
How teaching conceptual modeling to robotics
students changes their perception of software
engineering
Meenakshi Manjunath, Jeshwitha Jesus Raja and Marian Daun

Center for Robotics, Technical University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany

Abstract
Teaching software engineering to non-software engineering students is a challenging task. Often, limita-
tion of time dedicated to software engineering education, limits the subjects to be taught significantly.
Furthermore, non-software engineering students, typically equate software engineering with program-
ming, thus focussing their learning on code-related aspects. To counter this, we developed a course setup
making extensive use of teaching conceptual modeling to educate students in software engineering. This
shall support students in developing abstract-thinking skills and understanding the need for concep-
tualization and planning in early development phases. Thus, the students can experience a different
perspective on software development than they are used to. In this paper, we report an interview study
with international bachelor students in a robotic degree program. The study aims at investigating stu-
dents’ perception of software engineering and conceptual modeling. We compare two different student
groups, one group attended a more traditional programming focused software engineering course, while
the other group attended a conceptual modeling focused software engineering course. Results indicate
that conceptual modeling education can indeed improve students’ abstract thinking skills as well as their
appraisal of abstract thinking, conceptualization, as well as planning software development in advance.

Keywords
Software Engineering, Conceptual Modeling, Student Perception, Education

1. Introduction

The importance of teaching conceptual modeling as part of computer science and software
engineering curricula has been widely acknowledged [1, 2]. However, nowadays, software
engineering is a vital part not only of computer science and software engineering curricula, but
also of other disciplines like data science, social sciences, or technical engineering disciplines [3].
As software engineering is becoming an important part not only of educating future software
engineers but also technical engineers with more and more need for developing software
intensive systems, a challenge arises in teaching these students conceptual modeling as they
are often not used to abstract thinking and model usage from the backgrounds of their degree
programs.

ER2023: Companion Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th SCME,
Project Exhibitions, Posters and Demos, and Doctoral Consortium, November 06-09, 2023, Lisbon, Portugal
Envelope-Open meenakshi.manjunath@study.thws.de (M. Manjunath); jeshwitha.jesusraja@study.thws.de (J. Jesus Raja);
marian.daun@thws.de (M. Daun)
Orcid 0009-0005-6421-1450 (M. Manjunath); 0009-0008-7886-7081 (J. Jesus Raja); 0000-0002-9156-9731 (M. Daun)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:meenakshi.manjunath@study.thws.de
mailto:jeshwitha.jesusraja@study.thws.de
mailto:marian.daun@thws.de
https://orcid.org/0009-0005-6421-1450
https://orcid.org/0009-0008-7886-7081
https://orcid.org/0000-0002-9156-9731
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Commonly, software engineering education in these areas is typically limited to one course
focussing on the core aspects of developing software. This often involves programming to
show students how concepts materialize in code. This approach suffers a huge shortcoming.
It does not prepare students for abstract thinking and collaborating in the design phases of
software. Thus, we employed an approach to teaching software engineering to robotic students
that particularly focuses on teaching abstract thinking by using conceptual modeling. Thus, we
do not teach conceptual modeling in addition to a fundamental software engineering education,
but use conceptual modeling as a medium to teach the core principles of software engineering.

Another challenge for teaching conceptual modeling is related to various backgrounds and
needs of students. This, is particularly true for very heterogeneous student bodies. Thus,
teaching conceptual modeling to suit the specific requirements of international bachelor students
from various different countries can pose challenges, such as the need for individual feedback
and addressing cultural differences [4]. By exploring existing research and examining the
approaches used in prior studies, this paper aims to provide insights into effective instructional
practices for teaching conceptual modeling to international bachelor students. Drawing on the
research findings of Bayman and Mayer [1], Kayama et al. [2], and Daun et al. [4], this study
seeks to identify promising strategies that can enhance the understanding and application of
conceptual modeling principles among this student population.

In our case, we report from a robotics degree program, where we find two particular challenges
for teaching conceptual modeling:

• Limited exposure to abstract or out-of-the-box thinking due to the predominantly techni-
cal nature of the other courses in the degree program

• International student body, consisting of various backgrounds with differing needs due
to their primary education system

To address these two challenges, we focused our software engineering education of these
students on teaching conceptual modeling to develop abstract thinking skills. In this paper,
we contribute an interview study, investigating international robotics students’ opinion on
using conceptual modeling as major medium for software engineering education. To examine
teaching methods for the course of software engineering, specifically focusing on conceptual
modeling, as taught to international students in a robotics bachelor degree program, this paper
compares two approaches employed in different semesters. The results of the study indicate that
students highly value the creative aspect of conceptual modeling and appreciate the fact that
there is no definitive right or wrong solution. They find joy in exploring different possibilities
and embracing the freedom to think outside the box.

The structure of the paper is as follows: Section 2 provides an overview of related work and
key findings on teaching conceptual modeling. Section 3 describes the study setup, outlining
the two distinct approaches implemented at the university for teaching the same subject to two
batches of bachelor students, as well as the interview setting. In Section 4, we present a review
of our major findings based on interviews conducted with the students. Finally, in Section 5,
we conclude the paper by discussing the implications of our findings and highlighting avenues
for future research.



2. Related work

Over the last decades, various teaching approaches have been established to teach software
engineering for various learner groups [5]. Commonly used learning techniques are gamification
[6], use of industrial case studies [7, 8], simulation [9], inverted/flipped classrooms [10], etc.

Among these, the use of conceptual models to teach software engineering concepts has been
investigated and proven useful. Conceptual modeling is commonly introduced in the course
of requirements engineering education [11] but is also used to transport other concepts. For
instance, the paper by X Franch [12] has shown that the use of goal models can foster the
understanding of data structures. For this idea, Bogdanova et al. have shown that challenges
do exist for teaching conceptual data modeling [13]. Particularly, challenging for students
is the abstract nature of conceptual models as well as data structures. Such challenges often
transcend the boundaries of conceptual modeling and are relevant to the broader field of software
engineering education [14]. Factors such as students’ prior knowledge, their ability to grasp
abstract concepts, and the complexity of the subject matter can pose difficulties regardless of
the specific topic being taught. In particular, it has shown that it is difficult for students to rate
their competencies with respect to conceptual modeling, as it considerably differs from other
computer science subjects [15].

Conceptual modeling education is often taught majorly to postgraduate or advanced bachelor
students [16, 17]. At these later stages it is often seen as easier, to introduce complex abstract
concepts that are challenging on a cognitive level. However, the introduction of abstract thinking
in earlier stages is also found to have considerable advantages for the evolution of students’
capabilities throughout their studies [16, 17].

For a recent literature review on educational approaches for conceptual modeling, refer to
[18]. In the study, Rosenthal et al. found 121 contributions with respect to conceptual modeling
education, concluding that, among others, there is a need for further investigating learner needs
and learner perception of modeling processes.

Based on their experiences, Buchmann et al. report in [19] on their experiences from teaching
conceptual modeling in education. In particular, they identify six common oversimplifications
students make, when it comes to conceptual modeling. Although the background of the students
is not revealed, from our experience, this matches with common oversimplifications made by
computer science and software engineering students. Based on these findings, Buchmann et al.
propose in [20] an educational approach to counter these oversimplifications and allow students
to gain deeper insights avoiding these oversimplifications.

In contrast, in our case, we do not report on our experiences but survey the students them-
selves for their perception. Furthermore, we investigate robotics students that are trained in
software engineering and not software engineering students. Thus, as we will see student’s
perception of conceptual modeling (without proper training) differs considerably, as we do not
see individual oversimplifications but in the beginning neglecting the usefulness of conceptual
modeling at all. Thus, our teaching approach does also not aim at avoiding these misinterpreta-
tions but rather focuses on using conceptual modeling to train students in software engineering
without drifting into very detailed programming problems but by keeping the big picture of
software engineering education [21, 22] alive.



3. Study setup

3.1. Research goal and research questions

The primary objective of this study was to investigate students’ opinion on teaching conceptual
modeling in a software engineering course for international robotics students. Therefore, we
developed a questionnaire to interview students that had attended a software engineering course
specifically tailored towards conceptual modeling and students who attended a more traditional
software engineering course focusing on the relation of software engineering concepts and code
fragments. By investigating these two teaching methods and their perceived outcomes, the
study aimed to identify the instructional approach that optimally supports the learning needs
and achievements of international students in this domain.

3.1.1. RQ1: Expectations towards conceptual modeling

We wanted to know what the students’ expectations towards conceptual modeling were before
the course and how these have changed by the course. In particular, we want to see whether
there is a difference between students taking the first course using models to accompany code
and the second course emphasizing conceptual modeling.

3.1.2. RQ2: Perceived learning outcome

We wanted to know what the students see as their major learning outcomes of the course. In
particular, we wanted to see how the perceived learning outcomes differ between students
attending different courses.

3.1.3. RQ3: Course perception

Wewanted to know how the students perceived the course setup. What instructional approaches
for teaching conceptualmodelingwere deemed particularly useful, what else do students imagine
can help their learning.

3.2. Course design

The software engineering course is offered in the third semester of the robotics degree program.
We interview participants of two different editions: winter term 2021 and winter term 2022.
These courses were given by different professors employing different teaching approaches
that influenced students’ perception of software engineering. The course was structured into
two weekly sessions, each spanning 90 minutes. Students were evaluated through a written
examination at the end of the semester, contributing to the award of 5 credit points for the
module.

The first installment concentrated on a wide variety of software engineering topics. Con-
ceptual models were used to describe code snippets in an abstract, easier to understand way.
However, the focus of the instruction was on developing software by programming. The focus
was primarily on individual comprehension of modeling through a code-oriented approach,
with limited group work involved.



The second installment employed an approach with more emphasis on conceptual modeling.
Here, students did not only see conceptual models related to code snippets, but were actually
tasked with developing conceptual models on their own. As further contrast, the course was
limited to the major non-programming aspects of software engineering: Software development
processes, requirements engineering, architecture design, and quality assurance. A key goal
was to teach the fundamental aspects aside from programming, as we noticed that students
developed a very code-centric habit and neglected planning and testing phases when developing
robotic software. Therefore, we used conceptual modeling to show a completely new side of
software engineering. Asmodeling languages, we chosemodeling languages from all threemajor
perspectives (cf. [23]). In detail, we used UML Class Diagrams and ER (Entity-Relationship)
models to represent the structure, Data Flow diagrams and UML Use Case diagrams to depict
functional aspects, and State Charts and Finite Automata to illustrate the dynamic behavior.

3.3. Participants

The participants in the study are bachelor students from the robotics degree program from two
different semesters:

• Group 1: sixth semester students that attended the course in winter 2021
• Group 2: fourth semester students that attended the course in winter 2022

Each student was invited to participate in an interview without prior knowledge of the interview
topic. The purpose of this approach was to ensure that their responses were spontaneous and
unaffected by pre-preparation or reliance on internet knowledge. To ensure unbiased answers,
none of the professors giving the courses were involved in the interviewing process.

3.4. Procedure and materials

The selection of students for the interviews was based on their regular attendance in the course
and their demonstrated understanding of the core concepts, prioritizing those who exhibited a
genuine interest beyond exam-focused studying. To ensure a comprehensive understanding of
the students’ perspectives, individual interviews were conducted over a period of approximately
ten days. To maintain the integrity of the interviews, interviewees were specifically instructed
not to share the questions or discuss the interview content with other participants. Asmentioned
above, the participants were told about the topic of the interview on spot to avoid ingenuity in
their answers. The questions of the interview are as follows:

1. What do you think conceptual modeling is? Have you done modeling before? What
modeling languages do you know?

2. What are your expectations from a software engineering course regarding conceptual
modeling?

3. In what ways do you believe conceptual modeling can enhance and contribute to the
development process of a software system?

4. What potential challenges or difficulties do you foresee in comprehending and applying
conceptual modeling techniques? How do you propose the course can effectively address
these challenges to facilitate better understanding and application of the concepts?



5. What was your initial opinion of the course and conceptual modeling before attending
the lectures, and how did your perception change by the end of the semester?

6. From your perspective, what teaching methods or approaches do you believe would be the
most effective in facilitating your understanding and application of conceptual modeling
concepts? In your experience, what aspects of the course or instructional methods were
helpful, what aspects were not, and what specific factors made a significant impact on
your learning journey?

7. How important do you think it is to integrate real-world examples and industry practices
into the course content?

8. In addition to the course materials provided, are there any supplementary resources or
learning materials that you think would enrich your learning experience in terms of
understanding the core concepts and preparing for exams?

9. What types of assessment and evaluation methods do you believe would be appropriate
and effective for a course on conceptual modeling?

4. Results

Table 1 summarizes the most common student answers. Therefore, we have categorized the
major responses to the respective aspects of the questions asked. For each concern, the three
most prominent themes in responses are summarized for both groups of students, group 1
being the students attending the traditional software engineering lecture and group 2 being
the students attending the model-based course. Next, we take a detailed look at the individual
responses with respect to the research questions.

4.1. RQ1: Expectations towards conceptual modeling

4.1.1. Previous experience with conceptual modeling

Among the students who took part in the study, it was found that only a quarter of them had
previous exposure to conceptual modeling, either through their experience with programming
UML class diagrams or their familiarity with data flow diagrams. On the other hand, the
majority of the students were initially unaware of the specific modeling languages associated
with conceptual modeling. However, they expressed a high level of receptiveness and enthusiasm
to acquire new knowledge and understanding in this domain.

4.1.2. Anticipations from the course

Among the students who had prior experience with conceptual modeling, which accounted for
25% of the participants, their expectations were aligned with utilizing modeling techniques such
as UML, state charts, data flow diagrams, and similar tools. Conversely, the students without
prior experience in conceptual modeling held different expectations, anticipating a focus on
programming or the utilization of pseudocode as part of the learning process.



Table 1
Summary of interview results

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

3 4 1 1 0 1

1 2 2 3 2 2

2 3 0 4 0 1

1 4 2 2 0 1

2 2 1 2 1 1

1 3 0 1 2 5

1 2 1 1 1 4

Conceptual Modeling 

Understanding

Question

Assessment Methods

Supplementary 

Resources

Effective Teaching 

Methods

Challenges and 

Solutions

Contribution of 

Conceptual Modeling

Expectations from the 

Course

Referenced books Online tutorials Workshop/additional sessions

Written exam Practical assignments Group projects

Better understanding, i.e. more examples Real life application, i.e. hands on modeling Time consuming in lecture, i.e. extra sessions

More group discussions and brainstormingAdditional sessions with programming in lineDiscuss real world problem and solve in class

Provide basic understanding of CM An extension to the programming courses Preparing for real life use cases and scenarios

Design improvement Better communication Efficient and optimized development

Category 1 Category 2 Category 3

Previous experience in some form Some personal idea about CM No idea about CM

4.1.3. Expectations after the course

Students taking the first installment tend to believe that software engineering should equal
programming and overhead for planning should be reduced to a minimum. In contrast, the
students taking the second installment have a far more positive view on conceptual modeling
and the usefulness of models. The students recognize the significance of conceptual modeling
and expresses a preference for initiating any project with this approach rather than diving
straight into it without proper planning, conceptualization and error handling.

4.2. RQ2: Perceived learning outcome

4.2.1. Software engineering is not programming

Initially expecting another programming course, the students were surprised by the focus on
conceptual modeling. However, as the semester progressed, they recognized the course’s impact
in expanding their skill set. Results showed improved performance and increased enthusiasm.
From the students’ perspective, the course became a core pillar in the field of robotics, providing
students with a deeper understanding of modeling and valuable skills for their future. Despite
the initial surprise, the emphasis on conceptual modeling proved transformative, broadening
horizons and establishing a strong foundation for their pursuit in robotics.

4.2.2. Conceptual modeling helps abstract thinking

Throughout the semester, the students gradually embraced the concept of abstract and creative
thinking. They recognized the significance of software engineering and conceptual modeling in
the multidisciplinary realm of robotics. The course provided them with a valuable foundation
in understanding software-intensive systems, aligning their learning journey with the demands
of the field. As the semester unfolded, the students began to appreciate the role of conceptual
modeling in advancing their skills and knowledge in robotics.



4.2.3. Communication is important

During the initial stages of the course, it became apparent that the student groups faced
challenges in effectively communicating their ideas and perspectives during problem-solving
exercises. However, through the process of collaborative conceptual modeling, students were
encouraged to express their thoughts freely and creatively. This experience not only nurtured
their communication skills, but also highlighted the importance of effective collaboration in the
industry, preparing them for future professional endeavors.

4.3. RQ3: Course perception

Drawing conclusions from the interviews, we can concretely state that the participating students
regarding the perception of the course.

• Students, with no prior knowledge, were unaware of the actual course content (before
the start of the semester) as they built up the assumption that the Software Engineering
course would be completely based on programming.

• All the students share the opinion that there should be an increased provision of exam-
ples and exercises to illustrate how a model should be constructed from the professor’s
perspective. They found the syntaxes of the models initially challenging to memorize at
the start of the course, but over time, they gradually became accustomed to them.

• All the students agreed that the course material provided sufficient understanding of the
concepts of conceptual modeling. However, they suggested that the material could be
further improved by incorporating annotated slides specifically designed to aid exam
preparation, making it easier to comprehend and retain the information.

• The students stressed the significance of including real-world examples and industry
practices on a smaller scale in the course, deeming them essential for practical relevance.

• Ultimately, all students expressed a preference for having additional exercises with solu-
tions to practice with. This preference stemmed from the understanding that conceptual
models can be interpreted in various ways, and practicing with diverse exercises would
enhance their ability to apply and interpret models effectively.

4.4. Inferences

The different teaching approaches for software engineering had a profound impact on students’
understanding and perspective of software engineering, highlighting the importance of using
conceptual modeling for shaping students’ ideologies and experiences.

It has shown that, from a students’ perspective, incorporating a course on conceptual modeling
into multidisciplinary programs like robotics can support software engineering education
considerably. Thus, the focus of education is shifted from programming to aspects particular to
software engineering. Particularly, students understand the need for conceptualization during
development and the need to place adequate emphasis on the design phases rather than just
beginning to program right away. Thus, the significance of conceptual modeling in shaping and
nurturing young minds is underscored. It fosters the development of abstract thinking, enabling
students to effectively tackle a wide range of future challenges and problem-solving scenarios.



When talking about problem-solving, it is a necessity to have structured problem-solving
approach which is innately taught by conceptual modeling. Additionally, conceptual modeling
emphasizes that there is rarely a single perfect solution in software engineering. It encourages
software engineers to generate and evaluatemultiple solution ideas, considering their advantages
and disadvantages. This fosters critical thinking and enables informed decision-making for
effective and efficient software development.

5. Conclusion and future work

In this paper, we investigated students’ perception of a software engineering course based
on teaching conceptual modeling to instruct robotics students in software engineering. The
findings shed light on the significance of conceptual modeling in the field of software engineering,
highlighting its role in fostering skills such as planning, abstract conceptualization, and effective
communication. The study revealed that students recognized the need to discuss programs not
only with stakeholders but also with other developers. However, they also acknowledged the
challenges associated with talking about code. To address this, the use of easily understandable
models emerged as a valuable tool for enhancing communication and facilitating a deeper
understanding of software-intensive systems. Conceptual modeling allowed students to think
abstractly about these systems, enabling self-reflection and the generation of their own ideas
during the development process.

Overall, the study highlighted the transformative role of conceptual modeling in shaping
students’ ideologies and experiences in the field of software engineering. It emphasized the need
for a comprehensive teaching approach that goes beyond programming and encompasses the
various stages and aspects of software engineering. By equipping students with the necessary
skills and promoting collaboration, conceptual modeling contributes to their success in the
multifaceted field of robotics, which requires a diverse range of skill sets.

In terms of future work, it is recommended to explore the long-term impact of different
teaching approaches on students’ career prospects and professional development. Further
research could also investigate the integration of industry collaborations and internships to
provide practical experience in applying conceptual modeling techniques.

References

[1] P. Bayman, R. E. Mayer, Using conceptual models to teach basic computer programming.,
Journal of Educational Psychology 80 (1988) 291.

[2] M. Kayama, S. Ogata, K. Masymoto, M. Hashimoto, M. Otani, A practical conceptual
modeling teaching method based on quantitative error analyses for novices learning to
create error-free simple class diagrams, in: IIAI 3rd Int. Conf. on Advanced Applied
Informatics, IEEE, 2014, pp. 616–622.

[3] M. Daun, Software engineering education for technical engineering degrees, IEEE Software
(2023).

[4] M. Daun, J. Brings, P. A. Obe, K. Pohl, S. Moser, H. Schumacher, M. Rieß, Teaching
conceptual modeling in online courses: Coping with the need for individual feedback to



modeling exercises, in: IEEE 30th Conf. on Software Engineering Education and Training
(CSEE&T), IEEE, 2017, pp. 134–143.

[5] M. R. Marques, A. Quispe, S. F. Ochoa, A systematic mapping study on practical approaches
to teaching software engineering, in: IEEE Frontiers in Education, IEEE, 2014, pp. 1–8.

[6] M. M. Alhammad, A. M. Moreno, Gamification in software engineering education: A
systematic mapping, Journal of Systems and Software 141 (2018) 131–150.

[7] C. Wohlin, B. Regnell, Strategies for industrial relevance in software engineering education,
Journal of Systems and Software 49 (1999) 125–134.

[8] M. Daun, A. Salmon, T. Weyer, K. Pohl, B. Tenbergen, Project-based learning with examples
from industry in university courses, in: 2016 IEEE 29th Int. Conf. on Software Engineering
Education and Training (CSEET), IEEE, 2016, pp. 184–193.

[9] M. B. Blake, A student-enacted simulation approach to software engineering education,
IEEE Transactions on Education 46 (2003) 124–132.

[10] G. C. Gannod, J. E. Burge, M. T. Helmick, Using the inverted classroom to teach software
engineering, in: 30th Int. conference on Software Engineering, 2008, pp. 777–786.

[11] M. Daun, A. M. Grubb, V. Stenkova, B. Tenbergen, A systematic literature review of
requirements engineering education, Requirements Engineering 28 (2023) 145–175.

[12] X. Franch, M. Ruiz, Goal-oriented models for teaching and understanding data structures,
in: Conceptual Modeling: 40th Int. Conf., ER 2021, Springer, 2021, pp. 227–241.

[13] D. Bogdanova, M. Snoeck, Camelot: An educational framework for conceptual data
modelling, Information and software technology 110 (2019) 92–107.

[14] O. Pastor, A. Pierantonio, G. Rossi, Teaching modeling in the time of agile development,
Computer 55 (2022) 73–76.

[15] M. Daun, J. Brings, P. A. Obe, V. Stenkova, Reliability of self-rated experience and confi-
dence as predictors for students’ performance in software engineering, Empirical Software
Engineering 26 (2021) 80.

[16] F. Dalpiaz, J. Horkoff, J. Lockerbie, X. Franch, E. Yu, J. Mylopoulos, et al., Teaching goal
modeling in undergraduate education, in: 1st Int. iStar Teaching Workshop at 27th Int.
Conf. on Advanced Information Systems Engineering (CAiSE), 2015, pp. 1–6.

[17] M. Ruiz, F. B. Aydemir, F. Dalpiaz, et al., Using conceptual models in research methods
courses: An experience using istar 2.0, in: 2nd Int. iStar Teaching Workshop at 36th Int.
Conf. on Conceptual Modeling, 2017, pp. 48–57.

[18] K. Rosenthal, B. Ternes, S. Strecker, Learning conceptual modeling: structuring overview,
research themes and paths for future research, in: ECIS, 2019.

[19] R. Buchmann, A.-M. Ghiran, V. Döller, D. Karagiannis, Conceptual modelling in education:
a position paper, in: 4th Workshop on Managed Complexity, 2019.

[20] R. A. Buchmann, A.-M. Ghiran, V. Döller, D. Karagiannis, Conceptual modeling education
as a “design problem”, Complex Systems Informatics and Modeling Quarterly (2019) 21–33.

[21] M. Shaw, Software engineering education: A roadmap, in: Conf. on the Future of Software
Engineering, 2000, pp. 371–380.

[22] C. Ghezzi, D. Mandrioli, The challenges of software engineering education, in: 27th Int.
Conf. on Software Engineering, 2005, pp. 637–638.

[23] A. M. Davis, Software requirements: objects, functions, and states, Prentice-Hall, 1993.


	1 Introduction
	2 Related work
	3 Study setup
	3.1 Research goal and research questions
	3.1.1 RQ1: Expectations towards conceptual modeling
	3.1.2 RQ2: Perceived learning outcome
	3.1.3 RQ3: Course perception

	3.2 Course design
	3.3 Participants
	3.4 Procedure and materials

	4 Results
	4.1 RQ1: Expectations towards conceptual modeling
	4.1.1 Previous experience with conceptual modeling
	4.1.2 Anticipations from the course
	4.1.3 Expectations after the course

	4.2 RQ2: Perceived learning outcome
	4.2.1 Software engineering is not programming
	4.2.2 Conceptual modeling helps abstract thinking
	4.2.3 Communication is important

	4.3 RQ3: Course perception
	4.4 Inferences

	5 Conclusion and future work

