
A language for graph database evolution and its
implementation in Neo4j
Dominique Hausler1,*, Meike Klettke1 and Uta Störl2

1University of Regensburg, Data Engineering Group, Faculty of Informatics and Data Science, Bajuwarenstrasse 4, 93053
Regensburg, Germany
2University of Hagen, Chair of Databases and Information Systems, Faculty of Mathematics and Computer Science,
Universitätsstrasse 1, 58084 Hagen, Germany

Abstract
In this article, we present an evolution language for graph databases and a method to realize evolution
operations on graph databases and their schema. Graph database management systems like Neo4j can
be used for different scenarios: they can store graphs where no semantic constraints are checked. It is
also possible to use them to store graphs where the structure of nodes and relationships is regular, for
example, because the nodes and relationships of a graph have been generated by an application. In the
latter case, these structures may change, that means they can undergo evolution. Currently, there is
no established evolutionary language for graphs. However, evolution operations (such as add, rename,
delete, merge, copy, split and move) have already been developed for other database models. In this
article, we will not only use the established evolution operations but additionally extend the operations
appropriated. After analyzing evolution operators explicitly in the context of graph databases, we also
created a new graph-specific operation: transform. Moreover, we suggest an evolution language to graph
data and show how it can be executed on the graph database schema as well as on the instances (i.e. the
graphs themselves). In doing so, some operations can be implemented native based on Cypher, others
non-native using the APOC library for Neo4j.

Keywords
graph databases evolution, evolution, graph schema description, graph evolution language

1. Introduction and motivation

If systems are used successfully over a long period of time, they need to be updated from time
to time. This is also valid for Graph Databases (GDBs). GDBs allow flexible storage of graphs
with different structures, but these graphs always contain implicit structures that can follow a
certain structuring. To adapt this implicit structural information, we need a language for the
evolution of GDBs. There are several reasons why an evolution in graph databases is necessary:

• Different representations of information can be chosen in GDBs, so information can be
stored as node, node property, relationship, direction of a relationship, or relationship

ER2023: Companion Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th SCME,
Project Exhibitions, Posters and Demos, and Doctoral Consortium, November 06-09, 2023, Lisbon, Portugal
*Corresponding author.
$ dominique.hausler@ur.de (D. Hausler); meike.klettke@ur.de (M. Klettke); uta.stoerl@fernuni-hagen.de (U. Störl)
� 0009-0004-2381-133X (D. Hausler); 0000-0003-0551-8389 (M. Klettke); 0000-0003-2771-142X (U. Störl)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dominique.hausler@ur.de
mailto:meike.klettke@ur.de
mailto:uta.stoerl@fernuni-hagen.de
https://orcid.org/0009-0004-2381-133X
https://orcid.org/0000-0003-0551-8389
https://orcid.org/0000-0003-2771-142X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

property. Unlike relational databases, there is no established design methodology for GDBs
yet. Due to these different representations, it can happen that these are to be changed for
already used GDBs. In these cases, an evolution is necessary.

• For a given workload (read and write operations) on GDBs, it is often not clear which
design of the database causes a more efficient execution. Because GDB optimization is
still a very young field of research and there is not yet a standardized approach to design,
subsequent structural changes are very likely.

• GDB refactoring may also be necessary when different GDBs with different structures
shall be integrated.

• Further development of the database and the application or simple extensions of the
graph data are another reason for evolution.

In all these cases, GDBs have to be evolved. Thereby, we have to consider the following aspects:

• With the evolution operations on GDBs the context must also be considered, for all opera-
tions on nodes it must be defined how the in– and outgoing relationships are proceeded.

• So far, there is no standardized graph data query language which we can build on.

We have to be able to make simple extensions, such as adding or renaming properties of either
entity type. But we also need possibilities for a complex graph restructuring. For all of these
cases, we will propose evolution operations in this article and illustrate, respectively, what
changes to the schema and the graphs are performed by them.

The main contributions of this article are the following: We suggest an evolution language
for graph data. In doing so, we extend existing approaches by transform to change the entity
type (e.g. a node to a relationship). We show, how the evolution language can be executed on
the GDB schema via SMOC as well as on the instances (GMOC).
Structure of the article. The next section lists related work. In Section 3, we give an

overview on the evolution approach. We continue with the definition of a schema for graph
databases (Section 4). The main part is the definition of evolution operations (Section 5) and
their execution in Neo4j. We conclude in Section 6 with a summary and some future work tasks.

2. Related work and state of the art

Our work is based on a variety of existing research, which is given here.
Graph query languages. There already exist some suggestions for GDB languages, e.g.

GQL, PGQL, and Cypher. For our work, we decided to choose Cypher because of its popularity,
[1, 2] its usage in commercial, well known projects [3] and the postulation of extending Cypher
to a standardized language for property graph (PG) databases [4].

Schema of graph databases. Work has already been done on schema description in GDBs
like in [5]. Even though the schema grammar of [5] was taken into account for the schema
grammar proclaimed here, the complexity of it had to be extended to illustrate APOC functions,
nodes with multiple relationships with different directions, and to allow the schema modification
operations for Cypher to be illustrated. We use it to describe the database state before and after
executing an evolution operation.

Evolution for other data models (relational data, XML, JSON). Database evolution is
needed in all database management systems. In relational databases, a evolution language that
can evolve existing relational databases is part of the standard. The alter table statements
define the evolution and modifies the tables. A bit more complicated is the evolution in XML and
JSON databases because we have to consider heterogeneous datasets. XML evolution operations
are defined in [6, 7, 8] and JSON evolution in [9, 10].
Updates and evolution of graph databases. Green et al. [11] suggest Cypher extensions

to realize updates. It includes add, delete and merge operations proposing possible improve-
ments for Cypher. These extensions are not an evolution language but can be used for graph
data migration into a new version. In [12, 13, 14], a schema language is introduced and the
validation of GDBs against the schema is described. In contrast to this article, we extended
the evolution operations by transform to illustrate the complexity of GDBs. In consequence
of writing the domain-specific SMOC proclaimed in this paper, a precise implementation is
possible. Moreover, this article presents an analysis of all evolution operations, categorizing
them by the necessity to utilize a library.
Schema extraction. There are several works that are extracting an explicit schema from

GDBs, some of which are [15, 16, 17, 14]. For the topic described in this article, we assume an
existing schema, which may have been either pre-defined (schema-first, forward engineering) or
derived from existing GDBs (reverse engineering). Thus, a schema-extraction can be a previous
step for schema evolution. As far as we know, there currently is no graph database system that
implements schema evolution with complex refactoring operations.

3. Overview

Figure 1: Evolution of Graph Databases

Figure 1 shows the basic com-
ponents and the process of
schema evolution in GDBs. 1
is the most abstract level. It
contains information about the
Graph Evolution Operations
(GEO), describing them in gen-
eral. On the next level 2 , we
see the schema. The light blue
boxes represent the Schema
Grammar SGn , SGn+1 before
and after the execution of the
evolution operation. SMOC
(Schema Modification Operation) defines the operation for the schema level – here on base
of Cypher – as illustrated by 3 . In this article, we use the C index for Cypher (Neo4j’s query
language) to indicate that a language is domain-specific. Number 4 illustrates the data level.
Here the concrete entity types of the GDB are shown (before and after the evolution). The light
green arrow 5 visualizes the implementation of the Graph Data Migration Operation in Neo4j,
called GMOC . All of the parts are described in detail in the following sections.

4. Schema in graph databases

entityType ::= node | rel
node ::= '(' ((nodeLabel (property)* (','

nodeLabel (property)*)*) | 𝜀) ')'→˓

nodeEntity ::= node | connectedNode |
multiConnectedNode→˓

connectedNode ::= ((node '-' rel '→' node) |
(node '←' rel '-' node))→˓

multiConntectedNode = connectedNode ((('-'
rel '→') | ('←' rel '-')) node)*→˓

rel ::= '[' relationshipType (property)* (','
relationshipType (property)*)* ']'→˓

feature ::= property | nodeLabel |
realtionType→˓

property ::= '{' propertyName ':' value (','
propertyName ':' value)* '}'→˓

propertyName ::= String
nodeLabel ::= (String)+
relationshipType ::= String

Figure 2: EBNF like Schema Grammar for entity types
and their features

The structure of GDBs can be defined
in an explicit schema. We developed
an EBNF like1 Schema Grammar (SG)
inspired by [5] and modified it to fit the
domain-specific SMOC we invented.
The SG in Figure 2 shows the definition
of nodes, relationships and features.
Nodes in GDBs can contain labels or
node properties, whereas relationships
can contain types or relationship prop-
erties. For the explanation, we name
these four terms features. A node is
represented in round brackets, a rel2

is defined in squared brackets. Further-
more, the SG defines connectedNode
and multiConnectedNode rep-
resenting nodes with associated
relationships. Properties are key-value
pairs. Furthermore, nodeLabel and
relationshipType are defined as
strings; a nodeLabel can have several
strings. In that case, nodes are called
multi-labeled 3. A property is defined as a map. In Figure 1, it is shown that an evolution
operation evolves the schema and the graph data. The schema grammar versions SGn and
SGn+1 show the schema before and after the evolution operation. In both cases, the schema is
defined with the grammar shown in Figure 2.

5. Evolution operators

In this section, the evolution operations add, rename, delete which are so-called single-type
operations and the multi-type operations merge, copy, split and move will be examined. Each
operation changes the schema and graph data as described in Figure 1. Also, we categorize the
operations according to whether they are directly available in Cypher as native, while functions
implemented in the APOC library are called non-native.

1Variables start with lowercase, fixed terms with uppercase letters. SMOC commands are capitalized and Cypher
specifics are violet in quotation marks. In GEO quotation marks are used as descriptions.

2The language uses rel as the short form for a relationship.
3The presence of two or more labels in a node.

5.1. Add

The first evolution operation add is needed for extensions of the GDB, either by new features
or new entity types. In Figure 3, the GEO appends a new feature, specifically a property in
the GMOC . The SMOC defines how, within the FOREACH statement, features can be added.
By choosing a function and a pattern that contains relationships, either properties, types or
labels can be attached. In the SMOC the add operation is implemented as native operation.
The corresponding GMOC in Figure 3 shows two variants to add the property title to a
Manager node. Both generate the same result. Option A matches all Manager node paths,
selects among them the nodes fulfilling a certain condition and sets a new property. It uses the
FOREACH statement and realizes a native operation. Due to the pattern complexity of Option B
the evolution operation can access all nodes without a FOREACH command native.

GEO

addFeatures ::= 'add' features 'to'
entityTypes→˓

SMOC for Option A

MATCH variable (*for path*) '='
nodeEntity (filter)?→˓

FOREACH '(' variable IN (NODES |
RELATIONSHIPS) '(' variable (*for
path*) ')' '|' (setProperty |
setLabel | setType) ')'

→˓

→˓

→˓

(RETURN ((nodeVar)+ | (relVar)+)?
(*depending on pattern and feature*)→˓

GMOC

//Option A
MATCH pattern = (n:Manager)
WHERE (n)<-[:WORKS_AT]-(:PlaceOfWork

{city:'Regensburg'}) OR
(n)<-[:WORKS_AT]-(:PlaceOfWork
{city:'Passau'})

→˓

→˓

→˓

FOREACH (n IN nodes(pattern) | SET
n.title = 'Prof. Dr.')→˓

RETURN n
//Option B
MATCH (n:Manager)-[:WORKS_AT]->

(n2:PlaceOfWork)→˓

WHERE n2.city='Regensburg' OR
n2.city='Passau'→˓

SET n.title = 'Prof. Dr.'
RETURN n, n2

Figure 3: GEO, SMOC and GMOC for: Add features

SMOC

selectPattern WITH collect(NodeVar |
RelVar) aliasCollection→˓

FOREACH '(' variable IN collection '|'
(addNode | addRel) ')'→˓

For adding entity types, the GEO would
be defines as: addEntityTypes ::= 'add'
entityTypes 'to' database. In contrast,
the SMOC (Figure 4) differentiates between the
entity types. Whenever there is uncertainty,
MERGE is to be preferred over CREATE. This pre-
vents the generation of duplicates [18]. At the
precise level of GMOC there are two possible
outcomes when utilizing a FOREACH command Figure 4: Operation: Add entity types
to create multiple nodes. If nodes are added
with only a label that does not already exist in the GDB, the nodes will be displayed in gray
with the automatically generated id naming them. In contrast, if the label was already assigned,
the nodes will be empty, but colored according to the label assigned.

Table 1 illustrates the available commands to add features. It differentiates between native
and non-native options while non-native commands have the advantage of making dynamic
specifications. Moreover, it shows that add is an evolution operation with a wide variety of
available commands while the extent of non-native commands outnumber the native options.
The categories Sgl and Mul can resemble the pattern complexity or the number of entity types
or features that can be added.

Table 1
Add features in Neo4j

Operation Command Feature Status
Node Relationship Native Non-Native

Label Property Type Property
Sgl Mul Sgl Mul Sgl Mul Sgl Mul

Add

SET — — —
apoc.create.setLabels — — — — — — —
apoc.create.setType — — — — — — — —
apoc.create.setProperty — — — — — — — —
apoc.create.setProperties — — — — — — —
apoc.create.setRelProperty — — — — — — — —
apoc.create.setRelProperties — — — — — — —

5.2. Rename

SMOC

selectPattern WITH collect(NodeVar |
RelVar) aliasListOfEntities→˓

rename RETURN COMMITTEDOPERATIONS

Updating a database also incorporates renam-
ing features. A rename operation is needed for
this task. When looking at the GEO , rename
can be seen as a change of an old to a new name
or string. Rename is defined as: 'rename'
features 'to new' name. There are several
options to manipulate features, as the SMOC in
Figure 5 demonstrates. Before the pattern needs Figure 5: Operation: Rename features
to be defined and the entities are collected.

A native realization can only be done by combining a delete and an add operation. Instead
of this workaround, the APOC library offers all non-native options to rename features. All of
them are illustrated in Table 2. For a concrete implementation (GMOC) use the desired rename
function at rename of the SMOC . Table 2 points out that for each feature, a rename command
is available.

5.3. Delete

Another important operation is the option of deleting no longer needed entity types or features
in a database. Consequently, the evolution operation delete will be shown in this section.
The GEO in Figure 6 makes a clear determination between restricted and cascade5 delete

5As in other database technologies, the keyword cascade specifies that with a delete operation of a node also all of
its associated relationships are deleted.

Table 2
Rename features in Neo4j

Operation Command Feature Status
Node Relationship Native Non-Native

Label Property Type Property
Sgl Mul Sgl Mul Sgl Mul Sgl Mul

Rename

apoc.refactor.rename.label — — — — — — —
apoc.refactor.rename.nodeProperty — — — — — — —
apoc.refactor.rename.type — — — — — — —
apoc.refactor.rename.typeProperty — — — — — — —

and remove. The first two describe how to remove entity types whereas remove deals with
features, also described in the SMOC . Since all relationships including the selected nodes are
deleted by DETACH DELETE it has to be utilized carefully [19]. A DELETE is always preferred to
prevent unintended deleting. How to flexibly change the code and use any of the three options
is shown by the SMOC . Moreover, the SMOC gives the alternative of a non-native cascade
delete as well as non-native remove options.

The GMOC in Figure 6 deletes the property role from all relationships of the type
WORKS_FOR. In addition to the relationship type, the selected pattern defines start nodes to be
labeled Person and end nodes to be Manager. When looking at the concrete level of imple-
mentation (GMOC) a feature is being removed from all relationships of type WORKS_FOR. To
access the property role, REMOVE is executed. To accomplish the deletion of the relationship
itself, DELETE would be utilized. Even tough REMOVE can be executed directly in Cypher there
are also non-native options [20, 21, 22]. The difference between the Cypher command and an
APOC function is that, in the Cypher command no dynamic specifications can be made [23].
The non-native option of DETACH DELETE called apoc.nodes.delete requires the ids of
the entities as input.

GEO

delete ::= restrictedDelete |
cascadeDelete | remove→˓

restrictedDelete ::= 'delete'
entityTypes 'from' database→˓

cascadeDelete ::= 'delete'
connectedNodes 'from' database→˓

remove ::= 'remove' features 'from'
entityTypes→˓

SMOC

selectPattern (restrictedDelete |
nativeCascadeDelete |
(nonNativeCascadeDelete RETURN
VALUE) | nativeRemove | (WITH
collect(NodeVar | RelVar)
aliasCollection nonNativeRemove
RETURN NODE))

→˓

→˓

→˓

→˓

→˓

→˓

GMOC

MATCH (n:Person)-[r:WORKS_FOR]->
(n2:Manager)→˓

REMOVE r.role

Figure 6: GEO, SMOC and GMOC for: Remove entity types and features

5.4. Transform

Since GDBs have a different structure than other types of databases, further graph-specific
evolution operations are needed. This comprises the change of entity types and features to
entity types. These operations are named transform.

GEO

nodeToRel ::= 'transform' node 'with
its features into a' relationship→˓

relToNode ::= 'transform a' relationship
'with its features into a' node→˓

SMOC

selectPattern
WITH (collectNodeVar aliasNodesToMove|

collectRelVar aliasRelsToMove)→˓

(nodeToRel | relToNode)
RETURN OUTPUT

Figure 7: GEO and SMOC for: Transform entity types

SMOC

CALL APOC.REFACTOR.CATEGORIZE '('
propertyName (*from selected
pattern*) ',' type ',' direction ','
label (*of newly created node*) ','
propertyName (*new property name can
be set for new node*) ','
(listOfStrings (*to be copied*) |
'[' 𝜀 ']') ']' ',' batchSize ')' ';'

→˓

→˓

→˓

→˓

→˓

→˓

→˓

Figure 8: Operation:Transform a node property

How entity types can be transformed into
one another is illustrated by the GEO (Fig-
ure 7). The SMOC in Figure 7 points out that
this is possible through the APOC functions
collapseNode and extractNode. With
this transform operation, all initial features
of the originals can be kept. It is also
possible to specify that a property is trans-
formed into a node entity, through GEO as:
'select a' property 'of n' nodes
'and transform it into a' node
'connected by a' relationship 'to
the nodes prior containing this
property'. Describing a specific case to transform a feature to an entity type. On the
precise level of GMOC the non-native function apoc.refactor.categorize realizes the
transformation of a node property to a node. Analog the SMOC in Figure 8 illustrates its
components, including the possibility to rename the key. Upon the transformation, the new
entity will be utilized to categorize the nodes, former containing this property. To achieve this,
a uniqueness constraint must first be defined for the new node entity.

5.5. Merge

Multiple entities with duplicate information can occur within the database. The merge operation
is used to combine them. The GEO in Figure 9 for merge includes: inner, outer, right and left
join, analogous to SQL. The join operation is defined as combining the data; it can only be
applied to entity types. The SMOC demonstrates that there are just non-native commands
available. Inside of the non-native apoc.refactor.mergeNodes command, either specific
keys or the property maps can be set to combine, discard or overwrite/ override. There
is also the alternative to merge relationships according to the defined pattern.

GEO

fullOuterInclusive ::= copy properties
'of' entityTypes 'to' entityTypes
'and' (cascadeDelete |
restrictedDelete) 'originals'

→˓

→˓

→˓

leftJoin ::= 'keep all features of
left' entityTypes 'add duplicates
from right' entityTypes

→˓

→˓

rightJoin ::= 'keep all features of
right' entityTypes 'add duplicates
from right' entityTypes

→˓

→˓

SMOC

selectPattern
WITH collect(NodeVar | RelVar)

aliasEntitiesToJoin→˓

nonNativeMerge
RETURN NODE

Figure 9: GEO and SMOC for: Merge of entity types

To perform a full outer inclusive join in Cypher (on the level of GMOC) the parameter
properties is set to combine. In case of multiple values for identical keys, an array emerges.
When using discard, the first property value would be kept, whereas overwrite would use
the last one. Both options are based on the automatically generated id, which shows the order
in which the data was generated. This determines the oldest and the most recent entity. In
order to perform a left or right join, there is the availability of defining the type of join for each
property key[24].

5.6. Copy

There are multiple ways of copying entities in Cypher. In the GEO in Figure 10, we describe
three options to do so. copyEntitiyTypes points out that either a node or a node with associ-
ated relationships can be copied. When applying a copy operation merely to relationships, start
and end nodes would need to be assigned for them to avoid loose ends. Through the SMOC
(Figure 10) it becomes obvious that features are copied by adding them to another entity type.
cloneNodes offers the possibility to copy the entire entity, either with or without all relation-
ships (withRelationships). Moreover, properties that are not supposed to be copied to the

GEO

copyEntityTypes ::= 'copy'
(connectedNodes | nodes) ('keep'
relationships | delete
relationships)

→˓

→˓

→˓

copyFeatures ::= 'copy' features 'to'
entityTypes→˓

copySubgraph ::= 'copy' connectedNodes
'linked as' subgraph→˓

SMOC

copyNodes* ::= APOC.REFACTOR.
CLONENODES '(' listOfNodes (','
withRels (',' listOfStrings (*to
skip in clone*))?)? ')' YIELD
INPUT ',' OUTPUT ',' ERROR

→˓

→˓

→˓

→˓

withRels = Boolean

Figure 10: GEO and SMOC for: Copy nodes with or without relationships

new node entity can be omitted (skipPropertiesInClones). GMOC in Figure 11 shows the
use of a workaround to set properties from the PlaceOfWork nodes to Copy. Consequently,
the GEO to chose here would be copyFeatures. In the SMOC the features to be copied can
be specified manually within addPropToNode or addPropToRel, but this will result in an
add operation. Therefore, selecting the entities to be copied inside the CALL function makes
it a copy. In GMOC all keys and values of a map are picked. Through addPropsToRel the
picked features can be attached to relationships.

SMOC

selectPattern WITH collect(NodeVar |
RelVar) aliasAttachProps→˓

(CALL '{'
selectPattern
WITH getPropertiesFrom(NodeVar |

RelVar) aliasMap→˓

WITH getKeysFromMap aliasKeys ','
getValuesFromMap aliasValues→˓

RETURN keys, values '}')?
(addPropToNode | addPropToRel)
RETURN NODE

GMOC

MATCH (p:Copy)
WITH collect(p) AS nodes
CALL{ MATCH (n:PlaceOfWork{city:

'Regensburg'})→˓

WITH properties(n) AS map
WITH [k IN KEYS(map) | map[k]] AS

values, keys(map) AS keys→˓

RETURN values, keys }
CALL apoc.create.setProperties (nodes,

keys, values)→˓

YIELD node RETURN node

Figure 11: SMOC and GMOC for: Copy properties

5.7. Split

SGn SGn+1

Node A

Node A Node B

Node B

Node A Node B

Node BNode A

Node BNode A

Node A Node B

CASE

1

2

3

4

5

6

Figure 12: All split cases

Another evolution operation needed for database
refactoring is split. When splitting relationships,
the dilemma of loose ends can occur. Figure 12 il-
lustrates all split cases for nodes with relationships.
SGn shows what pattern can exist before and SGn+1
what could emerge from the split operation. The
nodes in SGn contain two colors representing the
properties. Consequently, an entity will be split at a
defined property. Just the pattern of the relationships
in the SGn+1 vary. Cases C, D and F, include their
vice versa cases for SGn+1 . The GEO demonstrates
the split of nodes with associated relationships. Anal-
ogously, relationships - and their attached properties
- can be split.

The SMOC in Figure 13 shows the split of a node
resulting in two nodes keeping all relationships of the
originals (see Case E in Figure 12). As indicated by the
domain-specific SMOC , there is no predefined func-
tion to perform a split resulting in a workaround.

First the selected nodes are copied inside of getInitialNodesAndClones. Then the value
to split at (splitKeyValueListAtProperty) is defined and all clones and originals are
collected to iterate over them, resulting in ResultsA and ResultsB. These are collections
containing the maps used in overwriteMaps*OfNodes* to attach them to the nodes.

GEO

splitNodes ::= 'split' nodes 'at'
propertyName ('keep' relationships
| delete relationships | 'keep'
relationships 'of' (partA | partB))

→˓

→˓

→˓

partA ::= properties 'till' propertyName
partB ::= properties 'from' propertyName

SMOC

getInitialNodeAndClones
CALL '{' MATCH node (*key to split at

is defined inside of*)→˓

splitKeyValueListAtProperty '}'
WITH collectOutput aliasOutput ','

collectNodeVar aliasInitialNodes
',' keysA ',' keysB

→˓

→˓

loopOverKeysARemoveFromOutputAs
ResultsA','

loopOverKeysBRemoveFromOutputAs→˓

ResultsB ',' output ',' initialNodes
overwriteMapsResultsAOfNodesOutput
overwriteMapsResultsBOfNodes
InitialNodes

Figure 13: GEO and SMOC for: Split nodes at a defined property

5.8. Move

To change the graph structure by repositioning entity types, a move operation is needed. Asso-
ciated relationships must be taken into account to avoid nodes being accidentally disconnected.
The GEO for the evolution operation move (Figure 14) consists of two parts: moving an entity
type or a feature. Another consideration has to be made for moveNodes as connectedNodes
can sum up to an entire subgraph. We suspect that moveNodes is far more often used than
moving a relationship because relationships are utilized to specify a precise connection between
nodes. Substantial in the SMOC – in Figure 14 – to move nodes is the extendedFilter

GEO

moveNodes ::= 'move' connectedNodes 'to
new' node→˓

moveFeatures ::= 'move' features 'from
original' entityTypes 'to new'
entityTypes

→˓

→˓

SMOC

selectPattern WITH (collect* alias*
(*depdening on extended filter*))?
',' nodeVar (*old start node*) ','

→˓

→˓

nodeVar (*new start node*)
selectSubgraph CALL copySubgraph
CALL '{' selectPattern WITH

collectNodeVar aliasOldPattern→˓

FOREACH
rangeOfCollectionForOldPattern
'|' FOREACH '('
elementOfCollectionsByVar '|'
nativeCascadeDelete ')' ')' '}'

→˓

→˓

→˓

→˓

RETURN INPUT ',' OUTPUT ',' ERROR

Figure 14: GEO and SMOC for: Move nodes with relationships

option via apoc.path.subgraphAll. This ensures flexibility as it offers a wide variety of
filtering options like whitelisting nodes [25]. In order of moving all specified nodes connected
to a particular end node, a subgraph is copied. Instead of keeping the clones – like in a copy
operation – the former pattern is defined in the CALL block and deleted afterwards.

6. Conclusion and further work

The basic components and the workflow of schema evolution in GDBs are visualized in Figure 1.
A precise realization is illustrated by Figure 15, showing how the levels analyzed in this paper
work together. Displayed at the top is the GEO 6 in the orange box, representing how the move
of nodes in GDBs can be generalized. The example chosen here is the same as in Section 5.8
that moves nodes and keeps all relationships. SGn shows the GDB before the execution of the
move operation and SGn+1 is the result of the evolutionary process. On the bottom, the GDB
is visualized referring to a precise GDB. There are two colored arrows labeled SMOC

7 and
GMOC . Blue represents the schema level and green the operation on the graph. These directly
show at what position and level SMOC and GMOC occur. The index C indicates that these
levels are domain-specific for Cypher. In contrast, GEO is system independent for GDBs.

HAS

OPERATED_BY

HAS

HAS

HAS

WORKS_WITH

OPERATED_BY

HAS

Airport 5a Flight D

Airport 4

Airport 6

Flight E
Flight D2Airport 5b

OPERATED_BY HAS

HAS

HAS

WORKS_WITH
OPERATED_BY

Airport 5a

Flight D

Airport 4
Airport 6

Flight E

Flight D2

Airport 5b

GMOc

SGn
(multiConnectedNode "with 2 levels" AND multiConnectedNode
"with 3 levels") connectedNode

nodeAirport* ::= "(" Airport* (id, acronym, (city)?) ")"
nodeFlight* ::= "(" Flight* (id, flightNumber, dateOfFlight) ")"
relhas ::= "[" HAS "]"
relwoksWith ::= "[" WORKS_WITH (since)? "]"
reloperatedBy ::= "[" OPERATED_BY gate, (airline)? "]"

* represents a running number

SGn+1
multiConnectedNode "with 2 start nodes", node, connectedNode

nodeAirport* ::= "(" Airport* (id, acronym, (city)?) ")"
nodeFlight* ::= "(" Flight* (id, flightNumber, dateOfFlight) ")"
relhas ::= "[" HAS "]"
relwoksWith ::= "[" WORKS_WITH (since)? "]"
reloperatedBy ::= "[" OPERATED_BY gate, (airline)? "]"

* represents a running number

SMOc

GEO

moveNodes ::= "move" connectedNodes "to new" node

Figure 15: Move operation visualized analogous to Figure 1

One of the most important findings is that due to the structure of a GDB, consisting of
nodes and relationships, a variety of evolutionary operations must be considered. This becomes
apparent in Figure 12, displaying the variety of structures possible when performing a split.
Moreover, this consideration led to the development of the transform operation, which only
exists in GDBs. This kind of operation realizes a change in entity types, i.e. the process of
changing a node into a relationship and vice versa. Also, we differentiated between native and

6GEO file: https://zenodo.org/record/8311214
7SMOC file: https://zenodo.org/record/8311186

https://zenodo.org/record/8311214
https://zenodo.org/record/8311186

non-native options to show what is possible in Cypher and in which cases the APOC library is
necessary. To accomplish a move or split operation workarounds were presented.

As implied in Section 5.1 in some cases the representation in Cypher differs depending on
how, one or more entity types are created. This leads to the questions how these different
presentations do affect the evolution. Our evolution does not consider virtual entity types yet.
One of our future tasks is to conceptualize which types of evolution apply to which application
scenarios involving virtual entities and to develop the evolution operations for them.

Acknowledgments

This work has been funded by Deutsche Forschungsgemeinschaft (German Research Foundation)
- 385808805.

References

[1] D. Fernandes, J. Bernardino, Graph databases comparison: AllegroGraph, ArangoDB,
InfiniteGraph, Neo4j, and OrientDB, in: DATA, SciTePress, 2018, pp. 373–380.

[2] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, D. Vrgoc, Foundations of modern
query languages for graph databases, ACM Comput. Surv. 50 (2017) 68:1–68:40.

[3] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,
M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query language for property graphs,
in: SIGMOD Conference, ACM, 2018, pp. 1433–1445.

[4] F. Holzschuher, R. Peinl, Performance of graph query languages: Comparison of Cypher,
Gremlin and Native Access in Neo4j, in: EDBT/ICDT Workshops, ACM, 2013, pp. 195–204.

[5] R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, A. Green, J. Hidders, B. Li, L. Libkin,
V. Marsault, W. Martens, F. Murlak, S. Plantikow, O. Savkovic, M. Schmidt, J. Sequeda,
S. Staworko, D. Tomaszuk, H. Voigt, D. Vrgoc, M. Wu, D. Zivkovic, PG-Schema: Schemas
for property graphs, Proc. ACM Manag. Data 1 (2023) 198:1–198:25.

[6] M. Polák, M. Necaský, I. Holubová, DaemonX: Design, adaptation, evolution, and manage-
ment of native xml (and more other) formats, in: iiWAS, ACM, 2013, p. 484.

[7] G. Guerrini, M. Mesiti, M. A. Sorrenti, XML schema evolution: Incremental validation
and efficient document adaptation, in: XSym, volume 4704 of Lecture Notes in Computer
Science, Springer, 2007, pp. 92–106.

[8] J. Klímek, J. Malý, M. Necaský, I. Holubová, eXolutio: Methodology for design and
evolution of XML schemas using conceptual modeling, Informatica 26 (2015) 453–472.

[9] A. H. Chillón, D. S. Ruiz, J. G. Molina, Towards a taxonomy of schema changes for NoSQL
databases: The Orion language, in: ER, volume 13011 of Lecture Notes in Computer Science,
Springer, 2021, pp. 176–185.

[10] U. Störl, M. Klettke, Darwin: A data platform for schema evolution management and
data migration, in: EDBT/ICDT Workshops, volume 3135 of CEUR Workshop Proceedings,
CEUR-WS.org, 2022.

[11] A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Schuster,

P. Selmer, H. Voigt, Updating graph databases with Cypher, Proc. VLDB Endow. 12 (2019)
2242–2253.

[12] A. Bonifati, P. Furniss, A. Green, R. Harmer, E. Oshurko, H. Voigt, Schema validation and
evolution for graph databases, in: ER, volume 11788 of Lecture Notes in Computer Science,
Springer, 2019, pp. 448–456.

[13] A. Bonifati, P. Furniss, A. Green, R. Harmer, E. Oshurko, H. Voigt, Schema validation and
evolution for graph databases, 2019. URL: https://arxiv.org/abs/1902.06427.

[14] A. Bonifati, S. Dumbrava, N. Mir, Hierarchical clustering for property graph schema
discovery, in: Proc. EDBT, OpenProceedings.org, 2022, pp. 2:449–2:453.

[15] I. Comyn-Wattiau, J. Akoka, Model driven reverse engineering of NoSQL property graph
databases: The case of Neo4j, in: Proc. IEEE BigData, IEEE Computer Society, 2017, pp.
453–458.

[16] I. Comyn-Wattiau, J. Akoka, Query-based reverse engineering of graph databases - from
program to model, in: Proc. ADBIS (Short Papers and Workshops), volume 1064 of
Communications in Computer and Information Science, Springer, 2019, pp. 188–197.

[17] A. A. Frozza, S. R. Jacinto, R. dos Santos Mello, An approach for schema extraction of
NoSQL graph databases, in: Proc. IRI, IEEE, 2020, pp. 271–278.

[18] Neo4j, Inc., Merge, 2023. URL: https://neo4j.com/docs/cypher-manual/current/clauses/
merge/, accessed: 2023-06-07.

[19] Neo4j, Inc., Delete, 2023. URL: https://neo4j.com/docs/cypher-manual/current/clauses/
delete/, accessed: 2023-08-29.

[20] Neo4j, Inc., apoc.create.removeLabels, 2023. URL: https://neo4j.com/docs/apoc/current/
overview/apoc.create/apoc.create.removeLabels/, accessed: 2023-08-30.

[21] Neo4j, Inc., apoc.create.removeProperties, 2023. URL: https://neo4j.com/docs/apoc/current/
overview/apoc.create/apoc.create.removeProperties/, accessed: 2023-08-30.

[22] Neo4j, Inc., apoc.create.removeRelProperties, 2023. URL: https://neo4j.com/docs/apoc/
current/overview/apoc.create/apoc.create.removeRelProperties/#usage-apoc.create.
removeRelProperties, accessed: 2023-08-30.

[23] Neo4j, Inc., Creating data, 2023. URL: https://neo4j.com/labs/apoc/4.0/graph-updates/
data-creation/, accessed: 2023-06-22.

[24] Neo4j, Inc., Merge nodes, 2023. URL: https://neo4j.com/labs/apoc/4.3/graph-updates/
graph-refactoring/merge-nodes/, accessed: 2023-06-07.

[25] Neo4j, Inc., apoc.path.subgraphAll, 2023. URL: https://neo4j.com/labs/apoc/4.3/overview/
apoc.path/apoc.path.subgraphAll/, accessed: 2023-08-24.

https://arxiv.org/abs/1902.06427
https://neo4j.com/docs/cypher-manual/current/clauses/merge/
https://neo4j.com/docs/cypher-manual/current/clauses/merge/
https://neo4j.com/docs/cypher-manual/current/clauses/delete/
https://neo4j.com/docs/cypher-manual/current/clauses/delete/
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeLabels/
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeLabels/
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeProperties/
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeProperties/
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeRelProperties/#usage-apoc.create.removeRelProperties
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeRelProperties/#usage-apoc.create.removeRelProperties
https://neo4j.com/docs/apoc/current/overview/apoc.create/apoc.create.removeRelProperties/#usage-apoc.create.removeRelProperties
https://neo4j.com/labs/apoc/4.0/graph-updates/data-creation/
https://neo4j.com/labs/apoc/4.0/graph-updates/data-creation/
https://neo4j.com/labs/apoc/4.3/graph-updates/graph-refactoring/merge-nodes/
https://neo4j.com/labs/apoc/4.3/graph-updates/graph-refactoring/merge-nodes/
https://neo4j.com/labs/apoc/4.3/overview/apoc.path/apoc.path.subgraphAll/
https://neo4j.com/labs/apoc/4.3/overview/apoc.path/apoc.path.subgraphAll/

	1 Introduction and motivation
	2 Related work and state of the art
	3 Overview
	4 Schema in graph databases
	5 Evolution operators
	5.1 Add
	5.2 Rename
	5.3 Delete
	5.4 Transform
	5.5 Merge
	5.6 Copy
	5.7 Split
	5.8 Move

	6 Conclusion and further work

