
Multi-instance data behavior in BPMN
Maximilian König1,∗, Mathias Weske1

1Hasso Plattner Institute, Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam

Abstract
Process models have long-since been used to capture business processes for documentation, commu-
nication, analysis, and enactment purposes. Most of the commonly used modeling languages, e.g.,
BPMN, focus on the control flow of involved activities and participants, while mostly neglecting the
data perspective despite the latter gaining more and more relevance for today’s companies. This is
especially true for multiple instances of the same data, e.g., multiple items being ordered by the same
customer. The BPMN standard’s concepts fail to capture such behavior sufficiently. In addition, their
textual descriptions lack conciseness when it comes to the concepts’ semantics. Therefore, this paper
proposes new semantics for multi-instance data objects including splitting and merging behavior which
lays the foundation for further investigation of multi-instance behavior of process data flow in general.

Keywords
Process Modeling, BPMN, Data Semantics, Multi-Instance Behavior, Colored Petri Nets

1. Introduction

Business process management (BPM) is a mature discipline that is employed to manage business
processes throughout their lifecycle [1]. A core concept are process models to visualize the
different dimensions of such business processes. Business Process Modeling and Notation
(BPMN) [2] provides a standardized process modeling language that is widely adopted for that
purpose. It follows an activity-centric approach, hence primarily focusing on the control flow
of processes. That entails the order in which certain steps have to be executed, who executes
them, and which messages are sent between participants, to realize a business goal. However,
the data perspective, i.e., which information is required for or produced by the execution of
certain activities, is largely neglected [3].

To that end, BPMN provides concepts to visualize data, namely data objects. They act as an
abstraction of concrete data schemas. Changing values throughout a process execution are
represented as different states of these data objects. An example is an order placed at an online
shop. However, issues arise when a single process instance has to deal with multiple instances
of such a data object, e.g., when considering the individual items of the placed order. It cannot
easily be represented that some of these items are in stock while others are not.

To address these shortcomings, this paper proposes an extension to the behavior defined by

ER2023: Companion Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th SCME,
Project Exhibitions, Posters and Demos, and Doctoral Consortium, November 06-09, 2023, Lisbon, Portugal
∗Corresponding author.
Envelope-Open maximilian.koenig@hpi.de (M. König); mathias.weske@hpi.de (M. Weske)
Orcid 0000-0002-2244-1179 (M. König); 0000-0002-3346-2442 (M. Weske)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:maximilian.koenig@hpi.de
mailto:mathias.weske@hpi.de
https://orcid.org/0000-0002-2244-1179
https://orcid.org/0000-0002-3346-2442
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


the BPMN standard. Thereby, the capabilities to handle multiple instances of data objects in
different states are improved. Besides a textual description of the behavior, a concise semantics
is presented as well by defining a translation to colored Petri nets, which is a commonly used
formalism for that purpose [4, 5].
The remainder of this paper has the following structure: In section 2, the concepts used

throughout the paper are introduced and the conceptual gap to be closed is highlighted. Based
thereon, section 3 describes the proposed behavior addressing that gap. Related work is then
presented in section 4 before section 5 discusses the paper’s results and concludes.

2. Background

This section provides an overview of the concepts used in the remainder of the paper. First,
BPMN and its data-related constructs are described. Afterward, colored Petri nets are introduced.

2.1. BPMN

Figure 1 shows an example order handling process represented as a BPMN process model. First,
a received order is split into the requested items. After determining whether they are in stock,
available items are packaged and shipped, while unavailable items are ordered to be shipped to
the customer through a third party. Once all items are shipped or ordered to be shipped, the
invoice is sent to the customer and the process ends.

The elements of BPMN process models [2] required for this work can be divided into control
flow nodes and data nodes. Control flow nodes comprise activities, i.e., the actions that are
performed during a process, events, i.e., instantaneous occurrences of various natures that have
an impact on process execution, and gateways representing decisions and concurrency in a
process. These nodes are interconnected through control flow arcs defining their temporal andItem shipment

Order
received

Split order
into items

(SOII)

Check item
availability

(CIA)

Order

[received]

Item

[ordered]

Item

[unavailable]

Item

[available]
Package &
ship items

(PSI)

Item

[shipped]

Send invoice
(SI)

Item

[invoiced]

Order item
directly to
customer

(OIDC)
Item

[shipment
ordered]

Items
shipped

#Item[available] > 0

#Item[unavailale] > 0

Figure 1: Order processing example process.



logical order. Data nodes represent the data available in the process that is produced by control
flow nodes or serves as their precondition. In BPMN, these nodes are called data objects. They
are defined through a data class and a state denoted in square brackets, e.g., Order[received].
In addition to an enabled ingoing control flow, all ingoing data objects must be available for
an activity to be executed. Once finished, they transition ingoing data objects to new states if
there is an outgoing object of the same class in a different state. For example, activity Package
& ship items in Figure 1 transitions data objects of class Item from state available to shipped. In
contrast, Split order into items creates new Item data objects, since they are only outgoing.

Both data objects and activities can be marked to describe multi-instance behavior. Activities
tagged with three horizontal bars can be executed multiple times sequentially, three vertical
bars indicate that the instances may run concurrently. Regarding data objects, three vertical
bars signify a collection of multiple data objects of the same class in the same state. If a data
object collection (DOC) is the precondition of a multi-instance activity, the number of activity
instances is determined by the number of elements in the DOC. For example, Procure item will
be executed as often as there are items in state unavailable.

The BPMN standard has a number of limitations impacting the applicability of the introduced
concepts. On the one hand, it describes most concepts only textually and therefore lacks concise
semantics. For example, the meaning of data object states is not defined at all. On the other
hand, it defines that only a single instance of every data object, collection or not, may exist at
the same time [2, p. 206]. Looking at Figure 1, that would imply that the availability check of
ordered items must always result in either all items being available or all items being unavailable.
In reality, that is not the case. To express that in BPMN, it would be required to have multiple
collections of the same data class in different states that can be merged and split according to
the process requirements. Therefore, this paper introduces a semantics for such behavior in
BPMN as a starting point for further investigation of multi-instance data behavior in processes.

2.2. Colored Petri nets

The formalism of our choice for such a semantics will be colored Petri nets (CPNs) [6], an
extension of classical Petri nets [7] which are commonly used to define the behavior of BPMN
[3, 4, 5]. Petri nets are directed bipartite graphs consisting of places, transitions, and directed
arcs between them. The set of places with an arc toward a transition is called its preset, the set
of places with an arc from a transition is its postset. The state of a net is defined as a distribution
of tokens over the set of places. Firing a transition consumes a single token from each place in
the preset and produces one in each place of the postset.
A major shortcoming of traditional Petri nets is that tokens are not distinguishable, which

prevents an efficient representation of multiple instances in a single net. CPNs address that

Figure 2: Example colored Petri net.



by introducing types for places, so-called colorsets. Tokens in a place contain concrete data
values of its type that can be bound to variables. The variables can then be used to create and
modify the data of other tokens. That happens using arc expressions and guards on transitions,
which may consist of complex statements including function calls. An example can be found
in Figure 2. Place 𝑃1 has colorset 𝑛𝑟 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑛𝑢𝑚𝑏𝑒𝑟 holding tokens containing a tuple of
numbers. In contrast, colorset 𝑠𝑢𝑚 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 describes tokens with only a single numerical
value stored in 𝑃2. Upon firing, transition Sum consumes a token from 𝑃1 whose values are
captured in variables x and y of type number. However, the transition can only fire if the guard
is fulfilled, stating that both values must be greater than 0. Finally, it produces a new token in
𝑃2 holding the sum of x and y.

3. BPMN data object collection behavior

To address the shortcomings of the BPMN standard regarding data object collections, this section
proposes an updated semantics allowing for the splitting and merging of data object collections
(DOCs). To that end, we provide a textual description of the intended behavior alongside a
translational semantics to CPNs.

Before describing the new behavior, we need to introduce a deviation from the BPMN standard.
As described in section 2, it allows only a single instance of a data object (collection) at the same
time. However, in the context of collections, we must loosen this requirement. It should instead
state that a data object collection in the BPMN model always refers to all data object instances in
the referenced state in the current process instance at a time, without prohibiting the existence of
data objects in different states. Thereby, we pave the way to split the ordered items in Figure 1
into a collection of available and a collection of unavailable items. Following the intention of
the standard, this definition ensures that it is always unambiguous what an element in the
model refers to at instance level. Further, we define that collections of size 0 are not sufficient
as a data precondition for control flow nodes. In other words, there must be at least one data
object instance in the required state before an activity reading the respective collection gets
enabled. As a result of these definitions, the semantics of multiple in- and outgoing DOCs of
the same class for a single activity becomes unclear. Before, it was always an exclusive choice,
since only a single instance could exist. Now, we must allow that, depending on the process
state, only one of the collections, or both collections are required for activity enablement or
updated through activity execution. For further specification, BPMN input/output sets can be
used, which we will not consider in this work. In the following paragraphs, we define the state
transition, splitting, merging, and creation operations for data object collections.

State Transition. Activities reading a DOC and writing the same collection in a different
state perform a state transition. That means that all data objects of the ingoing collection
are transitioned to the new state. Hence, the number of data objects added to the collection
with the new state is the number of elements in the read collection. Figure 3 shows the
mapping of that behavior to a colored Petri net at the example of the single-instance activity
Package & ship items. The activity is represented as a transition and the in- and outgoing
control flow as places with colorset cf. For every state of every data class, a place is created.



Figure 3: Mapping of a data collection
state transition.

These places are called global places and are unique
in the entire process mapping. If a created place rep-
resents a data object collection, we assign the colorset
𝑑𝑜𝑐 ∶ 𝑠𝑡𝑟 𝑖𝑛𝑔[] containing a list of IDs, else we assign
colorset 𝑑𝑜 ∶ 𝑠𝑡𝑟 𝑖𝑛𝑔 for single-instance data objects.
The transition is bidirectionally connected to the places
representing the in- and outgoing DOCs. Upon firing,
it checks that ingoing DOCs have at least one element
before appending all their elements to the DOC in the
target state. At the same time, the read token is reset
to an empty list. Thereby, all items in state available are transitioned to state shipped in the
example. Note that we use the +-operator for concatenating and appending to lists.

Splitting. To split a data object collection into multiple collections, we make the assumption
that the decision on the target state is made for every element individually. Therefore, we only
allow BPMN multi-instance activities to split a collection. Thereby, we also ensure that the
activity is executed as often as there are instances in the collection. In the example, Check item
availability determines for each ordered item whether it is in stock or not, and transitions it to
the respective state. A CPN representation of that activity can be found in Figure 4. In contrast
to the previous mapping, the individual processing of every instance requires more than a single
transition. Instead, the activity is split into a beginning (𝐶𝐼𝐴𝑏) and terminating (𝐶𝐼𝐴𝑡) transition.
The former checks the availability of at least one element in the read collection and resets it to
an empty list to avoid concurrent access. In addition, a local 𝑑𝑜𝑐 place is used to keep track of
the yet unprocessed data object instances. From there, a transition for every possible target
state can change the first element of the collection to the new state, stored in another local 𝑑𝑜𝑐
place. These transitions are enabled until the list is empty. Once it is empty, the terminating

Figure 4: Mapping of the splitting of two DOCs.



transition can fire, resetting the local places to empty lists, and appending the respective data
object instances (stored in variables 𝑛𝑒𝑤_𝑖𝑎𝑣 and 𝑛𝑒𝑤_𝑖𝑢𝑛𝑎𝑣) to the global DOCs. In addition to the
places for the data objects, another control flow place indicates that the activity is still running.

Merging. After introducing the splitting of collections, we must also provide means to merge
them again. Therefore, an activity may read multiple DOCs of the same data class and write only
a single DOC of that data class. The result will be that all instances in the ingoing DOCs will be
transitioned to the state of the outgoing DOC, and will hence be appended to that collection. If
that activity is a multi-instance activity, the number of instances corresponds to the sum of the
length of all ingoing DOCs of the same class.

To capture the behavior as a multi-instance activity, we use a similar mapping to the splitting,
as visualized in Figure 5. We also create beginning and terminating transitions that read and
write the respective control flow and data places. The beginning transition resets all ingoing 𝑑𝑜𝑐
places and its guard ensures that at least one of them contains at least one element. Afterward, a
local place per read state is created, serving the same purpose as the local places in the CPN for
the splitting behavior. Then, a transition per newly created place (i.e., t1 and t2) transitions one
data object instance to the target state, which is also stored in a local place. Once all elements
of all ingoing DOCs have been processed, the guard of the terminating transition evaluates to
true and adds all transitioned data object instances to the global collection.

Please note that, if a single-instance activity is used for DOC merging, a simplified mapping
can be applied following the same rules as the state transition with multiple ingoing 𝑑𝑜𝑐 places.
Analogously, a multi-instance activity performing a 1:1 state transition can be mapped using
the same rules as described for the merging behavior.

Figure 5: Mapping of the merging of two DOCs.

Creation. For the creation of new data object instances, an activity must have an outgoing
DOCwithout a DOC of the same class as precondition. We assume that at least one new instance
must be created if that activity is executed. In Figure 6, an exemplary CPN representation is



depicted. We again split the activity into a beginning and terminating transition. Between them,
we create a control flow place indicating that the activity is still running. In addition, another
transition can fire as long as there is a token in the running place to create new instances of the
respective data class. Once at least one instance has been created, the terminating transition is
enabled and, upon firing, appends the newly created collection to the global DOC.

Figure 6: Mapping of the creation of a new DOC.

4. Related work

In related literature, a number of approaches can be found defining translational semantics
for BPMN including data concepts. For example, Ramadan et al. and Dechsupa et al. define
mapping rules to CPNs covering a wide range of complex control flow constructs as well as
some data concepts [4, 5]. However, neither approach deals with multi-instance data. Using a
different approach, Meyer et al. first extend BPMN with annotations to visualize complex data
dependencies before assigning an execution semantics based on SQL queries [3]. While they
consider data object collections, they do not support list operations such as splitting or merging.
Instead, they only consider a single list per data class. Corradini et al. translate BPMN models
to a Backus-Naur form representation and enrich it with a state notion [8]. Their mapping rules
aim at multi-instance behavior, especially regarding BPMN collaboration diagrams, and include
data objects. Yet, multi-instance data objects are excluded from consideration. Combi et al.
present an extension of BPMN data nodes by introducing activity views, assigning each activity
an SQL statement describing the accessed data [9]. Therewith, they allow the modeler to hide
complexity from the process model. However, it remains unclear how multiple instances of the
same data can be handled in that approach.

5. Discussion & Conclusion

In this paper, we proposed new semantics for BPMN data object collections (DOCs) in order to
allow splitting and merging behavior. To do so, we had to lift the assumption that only a single
DOC may exist at the same time. Afterward, we introduced the BPMN constructs allowing the
new list operations and described their behavior informally using text and formally using a
translation to colored Petri nets.
The presented semantics serve as a starting point for future research on multi-instance

behavior in process data flow. Currently, only a fraction of BPMN’s concepts are covered by



our approach, and many complex constructs such as subprocesses, data stores, and cancelation
require additional consideration. Further, we did not introduce a sophisticated data locking
mechanism as described in [10].
Another aspect to be investigated is the derivation of BPMN modeling guidelines from the

newly defined behavior. For example, splitting a data object collection into several requires
the handling of the case that one of them is empty after the activity terminates. Otherwise,
dead branches in the process may be the result. In Figure 1, that is accomplished using an
inclusive split. However, that may not be possible in every situation. Automated detection of
such erroneous behavior using contemporary Petri net analysis methods would be desirable.

Finally, adopting the extension in other modeling languages is an interesting line of research.
For example, YAWL [11] comes with multi-instance behavior while lacking data concepts.

References

[1] M. Weske, Business Process Management - Concepts, Languages, Architectures, Third
Edition, Springer, 2019. doi:10.1007/978-3-662-59432-2.

[2] OMG, Business Process Model and Notation (BPMN), Version 2.0.2, Technical Report,
Object Management Group, 2014. https://www.omg.org/spec/BPMN/2.0.2/PDF.

[3] A. Meyer, L. Pufahl, D. Fahland, M. Weske, Modeling and enacting complex data depen-
dencies in business processes, in: BPM 2013. Proceedings, volume 8094 of LNCS, Springer,
2013, pp. 171–186. doi:10.1007/978-3-642-40176-3\_14.

[4] C. Dechsupa, W. Vatanawood, A. Thongtak, Hierarchical Verification for the BPMN
Design Model Using State Space Analysis, IEEE Access 7 (2019) 16795–16815. doi:10.
1109/ACCESS.2019.2892958.

[5] M. Ramadan, H. G. Elmongui, R. Hassan, BPMN formalisation using coloured petri nets,
in: SEA, 2011, pp. 83–90.

[6] K. Jensen, L. M. Kristensen, L. Wells, Coloured petri nets and CPN tools for modelling and
validation of concurrent systems, Int. J. Softw. Tools Technol. Transf. 9 (2007) 213–254.
URL: https://doi.org/10.1007/s10009-007-0038-x. doi:10.1007/s10009-007-0038-x.

[7] T. Murata, Petri nets: Properties, analysis and applications, Proc. IEEE 77 (1989) 541–580.
doi:10.1109/5.24143.

[8] F. Corradini, C. Muzi, B. Re, L. Rossi, F. Tiezzi, Animating multiple instances in BPMN
collaborations: From formal semantics to tool support, in: BPM 2018. Proceedings, volume
11080 of LNCS, Springer, 2018, pp. 83–101. doi:10.1007/978-3-319-98648-7\_6.

[9] C. Combi, B. Oliboni, M. Weske, F. Zerbato, Conceptual modeling of inter-dependencies
between processes and data, in: SAC 2018, ACM, 2018, pp. 110–119. doi:10.1145/3167132.
3167141.

[10] A. Meyer, Data Perspective in Business Process Management, PhD Thesis, Universität
Potsdam, 2015.

[11] W. M. P. van der Aalst, A. H. M. ter Hofstede, YAWL: yet another workflow language, Inf.
Syst. 30 (2005) 245–275. doi:10.1016/j.is.2004.02.002.

http://dx.doi.org/10.1007/978-3-662-59432-2
https://www.omg.org/spec/BPMN/2.0.2/PDF
http://dx.doi.org/10.1007/978-3-642-40176-3_14
http://dx.doi.org/10.1109/ACCESS.2019.2892958
http://dx.doi.org/10.1109/ACCESS.2019.2892958
https://doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-319-98648-7_6
http://dx.doi.org/10.1145/3167132.3167141
http://dx.doi.org/10.1145/3167132.3167141
http://dx.doi.org/10.1016/j.is.2004.02.002

	1 Introduction
	2 Background
	2.1 BPMN
	2.2 Colored Petri nets

	3 BPMN data object collection behavior
	4 Related work
	5 Discussion & Conclusion

