool

Afterwards, the user can compare compare sensitive classes within the AI system (Frequence
vs Frequence), or compare the behaviour of the AI system with an ideal behaviour (Frequence
vs Reference), also shown in Figure 1.

3.2.1. FreqVsFreq and FreqVsRef

To perform these analyses, a set of parameters have to be chosen. Firstly, the distance: the
choice is between Total Variation Distance and Jensen-Shannon Divergence for FreqVsFreq, and
Kullback-Leibler Divergence is used for FreqVsRef. Then, the user has to select:

• the target feature;
• the sensitive feature;
• FreqVsFreq exclusive: the aggregating function (only when the sensitive feature partitions

the domain in three or more classes);
• the threshold (this can also be automatically computed, see Section 2.3);
• additional conditioning features, which further split the domain into subclasses;
• FreqVsRef exclusive: the reference distributions, which will depend on the target and the

sensitive features.



3.2.2. Results

Eventually, the tool shows the analysis results, providing insights about whether the AI system
under investigation presents behaviours that might be interpreted as biased with respect to
the sensitive feature. This is implemented in a Boolean variable, which is False when bias is
present and True otherwise, as it is shown in Figure 2.

Figure 2: Results page displaying comprehensive results from all subclasses (top), subclass-specific
violations (bottom left), subclass-specific results (bottom right)

If any biased behavior is detected, additional information at the subclass level (if applicable)
are also presented, ranked from most severe to less significant. Furthermore, results for each
subclass are also displayed, with the possibility to export the data in a csv file for additional
studies.

4. Validation

A set of experiments were performed to understand the behavior of the proposed approach
on real data, in particular for the freqs-vs-freqs analysis. To simulate a realistic bias detection
scenario, payment data from a cash and credit card issuer in Taiwan published in [18] were
used. The targets were credit card holders of the bank.

As first step, three machine learning models were trained to predict the default probability,
using all the available features:

• “strong” model: a Random Forest with 200 trees and max depth equals to 12;
• “weak” model: a Random Forest with 10 trees and max depth equals to 37;
• “lame” model: a Classification Tree with max depth equals to 2.

Training and performance details of the three models are available on the GitHub repository
https://github.com/DLBD-Department/BRIO_x_Alkemy/notebooks. The three models show
different performance in terms of accuracy and errors distribution: the aim is to verify whether
and how our bias detection tool deals with such different models performances.

https://github.com/DLBD-Department/BRIO_x_Alkemy/notebooks


4.0.1. Experiment 1: freqs-vs-freqs, TVD, A1=low, root-variable=x2-sex

Figure 3: Experiment 1 results.

Figure 3 shows the results of the first experiment. Using TVD and the parametric threshold,
no bias is detected for the three models predictions (see output True on all three models), but
the different distance magnitude obtained for the “lame” model is noticeable (0, 0278, rounding
off at the fourth decimal digit), and considerably smaller than those of the other two models
(respectively 0, 0138 for the strong model and 0, 0158 for the weak model). A simpler, more
erroneous model is unable to produce a strongly skewed predictions distribution and so it tends
to produce “less bias”. The “strong” model obtains the largest distance, suggesting that the more
powerful a model is, the more likely it is to exploit predictive signals, producing more skewed
predictions distributions.

4.0.2. Experiment 2: freqs-vs-freqs, TVD, A1=low, root-variable=x3-education

Figure 4 shows the results of the second experiment. With this experiment we tried to understand
the behavior of the bias detector when dealing with multi-class sensitive features, in this case
Education. A potential bias is detected for each model (see output False on all three models),
but it is questionable whether using Education as a sensitive feature makes sense in this
setting, and with these data. More interestingly, the distances are almost the same for the three



Figure 4: Experiment 2 results.

models, suggesting that each model is exploiting in some way the predictive signal offered by
the feature Education. The standard deviations of the class-vs-class distances (the last values
of the output tuples) are also of the same magnitude order.

4.0.3. Experiment 3: freqs-vs-freqs, JS, A1=low, root-variable=x2-sex

Figure 5 shows the results of the third experiment. Now we are interested in trying out the other
distance, the JS divergence, provided by the tool for the freqs-vs-freqs analysis. As expected, the
distances are of a smaller order of magnitude. Apart from this numerical outcome, the pattern
is the same observed for Experiment 1.

4.0.4. Experiment 4: freqs-vs-freqs, JS, A1=low, root-variable=v3-education

Figure 6 shows the results of the fourth experiment. As with Experiment 2, we observe almost
identical distance values for the three models, but of a smaller order of magnitude given that
we are using JS instead of TVD.

4.0.5. Experiment 5: freqs-vs-freqs, JS, A1=low, root-variable=x6-pay-0 (discrete)

Figure 7 shows the results of the fifth experiment. Keeping JS as distance of choice, we wanted
to verify what happens if the sensitive feature is also the single most important feature for the
classifiers. In this case, we identified x6-pay-0, namely a categorical feature providing the



Figure 5: Experiment 3 results.

strongest predictive signal. Clearly, being strongly effective in discriminating between true 0
and 1 labels, it produces way bigger distances than those observed in the previous experiments.
As commented for Education, we imagine that it would not make sense to consider such a
feature a sensitive one. Finally, large standard deviation values are observed, suggesting that
some feature categories are more effective and important for the classifiers than others.

4.0.6. Experiment 6: freqs-vs-freqs, JS, A1=low, root-variable=x2-sex,
conditioning-variable=x6-pay-0 (discrete)

For brevity, we don’t include the numerical outcome of this and the next experiment. The
reader can refer to the notebook provided with the online repository (https://github.com/
DLBD-Department/BRIO_x_Alkemy/notebooks). We are now interested in testing the bias
detector using a “conditioning variable”, i.e. using a further dataset feature to compute the
distances with respect to the sensitive feature for each subset of observations realized by the
different conditioning variable categories. As conditioning variable we use x6-pay-0, the same
feature we used in Experiment 5 as sensitive feature. It seems reasonable to ask whether, given
the groups implied by a strong predictor, different bias profiles emerge. The aim is to find

https://github.com/DLBD-Department/BRIO_x_Alkemy/notebooks
https://github.com/DLBD-Department/BRIO_x_Alkemy/notebooks


Figure 6: Experiment 4 results.

potential biases that are balanced out when the check is performed on the overall population,
but which emerge when focusing on specific subgroups of individuals. In this experiment we
use the JS Divergence.

It seems clear that the computed distances can vary a lot for the different conditioning variable
groups, justifying our interest in this kind of check. This behavior is stronger when the model
is particularly accurate in its predictions, e.g. for the “strong” model results. On the other hand,
the “lame” model produces distances equal to zero for each subgroup, given that it’s not able to
use x6-pay-0 to discriminate between observations.

4.0.7. Experiment 7: freqs-vs-freqs, TVD, A1=low, root-variable=x2-sex,
conditioning-variable=x6-pay-0 (discrete)

In this final experiment we repeat the same setting of Experiment 6 but using TVD instead of JS.
The observed pattern is identical, with the already commented distances magnitude difference
due to the different distance used here.

5. Conclusions and Further Work

The tool for the detection of biases in AI systems presented in this paper is meant to be the
first module to be integrated into a more complex software application, including an improved
interface for a clearer presentation of results. The complete system will present additionally a



Figure 7: Experiment 5 results.

module for the evaluation of opacity values. The system will be completed by a third module
whose aim will be to take in input the output of the bias and opacity modules, to return the
user with a risk evaluation associated with the use of the dataset or model under analysis. We
leave the presentation of these two additional modules to future work.
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