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Abstract
Machining is a key manufacturing technology, representing one of the most significant German eco-
nomic sectors. To ensure required high-quality assurance and prevent manufacturing errors, process
simulations based on digital twins can be applied. However, the current digitization and simulation
models face limitations in terms of computational requirements and expert knowledge. As a consequence,
important physical effects in industrial practice are either neglected or roughly approximated, resulting
in compromised decision-making and economic disadvantages. Since quantum computing (QC) has
shown promising benefits in solving numerous algorithmic problems and simulations, the QUASIM
research project aims to use QC to improve simulations in manufacturing, reduce modeling efforts and
error rates, and develop innovative solutions.
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1. Introduction

Metalworking is the largest industrial sector in the European Union [1] and holds critical
importance in the manufacturing and machining landscape. To ensure the highest quality
standards, simulations based on digital twins [2, 3, 4] have emerged as a key procedure, enabling
the optimization of production with an emphasis on high-quality requirements and reducing
high costs for errors [5]. These technology-specific simulation models mainly come from the
categories of analytics (e.g., Euler-Bernoulli bending beam model), numerics (e.g., Dexel-based
meshing simulation), and increasingly also from the field of machine learning (ML) (e.g., neural
networks) [6]. In particular, the models from the numerics (e.g., Finite-Element Method) and
ML categories (e.g., Neural Networks) regularly take even powerful digital infrastructures to
their limits, as they are still based on conventional computers [7, 8, 9]. The resulting lengthy
calculation times, erroneous calculation results, or unsolvable simulation issues hamper to
transfer Industry 4.0 framework models to practical industrial applications. In addition, the
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required expert knowledge to apply is often lacking in the industry. These shortcomings require
new approaches for performing efficient and reliable simulations in manufacturing.

Early investigations show that quantum mechanical functional principles have decisive
advantages in solving numerous algorithmic problems, resulting in significant accelerations
in numerical procedures, primarily through “Quantum Machine Learning” based approaches
[10, 11]. Within the research project “QuantumComputing Enhanced Service Ecosystem for Sim-
ulation in Manufacturing (QUASIM),” we investigate how Quantum Computing (QC) combined
with Machine Learning (ML) and QC combined with numerics can accelerate simulations in
manufacturing. The project addresses critical simulation challenges in manufacturing, offering
seamless integration into Industry 4.0 frameworks as “Quantum-as-a-Service (QaaS).” QUASIM
brings together a diverse composition of project partners (cf. 1) that ensures the availability of
necessary expertise to: a) correctly understand problem statements through industry experts, b)
perform requirements engineering process, c) research and evaluate different QC and ML-based
approaches, and d) provide efficient solutions to industrial end users in the form of a service.
QUASIM seeks to accelerate simulations using QC, creating competitive advantages such as
enhanced manufacturing quality, economic benefits, acceleration of the manufacturing process,
and potential for new products and services.

Next, we will present descriptive project information, describe the project in more detail
(section 2) and provide an overview of the current state of the project (section 3). We conclude
the paper by elaborating on limitations, challenges and future work in the project.

1.1. Descriptive project information and partners

Table 1 provides descriptive information about the project QUASIM. The partners of the con-
sortium project consist of leading institutions with expertise in AI, QC, manufacturing, and
simulation. The consortium is composed of users from manufacturing (TRUMPF and IPT),
research institutions (DFKI, FZJ, and IPT), as well as system providers (MW).

2. Project description

2.1. Project objectives

The objective of QUASIM is to develop and advance QC-driven approaches that can address
critical simulation challenges in manufacturing. QUASIM aims to systematically integrate
these QC methodologies into Industry 4.0 frameworks as QaaS solutions, facilitating a seamless
transition from problem statements to simplified representations of actual manufacturing sys-
tems. Using different QC algorithms and methodologies, QUASIM will explore the acceleration
and optimization of manufacturing processes through QC-based simulations. The project’s
aim includes reducing the economic disadvantages by improving the manufacturing quality
and reducing complexities in the simulation. Collaboration with project partners allows the
utilization of expert knowledge in exploring hardware capabilities and their limits, ensuring
practical quantum adaptation for real-world industrial applications. The project strives to
facilitate knowledge transfer for production-oriented simulation based on QC. Results and basic
application possibilities of QC are communicated to mechanical engineering companies via the



Table 1
Descriptive information about the project QUASIM.

Description Details

Name QUASIM: Quantum computing enhanced service ecosystem for simu-
lation in manufacturing.

Duration 01/01/2022 – 12/31/2024
Participants and partners German Research Center for Artificial Intelligence GmbH (DFKI) (Saar-

brücken), Jülich Research Center (FZJ) (Jülich), Fraunhofer Institute
for Production Technology (IPT) (Aachen), ModuleWorks GmbH (MW)
(Aachen), TRUMPF Machine Tools GmbH + Co. KG (Ditzingen)

Associated partners Ford-Werke GmbH (Cologne), MTU Aero Engines (Munich)
Funding QUASIM is funded by the German Federal Ministry of Economics and

Climate Protection (BMWK) within the funding program ”Quantum
Computing - Applications for Industry”, managed by the project man-
agement agency German Aerospace Center (DLR)

Project volume approx. 5.2 million €
Website https://www.quasim-project.de/

industry networks of the partners within workshops, symposia and fairs. Overall, QUASIM
aims to transform manufacturing and machining operations and build the foundation for QC’s
broader adaptation in the industrial landscape. The project team focuses on two use cases.
Within the first use case, whose results are described exemplarily for the project, the target is to
improve simulations in the context of laser-cutting. During the cutting process, the heat influ-
ence of the laser can lead to unwanted expansion of the material, resulting in an unsuccessful
cutting process and machine downtime. We aim to provide QC-based approaches (QC + ML) to
improve current simulations and better capture potential thermal expansion in advance of the
cutting process. The second use case deals with the development of QC + numerics methods to
capture vibrations in the simulation of blade integrated disks (blisks) milling.

Figure 1 represents the target image for the QUASIM project capturing the key components
of the system: the Hardware Layer supporting the QC and ML infrastructure, the Platform
Layer having platforms to facilitate the AI and QC algorithms, the Algorithmic Layer with
classical and quantum-based approaches along with its evaluation, the Data Layer handling
simulation input and output data assets, the Service Layer representing the service on the user
end where the solutions will be integrated as QaaS, and the Organizational Layer consisting of
the stakeholders. Users interact with the system through the Service Layer to request simulations
(thermal expansions), which utilize simulation input data (geometry, material properties, etc.)
and run QC and classical ML algorithms in the Algorithmic Layer. The results are then handed
to the Data Layer and made available to users through the Service Layer.

2.2. Work packages

Table 2 presents the division of the project into different work packages (WP), including the
leading institutions of the WP. Each WP is conducted with at least three to four of the project
partners. WP1 and WP9 are complementary WPs, ensuring appropriate project management

https://www.quasim-project.de/


Figure 1: Representation of QUASIM target image.

and dissemination of results, e.g., through developing demonstrators, and priming of future
users of QC in manufacturing and scientific publishing. In WP2 the needs of the future users are
analyzed and requirements for QC-supported services for industrial production are specified.
WP2 aims to create conceptual models to create abstract representations of the system. It
starts in parallel with the technical modeling (WP3) and the development of the QC+ML and
QC+numerical approaches (WP4 and WP5). Semantic and structural data modeling using
ontologies [12] to describe the content and structure of the input and result variables of the
submodels is achieved in WP3. WP6 comprises the technical development and provision of
the relevant service use cases derived in WP2 concerning the thematized data and software
assets on a GAIA-X-compliant hyper-scaler [13] in a prototypical form. The proof of concepts
of QC+numerics and QC+ML approaches developed in WP4 and 5 are incorporated here.
The developed services will be evaluated internally and externally, including benchmarking
experiments in WP7. In WP8, economic and financial analyses of the use cases are performed,
including business model development and specifying perspectives for QC use in other domains.

Table 2
Individual work packages with their respective lead among project partners.

Work packages Description Lead

WP1 Project management DFKI
WP2 Requirements analysis and conceptual modeling DFKI
WP3 Technical modeling FZJ
WP4 Development of QC+numerics approach IPT
WP5 Development of QC+ML approach FZJ
WP6 Services: Conception and reference implementation DFKI
WP7 Evaluation and benchmarking MW
WP8 Profitability analysis IPT
WP9 Knowledge transfer and communication MW



2.3. Conceptual modeling

Conceptual models attempt to capture requirements to create a shared understanding among
various individuals during the design of a project within the boundaries of the application
domain or an organization [14]. For information systems based on programming and machine
learning approaches, conceptual models are used as requirements for implementations [15].
In QUASIM, we use conceptual modeling in several contexts. First, we use it in requirements
engineering in order to capture the as-is situation in our use cases and to conceptualize the
envisioned service system. In addition, we make use of ontologies for representing the data, e.g.,
in the laser-cutting use case. Therefore, we built on existing ontologies to develop a focused
ontology in our project. Furthermore, we incorporate technical modeling for data generation.

3. Current state of the project

In this section, we will explore and describe various aspects of the laser-cutting use case. We will
discuss requirements engineering and conceptual modeling, as well as the process of generating
synthetic data and data representation. Additionally, we will investigate and evaluate different
concepts and approaches used for predicting heat flow and thermal expansion. Lastly, we will
provide an overview of the current prototype of QUASIM.

3.1. Requirements and service design

The project team followed a thorough requirements engineering process with four steps: (1)
Analysis of manufacturing and simulation processes, (2) identification and prioritization of
problem spaces, (3) formulation of potential solutions, and (4) derivation of requirements [16].
In the context of (1), we first represented the current service in the as-is situation (see Figure 2)
and extended the service design based on the gathered requirements. This conceptual model
helps visualize user interactions and corresponding backend actions. It illustrates various user
input options like geometry, material properties, and simulation model choices, as well as
outputs such as visualization of predicted simulation, and evaluation of model performance.
The conceptual model played a crucial role in QUASIM by providing a clear representation of the
system, enabling effective communication and informed decision-making, guiding design and
development, identifying challenges, and facilitating seamless integration of QC technologies
for enhanced simulation capabilities in the manufacturing process.

3.2. Data generation

TRUMPF is currently working on generating real laser-cutting process samples by placing
thermal cameras on their machines to gather heat flow information during the laser-cutting
process. However, to make preliminary studies, we generate synthetic simulations of heat
flow during a laser-cutting process using Finite Element Method (FEM) [8, 17] to solve Partial
Differential Equations (PDE), particularly the heat equation in the 3-D case:

𝛿𝑢
𝛿𝑡

= 𝑎 (𝛿
2𝑢
𝛿𝑥

+ 𝛿2𝑢
𝛿𝑦

+ 𝛿2𝑢
𝛿𝑧

)



Figure 2: Service design for the laser-cutting use case. Here, TherEx refers to an application used by
TRUMPF where simulation solutions will be provided as a service.

Here, 𝑢(𝑥, 𝑦 , 𝑧, 𝑡) describes the temperature at point (𝑥, 𝑦 , 𝑧) at time 𝑡 in a material with thermal
conductivity of 𝑎. The goal is to recover the values of the function 𝑢(𝑥, 𝑦 , 𝑧, 𝑡) which satisfy the
conditions of the above PDE. First, we start by modeling the metal sheet geometry in 2-D as a
10cm ×10cm square as seen in Figure 3 (a). Now, we set parameters that are varied throughout
the dataset to determine the exact cut geometry i.e. the width of the cutting gap in m (𝑤𝑐𝑢𝑡),
the height of the cut in m (ℎ𝑐𝑢𝑡), the number of steps into which the cut is discretized (𝑛𝑐𝑢𝑡).
Next, a third dimension is added by turning all 2-D faces into 3-D cuboids with Z-dimension
parameterized by depth 𝑑. Once this 3-D geometry (see Figure 3 (b)) has been obtained, the
Matlab meshing algorithm creates a mesh from it (see Figure 3 (c)). Let the mesh have 𝑁 nodes
which are connected by the adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 and have 𝐷 features; 𝑋 ∈ ℝ𝑁×𝐷. The
goal is to train a model which predicts the nodal temperature at a timestep 𝑡 + 1: 𝑇 (𝑡 + 1) ∈ ℝ𝑁
given input features such as coordinates and temperature at time 𝑡. Figure 3 (d) shows the
simulated temperature on the mesh during laser-cutting, using predictions of a hybrid QML
GNN (cf. section 3.4).

Figure 3: From geometry to simulation on a mesh. Steps involved in simulating laser-cutting.

For preliminary analysis, we created a large dataset ’𝐿𝐴𝑆𝐸𝑅 − 𝐿𝐴𝑅𝐺𝐸’ [18], containing 36
geometries with varying cut widths, heights, and sheet diameters. There are 20 timestamps
each per simulation yielding a total of 720 graphs with 800 nodes and 2600 edges on average.
In addition, we created a smaller version of this dataset, referred to as ’𝐿𝐴𝑆𝐸𝑅 − 𝑆𝑀𝐴𝐿𝐿’ [18],
to allow reasonable training times for quantum-based models. 𝐿𝐴𝑆𝐸𝑅 − 𝑆𝑀𝐴𝐿𝐿 contains 4



geometries with 15 timesteps each, having on average 900 nodes connected by about 3000 edges.

3.3. Ontology for data representation

A sub-goal in QUASIM was to develop an approach to represent the data used in the project.
We aimed for a semantic description in the sense of an ontology to capture explicit and implicit
knowledge, analyze and share the domain knowledge, and enable a clear data representation.
We analyzed a multitude of existing ontologies in manufacturing, production, and industry
domains, representing a mid-level or domain ontology. Due to its fitting with the domain,
generalizability, and rich ontology environment, we chose SAREF 1 as a basic ontology to be
extended for QUASIM.We extended SAREF by the classes of “Data Dimension,” “Programmatical
Representation,” “Pictures,” “Simulation Backend,” “Classical Backend,” “io” - standing for Input
and Output, as well as “Graph,” “Edge,” “Adjacency Matrix,” “Geometries,” “Laser” and “Metal”.
An overview of the extended ontology for QUASIM can be found in our GitHub 2.

3.4. Technical approaches and preliminary results

Inspired by MeshGraphNets [19], we use Graph Neural Networks (GNN) [20] as our base
model architecture [18] given its ability to utilize the local neighborhood of a node to predict
the next temperature making it well-suited for modeling heat diffusion spatially for diverse
geometries. We use Multi-Layer Perceptrons (MLPs) [21, 22] to embed node features into a latent
space and decode final output predictions. For the message passing block, we evaluate three
different aggregation functions: a) GraphConvolutionalNetwork (GCN) [23], b) GraphConv
[24], and c) Graph Attention Networks (GAT) [25]. To explore quantum advantages [10, 11] for
efficient simulations generation, we develop a hybrid QML approach [18] by utilizing quantum
embeddings instead of embeddings generated by MLP encoders in a GNN. First. feature vectors
are represented in the Hilbert space𝐻 [26, 27] as angles on the 𝑅𝑌 rotations in 4 qubits embedding
circuit. Next follows the variational circuit consisting of a parameterized 𝑅𝑋 rotation followed
by CNOT entanglement with the direct neighbors [28, 29, 30]. The processed quantum state
is then measured with 𝑍-measurement [31] on each qubit. In the end, one obtains a QML
embedded latent node vector 𝑥′ ∈ ℝ4 which is now ready for further processing by the GNN.
The QML model’s high generalization capability along with low feature dimensionality per
node requirement may produce a competent model with minimal parameters. Additionally,
we explore Physics-Informed Neural Networks, particularly Thermodynamics-Informed GNN
(TIGNN) [32] for enhanced heat flow simulations. In TIGNN, an additional loss is added alongside
mean-squared error (MSE) loss to encourage learning based on thermodynamics principles.
Furthermore, it will also be highly beneficial to research whether and how considerably QC-
enhanced TIGNNs can outperform classical methods in the laser-cutting use case [33].

As first results, we show the comparison of the different encoding methods: Quantum-based
encoding (𝑓𝑄𝑀𝐿) with 𝑂(𝐷) parameters and MLP-based encoding 𝑓𝑀𝐿−𝐷 with 𝑂(𝐷2) parameters
and 𝑓𝑀𝐿−2𝐷 with 𝑂(2𝐷) parameters for both datasets is shown in Table 3. We observe that
the models with quantum embeddings (𝑓𝑄𝑀𝐿) exhibit the best performance with an MSE of

1https://saref.etsi.org/core/v3.1.1/
2https://github.com/InformationServiceSystems/quasim-project
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0.21 on LAGER-SMALL. By using a QML-based approach instead of classical MLP, we achieve
significantly lower errors with exponentially fewer parameters than competing models. This
empirical evidence demonstrates the power of QML models, benefiting real-world applications.

Table 3
[Lower is better] MSE after 20 training epochs on 𝐿𝐴𝑆𝐸𝑅 − 𝑆𝑀𝐴𝐿𝐿 and 𝐿𝐴𝑆𝐸𝑅 − 𝐿𝐴𝑅𝐺𝐸 datasets [18]

.

LASER-SMALL LASER-LARGE
𝑓ML−𝐷 𝑓ML−2𝐷 𝑓QML 𝑓ML−2𝐷

GCN [23] 0.54 0.50 0.50 0.07
GraphConv [24] 0.56 0.55 0.39 0.07

GAT [25] 0.34 0.29 0.21 0.11

3.5. Protoype for QC-supported simulations in laser-cutting

We present a UI demonstrator that showcases heat flow simulations generated by our models
during laser-cutting operations. The prototype allows users to select input parameters such as
material properties and laser flux, and to visualize and compare predicted heat flow simulations
among different models. A demo video of the QUASIM prototype can be found in the GitHub.3

4. Conclusion and future work

We presented QUASIM, a research project leveraging QC to address critical simulation challenges
inmanufacturing processes, offering QaaS solutions for integration into Industry 4.0 frameworks.
By combining QC with ML, QUASIM seeks to significantly improve simulation accuracy and
reduce computation times, leading to economic benefits, and faster manufacturing processes.
The current work on laser-cutting simulations using hybrid QML models shows promising
results. With QUASIM, manufacturing companies are introduced to how QC can be practically
used to identify and implement competitive advantages, contributing to the future success of
mechanical engineering. As the next steps, we plan to investigate fully quantum GNNs for faster
and more efficient thermal simulations, as well as implementing and evaluating the TIGNN
approach. Despite the challenges of QC’s current state (hardware limitations, scalability, noisy
estimations) [34, 35, 36], we are confident that QUASIM through its excellent consortium support
and meticulous investigation will provide innovative solutions enhancing manufacturing quality.
To overcome the challenges, we investigate how the developed solutions can be used with
today’s noisy hardware as well as with perfect simulators, representing the next quantum
hardware generation.
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