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Abstract
Internet of Things and robotic systems are widespread in many application domains. The emergence of

the Internet of Robotic Things seeks to combine both technologies’ strengths, thus empowering the system

with enhanced capabilities. Nevertheless, this system is composed of heterogeneous devices that need to

communicate to work properly. To guarantee effective communication among the devices, we propose

a model-driven approach that enables the integration of quality of service policies in communication

among Internet of Robotic Things system devices, while ensuring their compatibility at the design time.

We apply our approach in a smart agriculture scenario.
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1. Introduction

The Internet of Things (IoT) has seen impressive advancements, enabling cooperation and

connection among a wide range of devices to provide smarter services [1]. In parallel, cooperative

robotic systems are emerging to accomplish complex tasks in different application domains, e.g.,

agriculture, manufacturing, and health [2], enhancing the capabilities and services offered by

IoT systems. In this context, IoT and robotic systems can be seen as complementary technologies

supporting pervasive sensing, tracking and monitoring, and producing action, interaction, and

autonomous behavior, respectively [3]. This convergence resulted in the emerging concept of

the Internet of Robotic Things (IoRT), which aims to combine the facilities provided by the

two [4].

The development of an IoRT system necessitates programming skills that encompass the

complexity of both IoT and robotic systems. This also includes managing the message ex-

changes that facilitate the coordination between these two domains. Specifically, the IoRT

comprises interconnected robotic systems interacting with the physical environment through
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interconnected devices. These interconnections create a dynamic and heterogeneous system

where robots can share information, coordinate actions, and provide intelligent services by

exploiting IoT devices. Therefore, efficient and reliable communication within the IoRT is crucial

to achieving the full potential of these systems. Nevertheless, ensuring devices’ communication

is trivial due to the heterogeneous nature of devices, protocols, and communication frameworks.

Integrating Quality of Service (QoS) policies allows the specification of the communication

needs, supporting time-aware, context-aware, and content-aware communications [5], thus

impacting the overall system performance. However, while QoS policy integration enhances

communication, ensuring effective communication requires devices to integrate these policies

in a compatible manner [6].

The objective of this work is to tackle the integration of QoS policies in an IoRT system built

on the Robot Operating System (ROS) framework and on the Data Distribution Service (DDS)

protocol, with a focus on ensuring communication compatibility among the system’s devices.

Specifically, ROS is the de facto framework for building robotic applications and relies on the

DDS OMG standard to enable communication among distributed devices. Considering these

assumptions, we derive the research question that represents the starting point of our approach.

RQ. How can communication compatibility be assessed within a ROS-based IoRT system?

To answer the research question, we propose a model-driven approach that can handle the

complexity of representing IoRT systems and guarantee compatibility among QoS policies.

Indeed, by exploiting model-driven engineering, it is possible to provide a systematic and

structured methodology for designing such systems [7, 8, 9], as well as assess communication

compatibility by checking potential issues at design time.

By leveraging this approach, we can develop models that capture the key aspects of the

IoRT system. These aspects encompass device interactions, communication protocols, and QoS

requirements, all represented through BPMN diagrams. It’s worth noting that BPMN is an OMG

standard that is expanding its applications both in the robotic [10, 11] and IoT domains [12, 13].

The BPMN application across these domains proves its capability to effectively capture complex

devices’ behavior and interactions, making it a suitable notation for modeling IoRT systems.

The rest of the paper is structured as follows. Section 2 introduces the core concepts and

technologies driving the integration of QoS communication requirements in an IoRT system.

Section 3 describes the IoRT case study applied to a smart agricultural scenario and the adopted

modeling language. Section 4 presents the model-driven approach for modeling and checking

IoRT communication compatibility, along with its application to the case study. Section 5

analyzes the current state-of-the-art for modeling QoS. Finally, Section 6 concludes the paper

and discusses future directions.

2. Background

This section describes the core concepts enabling the integration of communication QoS in

an IoRT system. We first introduce the ROS framework, explaining its applicability in IoRT

scenarios. Then we present the DDS protocol, how it integrates the QoS policies, and how

ROS-based systems exploit it.



Figure 1: Feature model of ROS QoS policies

2.1. Robot Operating System

ROS
1

is one of the most famous and widely used open-source frameworks for programming

robots. It provides an abstraction layer on which developers can build robotics applications. Its

second version, i.e., ROS2, has been proposed to achieve full support for multi-robot systems.

ROS2 is designed as a framework of distributed nodes, which are processes able to perform

computations and designed to achieve single purposes, e.g., controlling motors or the ultrasonic

sensor. Each robot can be seen as a collection of nodes capable of sensing the environment,

acting on it, and making decisions. Nodes are in a network and can communicate with each other

by sending and receiving data via topics. Topics exploit a publish-subscribe pattern allowing to

perform topic-based communication, where a message published over a topic can be read by

any number of other nodes subscribed to that topic.

Recently, micro-ROS (mROS)
2

has been proposed to foster the integration of IoT devices with

ROS-based robots. It provides a basic implementation of the core ROS concepts directly on the

device, allowing the deployment of multiple ROS nodes on the same microcontroller [14]. This

motivates us to take ROS as a reference framework to implement an IoRT system. For the sake

of presentation, we will refer to ROS2 and mROS simply as ROS.

2.2. QoS in Data Distribution Service

The key to enabling the development of multi-interconnected devices in ROS is the OMG

standard DDS
3
. This protocol provides low-latency data connectivity, reliability, and scalable

architecture, to enhance the development of multi-device applications. Indeed, it enables real-

time distributed systems to operate securely as an integrated whole. It introduces a global data

space where applications can share information by simply reading and writing data objects [15].

ROS takes advantage of DDS to enable several features. Among them, the one that primarily

facilitates the development of IoRT is the distributed discovery system that allows ROS nodes

to communicate without using a master node.

1
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Notably, in an IoRT system, communication enables data exchange between devices and thus

supports the correct behavior of the system. In this perspective, QoS policies are used to define

the communication requirements a system must provide [16]. DDS protocol provides a rich set

of QoS policies for controlling data distribution. These policies refer to various communication

parameters, such as data availability, resource usage, reliability, and timing [15]. Specifically,

ROS implements a subset of the QoS policies provided by DDS protocol, as figured out in the

feature diagram in Figure 1. This representation describes the policies considered by ROS with

the different values they can assume, as well as the dependencies that may occur between them.

During the development of ROS-based systems, QoS policies can be configured by associating

within each publisher and subscriber a QoS profile, i.e., a set of predefined QoS policies or by

manually choosing them. However, the manual setup implies the developer must properly

configure QoS policies to ensure compatibility. More in detail, the communication between ROS

publishers and subscribers is established only if all the QoS policies are compatible, following

the compatibility rules defined in the ROS documentation
4
. Notably, multiple subscriptions

can be connected to a single publisher simultaneously even if their policies are different. An

example of compatibility between QoS policies for the reliability parameter is shown in Table 1.

Table 1
Policy compatibility for the reliability parameter

Publisher Subscriber Compatible
Best effort Best effort Yes
Best effort Reliable No

Reliable Best effort Yes
Reliable Reliable Yes

3. Case study

The case study we take as a reference is from the smart agriculture domain. We designed a

system composed of a weather station, capable of sensing and sharing weather conditions, and

a drone operating in the field to monitor and gather data about crop status. Specifically, the

drone takes advantage of the collaboration with the weather station to assess the suitability of

the weather for executing navigation operations across the agricultural field.

We adopted the BPMN OMG standard notation [17] to enable high-level modeling of the

system behavior. Specifically, BPMN is a widely recognized standard that serves various process

modeling purposes [18], making it familiar to many users embracing different domains. Its

notation, easy to understand and learn, further contributes to its accessibility to users [19].

Additionally, the usage of BPMN, and in particular collaboration diagrams, is motivated by

its increasing adoption in model-driven approaches for IoT [13] and robotic systems [11].

Indeed, BPMN collaborations encapsulate in a unique diagram the interplay among control

flow, data flow, and communication making the modeling activity easier. The resulting models

4
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Figure 2: BPMN diagram of smart agriculture case study

are comprehensible to humans and, at the same time, suitable for both model-to-code solutions

and direct model execution.

In accordance with the principles presented in [10], which provide comprehensive guidelines

for modeling a robotic system in BPMN, we have proposed the BPMN model of the case study.

Figure 2 represents the collaboration diagram of the IoRT behavior. Specifically, publishers

and subscribers, defining the communication among the devices, are respectively represented

by throwing and catching signals, simple activities by script tasks, complex activities by call
activities, conditional choices by XOR gateways and concurrency by AND gateways.

More in detail, the weather station is triggered by a signal catch event when it receives a

request for weather data. After that, it computes the requested data by monitoring current

weather conditions and sends them with a signal throw event. On the other hand, the drone

starts its execution every six hours through a timer start event. It then continues with a request

for weather data and waits for a response from the weather station. Once the drone has received

the weather data, it evaluates them by enacting the corresponding call activity. If the evaluation

results in adverse weather conditions, the drone stops its execution. Differently, if the weather

is good, the drone takes off and starts the field exploration while capturing field images. When

the exploration activity is finished, the drone executes a landing, uploads the captured data,

and ends its execution.

Based on the above-presented case study, we identified the QoS policies, outlined in Table

2, suitable for configuring the publishers and subscribers. The Req weather data signal is

thrown by the drone asking for the current weather conditions and is caught by the weather

station. Whereas, Resp weather data is thrown by the weather station to share updated weather

conditions and is caught by the drone to evaluate future states. Specifically, all the signals

have the history parameter associated with the keep last policy, which ensures that they store

1 and 5 messages, respectively, as indicated by the depth parameter. The request signals have

a reliability of best effort, meaning that the communication attempts to deliver messages but



may lose them. In contrast, the response signals require a reliable policy to guarantee message

delivery. The publisher that responds with weather data is responsible for persisting messages

for late-joining subscriptions, indeed the policy associated with the durability parameter is

transient local. In contrast, all the other signals are configured with a volatile policy. For all

the signals, the maximum expected time interval between successive messages published on a

topic is set to 2 seconds, which corresponds to the deadline parameter policy. Additionally, the

lifespan parameter policy is configured to allow a maximum time interval of 10 seconds between

the publishing and reception of a message, preventing the message from being considered

expired. Finally, the liveness of the signals uses the automatic policy, ensuring that publishers

are considered alive for 10 seconds, i.e., the lease duration, after publishing a message.

Table 2
QoS policies for the case study

Req weather data Resp weather data
Pub Sub Pub Sub

History Keep Last Keep Last Keep Last Keep Last
Depth 1 1 5 5

Reliability Best Effort Best Effort Reliable Reliable
Durability Volatile Volatile Transient Local Volatile
Deadline 2 2 2 2
Lifespan 10 10 10 10
Liveliness Automatic Automatic Automatic Automatic

Lease Duration 10 10 10 10

4. Modeling and checking QoS compatibility

In this section, we introduce our model-driven approach aimed at incorporating compatible QoS

policies during the design stage of a ROS-based IoRT system. Initially, we detail our proposed

approach and its phases. Afterwards, we introduce the tool which serves as the practical

implementation of this approach and aligns with its phases. Lastly, we show the practical

application of our approach within the case study presented in the previous section.

4.1. QoS model-driven approach

The model-driven approach we propose, depicted in Figure 3, comprises two specific phases:

modeling and QoS compatibility check.

The modeling phase is the first step in the design of an IoRT. An IoRT designer leverages

BPMN collaboration diagrams to model and capture the behavior of the system. Additionally,

within this phase, designers have to select and specify the set of QoS policies that guide device

communication.

The modeling of device interactions triggers the QoS policy checking. Indeed, the QoS
compatibility check phase ensures that the chosen policies are compatible with each other.

This phase integrates a checker capable of assessing communication compatibility. It ensures that
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Figure 3: Proposed approach

for each matched publisher and subscriber, the corresponding policies comply with the standards

set by ROS for effective communication. The output of this phase is feedback returned to the

IoRT designer stating if the checking has been successful or not. Specifically, if incompatible

policies have been detected, the designer receives feedback highlighting the need to fix the

communication issues in the model.

Summing up, this approach enhances the communication among the various devices that

form the IoRT system, contributing to the overall performance of the system. Notably, the

BPMN representing the system behavior and enhanced with QoS policies, can be used for

guiding the behavior and interactions of the whole system. For instance, it can be translated

into ROS-compatible code to be loaded on devices within the IoRT system.



4.2. C-QoS tool

To show the applicability of our proposal, we developed the C-QoS tool supporting the approach.

In accordance with the approach, C-QoS consists of two main components: a BPMN modeler

and a QoS compatibility check module.

The modeler has been developed as an extension of the bpmn-js toolkit
5
. It is a web-based

interface composed of a palette containing BPMN elements, a central canvas for composing the

desired elements into a model, and a property panel for specifying attributes of the elements.

The property panel plays a key role in modeling the collaboration features. We extend it to

allow the association of a set of QoS policies with each signal node along the modeled behavior.

Since BPMN is built upon the XML schema standard, we store the selected policies as new

properties associated with the signal definition. Therefore, the values selected during this phase

are stored in the diagram, thus enriching the behavioral model with additional information

driving devices’ communication. An excerpt of the QoS-enhanced BPMN signal is shown in

Figure 4.

The QoS compatibility check is integrated within our tool using the node-rules
6

module,

a rule-engine library that enables real-time control of the inserted QoS policies. Following

the ROS-based QoS compatibility specification, we define a specific rule that takes as input

each paired publisher and subscriber, along with the respective QoS policies, and assesses

their compatibility. An event-based function monitors changes in signal nodes that can occur

either when the communication topic changes or when QoS parameter values are modified.

Then, the rule engine takes the changed signal node information as input and assesses whether

the publisher policy parameters align with the one required by the corresponding subscriber.

Specifically, the compatibility is determined based on the Request vs Offered model, which allows

connections only when the publisher’s policies align with the subscriber’s policies. Whenever

there is a change in the QoS policy of a signal node, the tool triggers the rule engine mechanism

to evaluate the updated parameters.

This tool enables the design of the system, identification of communication incompatibilities,

and ensures a feedback to the IoRT designer during the system’s design phase.

Figure 4: QoS-enhanced BPMN signal

5
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6
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4.3. C-QoS at work

Based on the case study presented in Section 3, we illustrate the practical application of the

C-QoS tool implementing the proposed approach to model a QoS-enhanced IoRT collaboration

diagram.

Exploiting the C-QoS modeling interface, the designer can model the collaboration, that

results in the generation of the BPMN diagram represented in Figure 2. Subsequently, the QoS

policies can be easily integrated by associating each signal event with the desired set of policies.

As shown in Figure 5, by selecting the Resp weather data throw signal, the designer can select

the desired parameters in the QoS properties panel.

Once all the signals have been modeled or whenever there are modifications to their charac-

teristics, the tool performs compatibility checks. As an illustrative example, we modeled the

Req weather data signals aiming to generate QoS incompatibilities, specifically concerning the

reliability and liveliness parameters. In detail, we configured the reliability of the publisher

with a policy set to best effort and the subscriber with a policy set to reliable. Whereas the

liveliness of the publisher is set to automatic and the one of the subscriber is set to manual by
topic. As stated in the communication standard, these policies are not compatible, thus making

communication between the two nodes unfeasible. Figure 6a visually represents the detection

of this incompatibility within the model. C-QoS marks the incompatible signals in red and

provides, for each involved node, details about which QoS parameters triggered the error, to

facilitate the debugging phase for the designer. Differently, we modeled the Resp weather data
signals in a QoS-compatible way. Figure 6b visually represents a successful modeling, in which

the signals are highlighted in green.

Summing up, the C-QoS tool we propose enables a model-driven solution to specify devices’

collaboration in an IoRT system. It guarantees compatibility among the QoS policies as stated

in the ROS documentation. Notably, the source code of the tool, as well as an extended example

of the smart agriculture scenario are available online
7
.

5. Related work

The literature proposes many applications of model-driven approaches targeting QoS policies.

Nevertheless, most of them aim to model general QoS in combination with the service level

agreement [20, 21], rather than communication QoS metrics. Differently, few works focus on

communication policy modeling and their compatibility verification.

Toma et al. [20] highlighted the importance of QoS metrics in service-oriented architec-

ture solutions for realizing distributed applications and ensuring their communication. They

proposed the basic steps of modeling QoS characteristics of services with the Web Service

Modeling Ontology, providing a QoS-aware service-oriented architecture. In their approach,

the Web Service Modeling Language provides support for QoS modeling and attaches QoS

characteristics to services and goals. This work differs from our approach in two key aspects.

Firstly, it does not integrate a policy-checking mechanism, leaving a gap in ensuring the quality

of service in the system. Secondly, it does not provide support to model the system behavior.

7
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Figure 5: C-QoS: QoS policy modeling

Pérez et al. [22] conducted an analysis of DDS QoS parameters for event-driven applications.

The proposed approach represents QoS in distributed real-time systems with end-to-end flow

models defined by the MARTE standard. The approach is presented via an automotive case study

for advanced driver assistant systems, that require communication reliability, as unexpected

behaviors may result in accidents. For modeling system components their solution uses standard

profiles but does not consider the inclusion of custom system configurations. Furthermore,

the implementation of a compatibility check mechanism is not integrated within the approach.

Targeting IoT devices, Archana et al. [23] underlined that a complete analysis of the QoS levels

is required to analyze the proper behavior of devices when interacting with each other. The

authors aimed to provide an approach to formally model, analyze, and verify the QoS levels

of the MQTT protocol. Their solution exploits the PROMELA language and the SPIN model

checker tool, to formally describe the desired properties for the communication and verify if

they can be satisfied by the MQTT protocol. In contrast with our proposal, this work focuses on

formal verification of the MQTT protocol communication, without considering checking QoS

levels. Moreover, this approach does not include the modeling of the system behavior. Parra

et al. [24] focus on the QoS specification for component-based robotic systems. The authors

proposed a domain-specific language to support domain experts in specifying QoS requirements

in distributed systems while checking QoS compatibility before executing the system. The

proposed solution enables the automatic verification of the QoS requirements at design time,

highlighting possible incompatibilities of communication requirements demanded by different

parties within the system. The presented approach is applied in a ROS-based robotic system.

This approach differs from ours mainly for the adopted modeling language. Notably, using

custom domain-specific languages may require time to learn them. Whereas, this effort could



(a) Incompatibility detected (b) Compatible QoS policies

Figure 6: C-QoS: QoS compatibility check

be mitigated using a well-accepted standard, like the BPMN.

Therefore, differently from the approaches presented in the literature, our approach supports

the IoRT developer in modeling the behavior of the system, exploiting the BPMN standard,

while ensuring QoS policy compatibility as stated in the DDS standard. The C-QoS tool, in

particular, incorporates features designed to help the user in two different ways. On the one

hand, it enables the specification of communication QoS requirements during the system design

phase of the application. On the other, it performs checks to validate that QoS policies are

modeled correctly, thereby guaranteeing communication compatibility among devices within

the IoRT system.

6. Conclusions

In this paper, we presented a model-driven approach to handle the complexity of representing

IoRT behavior and ensure communication compatibility among devices exploiting QoS policy.

The proposed approach allows the IoRT designer to model the behavior of the devices as well

as the QoS policy associated with the exchanged messages, using BPMN process models. The

produced model is checked to verify the compatibility among the policies thus ensuring the

correct behavior of the system. Additionally, the approach is supported by the C-QoS tool,

which eases the modeling and the compatibility check of QoS policies.

We demonstrate our approach using a simplified IoRT smart agriculture scenario. Notably,

our solution is suitable for handling more intricate use cases, as evidenced on the C-QoS

documentation page provided earlier. This flexibility ensures our tool remains robust and



relevant in a constantly evolving technological landscape. Furthermore, our tool’s adaptability 
allows it to be customized for systems utilizing other communication protocols that exploit 
QoS policies. This extension broadens its applicability to a wide range of applications, further 
enhancing its versatility. Indeed, our approach is not limited just to IoRT systems. It can also be 
effectively employed in IoT systems and in distributed systems that leverage QoS policies to 
enable communication among devices.

Exploiting the proposed approach, we can address the research question presented in the 
introduction. Indeed, the application of a model-driven approach for modeling and checking 
communication compatibility serves a dual purpose. On the one hand, it simplifies the spec-

ification of the system behavior as well as the communication r equirements. On the other, 
the integration of a checker at design time enables the designer with the capability to assess 
communication compatibility before system development.

In future work, we plan to validate the approach to better show its effectiveness. This 
will enable gathering data and insights into the approach’s performance and its applicability. 
Moreover, we plan to integrate this approach within the FaMe framework [11], which enables a 
direct execution of BPMN process models to drive the execution of autonomous systems. In 
doing so, we aim to create a comprehensive solution that speeds up the development of IoRT 
scenarios while associating compatible QoS policies to drive devices’ communication.
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