
KAOS Modeling Editor: A tool for semi-automated
goal modeling
Keitaro Watanabe1, Hiroyuki Nakagawa1 and Tatsuhiro Tsuchiya1

1Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan

Abstract
KAOS modeling editor is a tool that enables semi-automatic goal modeling via browsers. This tool
draws/derives a goal model from a requirements description of a software system. This tool allows
software engineers to discover and organize goals that the envisioned software has to accomplish.
Engineers can also edit the diagram manually using a graph interface or DOT source file. Moreover, the
goal description can be stated in natural languages. The tool is currently available in Github1 and can be
installed in a PC with Node.js and Python. The demo video2 is also available on Youtube.

Keywords
goal modeling, requirements description, natural language processing

1. Introduction

In recent times, the requirements that software must meet have grown increasingly complex,
mirroring the expanding scale of software development. Consequently, software developers
often grapple with the challenge of discerning precisely what their clients expect from their
products, striving to avoid either excessive features or deficiencies. To tackle this issue, a
goal-oriented requirement analysis model, referred to as the goal model, is employed. In our
work, we propose an open-source editing tool that automatically generates an initial KAOS
goal model based on the provided requirements description, detailing the states or objectives of
a software system.

Numerous studies have explored goal modeling, including efforts to extract and visualize
goals through data mining techniques [1], deriving domain models from requirements using
natural language processing [2], web-based tools for goal model construction [3], assistance
tools for i* goal models via machine learning and algorithms [4], tools for generating i* models
from narratives [5], and automatic i* model generation through natural language processing [6].
Additionally, this study is based on Nakagawa’s interactive goal modeling theory [7]. While
recent research has heavily focused on automatic goal modeling, none have produced a fully

1https://github.com/OrdinaryHyphen/KAOS-modeling-editor
2https://youtu.be/qZtHIdtfSuk
ER2023: Companion Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th SCME,
Project Exhibitions, Posters and Demos, and Doctoral Consortium, November 06-09, 2023, Lisbon, Portugal
Envelope-Open k-watanabe@ist.osaka-u.ac.jp (K. Watanabe); nakagawa@ist.osaka-u.ac.jp (H. Nakagawa);
t-tutiya@ist.osaka-u.ac.jp (T. Tsuchiya)
GLOBE https://github.com/OrdinaryHyphen/ (K. Watanabe); http://www-ise4.ist.osaka-u.ac.jp/h-nakagawa/index-j.html
(H. Nakagawa); https://tatsuhirotsuchiya.github.io/jp/ (T. Tsuchiya)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:k-watanabe@ist.osaka-u.ac.jp
mailto:nakagawa@ist.osaka-u.ac.jp
mailto:t-tutiya@ist.osaka-u.ac.jp
https://github.com/OrdinaryHyphen/
http://www-ise4.ist.osaka-u.ac.jp/h-nakagawa/index-j.html
https://tatsuhirotsuchiya.github.io/jp/
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


comprehensive goal model due to incomplete methods or models. In contrast, our modeling
editor can automatically generate preliminary KAOS goal models, allowing users to refine and
modify them, offering a head start in goal model construction.

2. Overview

Figure 1 showcases our proposed editor. This tool functions in environments with Node.js and
Python and is compatible with web browsers like Google Chrome and Firefox. On the left side,
there’s a text field for entering requirement descriptions. After the user input and activation by
pressing the button below, the editor autonomously generates a goal model on the right side
after a set time. You can manipulate the goal model’s structure directly using the right-side
interface. Our KAOS modeling editor is based on GVE[8], designed for GraphViz graphs and
accessible via web browsers like Google Chrome and Firefox. Consequently, it includes most of
GVE’s user interfaces (UIs) and functions, except for automatic goal modeling.

Figure 1: Snapshot of the proposed editor.

3. Implementation

This section describes the automatic construction of a goal model using the proposed tool.
Parsing sentences into words Initially, the editor parses the sentences into words. Each

word has information about its part of speech, and its dependencies on other words.
Extraction of important sentences Following this, crucial sentences are identified based on

specific keywords. These critical sentences pertain to the primary requirements outlined in
the requirement description. To illustrate, in the context of describing an automotive control
software system, sentences containingwords like “car,” “driving,” and “speed,” aswell as sentences
following them, are considered to contain essential requirements.

To extract these vital sentences, our proposed tool leverages a concept known as an “epoch
phrase” as a guiding principle for identification. An epoch phrase is a specific phrase that
not only includes words occurring a predetermined number of times within the requirement
description but also incorporates particular terms like “envisioned” and “to be developed.”



For instance, phrases such as “The envisioned auto-driving software” or “The speed control
system to be developed” fall within the epoch phrases category when terms like “auto-driving,”
“software,” “speed,” and “system” appear a predefined number of times in the descriptions. In
the case of a specification for an automotive control system, these terms undoubtedly refer to
the automotive control system under development and typically precede related requirements.
Consequently, sentences within the same paragraph following these epoch phrases are singled
out as pivotal sentences.

In order to ensure rapid transportation

trains should run fast

by reducing unnecessary
delays

at a high
frequency

trains should run fast, /
obl

In order to ensure rapid transportation, /
advcl

at a high frequency.

by reducing unnecessary delays, /
obl

Figure 2: Construction of a preliminary goal model based on dependency tags.

Extraction and linking goals Figure 2 illustrates the creation of a KAOS goal model based
on word-to-word dependencies. In general, one word can be considered “dependent” on another.
As demonstrated in Figure 2, the word “ensure” in the first line displays an “advcl” dependency
originating from the word “run” in the second line. The arrows in the figure visually represent
this connection. An “advcl” dependency arises when an “adverbial clause modifier” is present
in the text. An adverbial clause modifier is a clause that modifies another word, like adverbs
such as “very,” “usually,” “pleasantly,” and so on. Our tool creates a goal model by breaking
down sentences into phrases based on identified word dependencies. It forms parent-child
connections between these phrases according to the dependencies that link them. For instance,
the “advcl” dependency links the phrase in the first line of Figure 2 with the phrase “trains should
run fast” in the second line, resulting in an automatic parent-child relationship between them.
However, connecting goals from different sentences through dependencies is challenging since
dependencies are limited to words within a single sentence. In such cases, our tool compares
nouns in one goal with those in another and establishes a parent-child relationship between
goals with the most similar nouns. This is based on noun co-occurrence, indicating that the
goals may share the same topic, describing a common concept.

4. Evaluation

Figure 3 shows a part of a preliminary KAOS goal model that the proposed editor automatically
generates. The other part of the model was omitted due to space limitations. To assess the
accuracy of the tool, we conducted an experiment comparing the generated goal model with the
modified goal model. We used two metrics to evaluate the applicability of the editor. First, we
used NDCG, which measures the accuracy of the ranking prediction, and the number of editor
operations. To begin with, it was necessary for us to measure how closely the automatically
generated model resembled the ideal model’s structure and to assess the differences. For
this purpose, we prepared rankings for both the automatically generated goal model and the
manually adjusted goal model, arranging the nodes in each by their depth. We then compared



Root

to ensure more
effective access to

state of the
art books periodicals

and proceedings

to convert its
library new system

while reducing operational
costs

The new UWON
library system should

address such problems

through software based
solution integrating all
department libraries

The new system
should interoperate

It should provide
interactive online facilities

for book acquisition
user registration loan

management bibliographical search
and book reservation

Access to such
facilities should be

restricted

Figure 3: A half portion of auto-generated goal model for the library management system.

these rankings using the NDCG metric to evaluate the accuracy of the model’s automatic
generation. Next, we manually used the editor to measure which operations and how many
times it took to modify the preliminary goal model to make a valid goal model. This is a direct
indicator regarding the usefulness of the tool.

Table 1
Evaluation for KAOS modeling editor

Requirements NDCG Goals Goals Relation
Description Score Added Edited Edited

Library Management 0.940 1 59 3
Train Control 0.710 4 668 13

Meeting Scheduling 0.529 38 1554 52

Table 1 shows the evaluation results for goal models generated from three different require-
ments in a requirements engineering book[9] using our developed tools. These requirements are
related to Library Management, Train Control, and Meeting Scheduling systems, respectively.
Each requirement is stored as a text file with 477 to 1080 words.

The accuracy of the automatically generated models depended on how precisely goals were
extracted. For instance, in modeling Library Management requirements automatically, most
necessary goals were successfully extracted with minimal manual intervention. In contrast, for
Meeting Scheduling, the Normalized Discounted Cumulative Gain (NDCG) score was lower than
the other two systems, and manual adjustments significantly deviated from the automatic model,
requiring substantial effort. This was due to many goals not being extracted automatically,
necessitating manual input during adjustment. It’s important to note that the figures mentioned
represent character counts. In terms of word count, it took around 200 words for input. The
maximum time for manual model adjustment ranged from 20 to 30 minutes.

The challenge in achieving perfect automatic extraction accuracy lies in the mechanistic na-
ture of goal extraction algorithms, which lack context consideration in requirement descriptions.



In essence, it’s like having a rule such as “extract phrases containing infinitives as goals.” The
algorithm doesn’t distinguish contextually relevant infinitives from irrelevant ones; it extracts
them all. Solely relying on algorithmic judgments for context is a significant hurdle. To address
this fundamentally, it’s advisable to explore the integration of large-scale language models like
GPT-4 in the future, capable of understanding and interpreting context.

5. Conclusion

In this study, we introduced our tool, the KAOS Modeling Editor, designed to autonomously
create initial KAOS goal models from requirement descriptions. It identifies crucial segments
using epoch phrases and then extracts and connects goals based on dependencies and noun
co-occurrence. The highest accuracy achieved for initial models is 0.940 by NDCG, with a
maximum generation time of 30 minutes. Our future goals include integrating LLMs like GPT-4
into the goal model implementation process to improve accuracy and processing speed.

References

[1] M. Rahimi, M. Mirakhorli, J. Cleland-Huang, Automated extraction and visualization of
quality concerns from requirements specifications, in: 2014 IEEE 22nd International Require-
ments Engineering Conference (RE), 2014, pp. 253–262. doi:10.1109/RE.2014.6912267.

[2] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, Extracting domain models from natural-
language requirements: Approach and industrial evaluation, in: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems, MODELS ’16, Association for Computing Machinery, New York, NY, USA, 2016, p.
250–260. URL: https://doi.org/10.1145/2976767.2976769. doi:10.1145/2976767.2976769.

[3] J. Pimentel, J. Vilela, J. Castro, Web tool for goal modelling and statechart derivation, in:
2015 IEEE 23rd International Requirements Engineering Conference (RE), 2015, pp. 292–293.
doi:10.1109/RE.2015.7320444.

[4] Q. Zhou, T. Li, Y. Wang, Assisting in requirements goal modeling: A hybrid approach
based on machine learning and logical reasoning, in: Proceedings of the 25th International
Conference onModel Driven Engineering Languages and Systems, MODELS ’22, Association
for Computing Machinery, New York, NY, USA, 2022, p. 199–209. URL: https://doi.org/10.
1145/3550355.3552415. doi:10.1145/3550355.3552415.

[5] R. Mesquita, A. Jaqueira, M. Lucena, C. S. Filho, F. M. R. Alencar, Us2startool: Generating i*
models from user stories, in: International i* Workshop, 2015.

[6] T. Güneş, F. Aydemir, Automated goal model extraction from user stories using nlp, 2020.
[7] H. Nakagawa, H. Shimada, T. Tsuchiya, Interactive goal model construction based on a flow

of questions, IEICE Transactions on Information and Systems E103.D (2020) 1309–1318.
doi:10.1587/transinf.2019KBP0015.

[8] magjac, Graphviz visual editor, 2022. magjac.com/graphviz-visual-editor.
[9] A. van Lamsweerde, Requirements Engineering, Wiley, 2011. URL: https://lead.to/amazon/

jp/?op=bt&la=en&key=B00DWHU40E.

http://dx.doi.org/10.1109/RE.2014.6912267
https://doi.org/10.1145/2976767.2976769
http://dx.doi.org/10.1145/2976767.2976769
http://dx.doi.org/10.1109/RE.2015.7320444
https://doi.org/10.1145/3550355.3552415
https://doi.org/10.1145/3550355.3552415
http://dx.doi.org/10.1145/3550355.3552415
http://dx.doi.org/10.1587/transinf.2019KBP0015
magjac.com/graphviz-visual-editor
https://lead.to/amazon/jp/?op=bt&la=en&key=B00DWHU40E
https://lead.to/amazon/jp/?op=bt&la=en&key=B00DWHU40E

	1 Introduction
	2 Overview
	3 Implementation
	4 Evaluation
	5 Conclusion

