
Inductive Logic Programming For Transparent
Alignment With Multiple Moral Values
Celeste Veronese1,†, Daniele Meli1,†, Filippo Bistaffa2, Manel Rodríguez-Soto2,
Alessandro Farinelli1 and Juan A. Rodríguez-Aguilar2

1Department of Computer Science, University of Verona, Verona, 37134, Italy
2IIIA-CSIC, Campus UAB, 08913 Bellaterra, Spain

Abstract
Reinforcement learning is a key paradigm for developing intelligent agents that operate in complex
environments and interact with humans. However, researchers face the need to explain and interpret
the decisions of these systems, especially when it comes to ensuring their alignment with societal value
systems. This paper marks the initial stride in an ongoing research direction by applying an inductive
logic programming methodology to explain the policy learned by an RL algorithm in the domain of
autonomous driving, thus increasing the transparency of the ethical behaviour of agents.

Keywords
Inductive Logic Programming, Answer Set Programming, Explainable AI, Ethical Decision Making

1. Introduction

As artificial agents become more intelligent and integrated into our society, ensuring that
they align with human values is crucial to prevent potential ethical risks in critical areas [1].
Reinforcement Learning (RL) [2] is an effective paradigm for developing intelligent agents that
learn to interact with humans in complex environments. However, ensuring that RL agents
pursue their own objectives while remaining aligned with human values is still a challenging
under-explored problem, which is known as the multi-valued RL problem. [3] showed that one
way to optimally solve this problem is to embed value signals into a single reward function,
which is then maximized in a single-objective RL problem. However, the embedding is highly
computationally demanding. In this setting, the aim of this work is to improve the transparency
of the multi-valued RL agent’s behaviour, allowing a more aware evaluation of the agent’s
ethical alignment. Following [4, 5], we use the framework of Inductive Logic Programming (ILP)
[6] to generate concise and interpretable explanations of RL agents’ behaviour, starting from
traces (state-action pairs) of its execution. In this way, we obtain logical rules that describe the
rationale behind the optimal policy. We can then express learned rules in logic programming
paradigms for planning [7, 8], e.g., Answer Set Programming (ASP) [9], and apply them to

BEWARE-23: 2nd International Workshop on Emerging Ethical Aspects of AI @ AIxIA 2023 6 - 9 Nov, 2023, Rome, Italy
†
These authors contributed equally.
Envelope-Open celeste.veronese@univr.it (C. Veronese); daniele.meli@univr.it (D. Meli); filippo.bistaffa@iiia.csic.es (F. Bistaffa);
manel.rodriguez@iiia.csic.es (M. Rodríguez-Soto); alessandro.farinelli@univr.it (A. Farinelli); jar@iiia.csic.es
(J. A. Rodríguez-Aguilar)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:celeste.veronese@univr.it
mailto:daniele.meli@univr.it
mailto:filippo.bistaffa@iiia.csic.es
mailto:manel.rodriguez@iiia.csic.es
mailto:alessandro.farinelli@univr.it
mailto:jar@iiia.csic.es
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


guide the agent in place of RL. We preliminarily validate our methodology for multi-valued
autonomous car driving in simulation, showing that the ASP planner accomplishes the task
successfully and ethically, which proves the quality of learned explanations.

2. Background

We now report fundamentals for ASP and ILP, both required by our methodology.

2.1. Answer Set Programming

In ASP [9], a domain is represented as a collection of logical statements which describe rela-
tionships between entities (either actions or environmental features for planning domains),
which are represented as variables and predicates (atoms). When assigning a value to a variable
we say that it is ground, and if its variables are ground, an atom becomes ground. Logical
statements (axioms) considered in this work are causal rules h ∶- b1 , … , bn , which define the
body of the rule (i.e. the logical conjunction of terms ⋀n

i=1 bi) as a precondition for the head ℎ.
In the planning domain, they express preconditions or effects of actions. Given an ASP task
description, the solving process involves computing answer sets, that is, the minimal sets of
ground atoms satisfying axioms. The ASP solver starts from an initial grounding of body atoms
and deduces ground heads of rules, i.e., feasible sequences of actions.

2.2. Inductive Logic Programming

An ILP [6] task is defined as a tuple 𝒯 = ⟨𝐵, 𝑆𝑀, 𝐸⟩, consisting of background knowledge 𝐵
expressed in a logic formalism 𝐹, search space 𝑆𝑀 consisting of possible axioms and a set of
examples 𝐸, both expressed in the syntax of 𝐹. The goal is to find a hypothesis 𝐻 ⊆ 𝑆𝑀 covering
𝐸. In ILASP [10], an implementation of ILP under the ASP semantics, examples are Context-
Dependent Partial Interpretations (CDPIs), that is, tuples ⟨𝑒, 𝐶⟩, where 𝐶 is a set of atoms called
context (for our scope, environmental features) and 𝑒 = ⟨𝑒𝑖𝑛𝑐, 𝑒𝑒𝑥𝑐⟩ is made up by an included set
𝑒𝑖𝑛𝑐 and an excluded set 𝑒𝑒𝑥𝑐, both containing ground atoms (actions, for our scope). The goal
of ILASP is to find 𝐻 such that: ∀𝑒 ∈ 𝐸 ∶ 𝐵 ∪ 𝐻 ∪ 𝐶 ⊨ 𝑒𝑖𝑛𝑐 ∧ 𝐵 ∪ 𝐻 ∪ 𝐶 ⊭ 𝑒𝑒𝑥𝑐. Therefore, given
the context, ILASP finds axioms which support the execution of actions in 𝑒𝑖𝑛𝑐 and does not
support the ones in 𝑒𝑒𝑥𝑐. Considering that 𝐻 could fail to cover all CDPIs, ILASP also returns
the number of uncovered CDPIs as a confidence measure.

3. Problem definition and case study

This work focuses on the problem of multi-value alignment, wherein moral values influence
decision-making with different priorities. We start from a value system 𝒱𝑆, that is, a tuple
𝒱𝑆 = ⟨𝒱 , ≽⟩, where 𝒱 = {𝑣1, … , 𝑣𝑛} stands for a non-empty set of moral values plus the agent’s
individual objective, and ≽ is a total order of preference over 𝒱 ’s elements. The methodology
in [3] considers the ethical knowledge in 𝒱𝑆 as ethical rewards in a Multi-Objective Markov
Decision Process (MOMDP) [11]. Recall that a MOMDP is defined by a tuple ⟨𝒮 ,𝒜 , 𝑅, 𝑇 ⟩, where
𝒮 is a finite set of states,𝒜 is a finite set of actions, 𝑅 ∶ 𝒮 ×𝒜 ×𝒮 → ℜ𝑛 is a reward function that



Figure 1: Sample initial state for the test environment, with one agent (C) and two pedestrians (P1, P2).

describes a vector of 𝑛 rewards for a given state, action, and next state, and 𝑇 ∶ 𝒮 ×𝒜 ×𝒮 → [0, 1]
is a transition function that specifies the probability of moving to the next state for a given
state and action. [3] shows that the MOMDP can be converted to an equivalent single-objective
MDP, whose optimal policy 𝜋 is guaranteed to be aligned with 𝒱𝑆. Consider, for example,
the autonomous driving task, the car agent not only has to reach its destination, but it must
also preserve pedestrians’ safety and avoid obstacles. The task can be modelled as a MOMDP
(with a reward vector 𝑅 that comprises all three objectives) and converted to an equivalent
single-objective MDP [3]. In this work, we will be observing the resulting RL agent acting in
the scenario in Figure 1.

4. Methodology

Given the ethical policy 𝜋 ∶ 𝒮 → 𝒜, we want to represent it as a set of logical formulas through
a map Γ ∶ ℱ → 𝒜ℒ, in which ℱ = {F𝑖} is a set of ASP atoms representing user-defined
environmental features, and 𝒜ℒ = {A𝑖} is the ASP formulation of 𝒜. We propose the following
steps to achieve our objective.

4.1. Domain representation in ASP syntax

The first step of our method is to define an ASP feature map 𝐹ℱ ∶ 𝒮 → 𝐺(ℱ ) and an action
map 𝐹𝒜ℒ ∶ 𝒜 → 𝐺(𝒜ℒ), with 𝐺(⋅) representing a grounding function. Features in ℱ abstract
raw information about the environmental state into more interpretable human-level concepts,
resulting in a more transparent expression of the state-action map 𝜋. For instance, features
for the autonomous driving domain are in the form item_pos(Dir, Dist), where Dist ∈ ℤ
represents the distance between the agent and the item (pedestrian, obstacle or goal), along
the direction Dir ∈ Dirs = {right, left, forward, down}. In the same domain, we have 𝒜ℒ =
{move_slow(Dir), move_fast(Dir)}.



4.2. ILASP task definition from execution traces

In order to extract ASP task specifications from RL executions after training, we collect traces
(i.e. sequences of state-action pairs ⟨𝑠, 𝑎⟩ ∈ 𝒮 ×𝒜). We then map them to ASP representation via
𝐹ℱ and 𝐹𝒜ℒ maps, obtaining a lifted representation ⟨s, a⟩ for each pair. For each lifted couple,
we generate two CDPIs: ⟨⟨a, ∅⟩ s⟩ and ⟨⟨∅, G(𝒜ℒ) ⧵ G(𝐴𝑖)⟩, s⟩, with s ⊆ 𝐺(ℱ ) and a ⊆ 𝐺(A𝑖),
being A𝑖 the ASP atom representing 𝑎 and G(𝒜ℒ) ⧵ G(𝐴𝑖) denoting all possible grounding
of actions different from the executed one. Including examples with an empty included set
enables the learned axioms to provide more significant and practical policy specifications, as
they are also derived from counterexamples where actions are not executed. For instance,
from ⟨move_fast(down), {obs_pos(left, 1), goal_pos(down, 2), ped_pos(down, 3)}⟩, we gener-
ate the following CDPIs:

⟨⟨move_fast(down), ∅⟩, {obs_pos(left, 1), goal_pos(down, 2), ped_pos(down, 3)}⟩
⟨⟨∅, move_slow(_)⟩, {obs_pos(left, 1), goal_pos(down, 2), ped_pos(down, 3)}⟩

To complete the ILASP task definition we add the background knowledge, which defines ranges
of variables and atoms, and the search space, which contains all possible axioms in the form
a ∶- f1 , … fn , with a ∈ 𝒜ℒ and fi ∈ ℱ.

5. Empirical Evaluation

We applied our methodology on the domain in Figure 1, observing the RL agent trained to
prioritize pedestrians’ safety over passengers’ safety and goal-reaching, which is the value
system considered in [3]. To improve ILASP performance, we assume independent axioms for
each action, thus, we create separate ILASP tasks. Starting from ≈ 36𝑘 trained RL executions
with random agent start positions and pedestrian motions, we generate 4𝑘 CDPIs and, from a
search space containing approximately 300 rules (with a maximum length of 6 body atoms and
4 variables each), we learn the following rules, which cover ≈ 70% of CDPIs:

move_fast(V1) ∶- goal_pos(V1, V2); V2 > 1; ped_pos(V1, V3); V3 > 2. (1)

move_slow(V1) ∶- goal_pos(V1, V2); V2 < 2; ped_pos(V1, V3); V3 > 0. (2)

move_slow(V1) ∶- goal_pos(V1, V2); V2 > 2; not ped_pos(V1, V3); distance(V3). (3)

Importantly, these rules reflect, and explain, what the RL agent learned, that is, to prioritize
pedestrians’ safety even to the detriment of speed. Axiom 2 may seem critical, still, the only
unsafe situation is represented by a pedestrian being precisely on the goal cell, and that’s
impossible since goal cells are only reachable by the car. Rule generation took ≈ 5s, while
training RL agent required ≈ 3h even on a very small scale instance1. Learned axioms were
used to implement an ASP agent, and its performance was evaluated in 1𝑘 random scenarios.
Since the task definition does not include a stop action, but the ASP axiom could not be satisfied
in all contexts, we introduce a move_default action to ASP, equivalent to moving slow and
ground only when no other action is. Results in Table 1 show that, despite ASP solving being

1All experiments have been run with 11th Gen Intel(R) Core(TM) i7-1165G7 Quad-Core processor and 8 GB RAM.



Statistics RL Agent ASP Agent
Average execution time per simulation 0.002s 0.032s

Average steps number 5.325 4.175
Average obstacles collisions 0.0 0.33±0.28 (79%)
Average pedestrians collisions 0.077±0.406 0.07±0.25 (52%)

Table 1
Comparison of RL and ASP agents, reporting average and standard deviation for collisions
(move_default performance is included in brackets).

slightly slower, the ASP agent reaches the goal in fewer steps and with fewer collisions with
pedestrians (neglecting the default action), thus achieving better performance than RL.

6. Conclusion

We proposed a methodology based on ILP to provide a way to learn socially acceptable inter-
pretations of multi-value policies generated by RL. Learned specifications are also helpful in
implementing an ASP planner with slightly better performance compared to RL. In future works,
we plan to extend the validation of the planner to verify that learned ASP specifications are
generalizable to larger domains, thus not requiring demanding training of RL. Furthermore, our
intention is to exploit the non-monotonic features of ASP to extend the scope of our research to
more advanced scenarios.

References

[1] Russell, et al., Research priorities for robust and beneficial artificial intelligence, AI
Magazine (2015).

[2] Sutton, et al., Reinforcement Learning: An Introduction, MIT Press, 2018.
[3] Rodriguez-Soto, et al., Multi-objective reinforcement learning for guaranteeing alignment

with multiple values, 2023. ALA workshop at AAMAS.
[4] Meli, et al., Inductive learning of answer set programs for autonomous surgical task

planning: Application to a training task for surgeons, Machine Learning (2021).
[5] Mazzi, et al., Learning logic specifications for soft policy guidance in pomcp, 2023. AAMAS.
[6] S. Muggleton, Inductive logic programming, New Generation Computing (1991).
[7] D. Meli, et al., Autonomous tissue retraction with a biomechanically informed logic based

framework, 2021. IEEE ISMR 2021.
[8] Meli, et al., Logic programming for deliberative robotic task planning, Artificial Intelligence

Review (2023).
[9] Calimeri, et al., Asp-core-2 input language format, Theory and Practice of Logic Program-

ming (2019).
[10] M. Law, Inductive learning of answer set programs, Ph.D. thesis, 2018.
[11] Roijers, et al., A survey of multi-objective sequential decision-making, Journal of Artificial

Intelligence Research (2013).


	1 Introduction
	2 Background
	2.1 Answer Set Programming
	2.2 Inductive Logic Programming

	3 Problem definition and case study
	4 Methodology
	4.1 Domain representation in ASP syntax
	4.2 ILASP task definition from execution traces

	5 Empirical Evaluation
	6 Conclusion

