
Teaching knowledge graphs: A journey from logic to Web
development and semantics-driven engineering

Robert Andrei Buchmann1 and Ana-Maria Ghiran1

1 Babeş-Bolyai University, Faculty of Economics and Business Administration, 58-60 Teodor Mihali Street, Cluj-Napoca,
400591, Romania

Abstract
This experience paper reports on the almost 15 years long journey of teaching knowledge
representation and engineering topics in the Business Informatics study programs of the host university
where the authors have been active during this time. The journey has been subjected to several factors
- some local, some global - having various degrees of influence on the design rationale and deployment
of teaching what is nowadays branded by the "Knowledge Graphs" buzzword, as well as its underlying
Conceptual Modeling paradigm. Local factors include the local IT labor market dominated by an
outsourcing culture that pressure curricular contents to align to immediate needs of influential IT
service providers - typically working on maintaining/patching legacy systems, providing quality
assurance for products developed elsewhere or developing low-innovation products. Global factors
refer to the slow uptake of the Semantic Web paradigm and its gradual pragmatic re-branding and focus
shifts - from ontology engineering to Linked Open Data, to semantic graph databases, to the Schema.org
markup incentive and so on. For some years this has gone hand in hand with limited availability of
educational tooling, proofs of concept, proofs of commercial value or means of producing educational
content. The paper reflects on lessons learned and outcomes of the (constructivist) strategies employed
to maintain and consolidate a knowledge representation curricular offer.

Keywords
Conceptual Modeling, Constructivist Education, Knowledge Graphs, Metamodeling, Agile Modelling
Method Engineering, Semantics-driven Engineering 1

1. Introduction

This paper reports on a longitudinal experience in the authors' host university, in Business
Informatics study programs, with teaching various forms of knowledge representation and
engineering for almost 15 years, through several stages of curricular and content re-designs
motivated by local factors (pressure from the local labor market) and global factors (the sinuous
uptake of semantic technologies and available educational tooling).

Knowledge representation was introduced through a bachelor-level "old-fashioned AI" lecture
(built around Prolog and predicate logic), evolving towards a master-level course on Protégé-
based ontology engineering, later extended towards RDF-based Linked Data management, then
returning to bachelor-level as a Web development course making exploratory use of semantic
graph databases, and finally producing master-level spin-offs on Knowledge Engineering and
Semantics-driven Engineering topics. This evolution managed, since several years now, to define
a research stream of consistent scientific output and active involvement from students and junior
researchers. This was also the key performance target for this steady re-design effort, backed by
an underlying motivation to enforce a constructivist teaching strategy [1] with as many anchors
as possible to what students already know when encountering these topics. In the initial, logic-
centered forms of the teaching content, the only anchor was to propositional logic - studied in
high school by most students and perceived as being associated with math rather than

ER2023: Companion Proceedings of the 42nd International Conference on Conceptual Modeling: ER Forum, 7th
SCME, Project Exhibitions, Posters and Demos, and Doctoral Consortium, November 06-09, 2023, Lisbon, Portugal

 robert.buchmann@econ.ubbcluj.ro (R.A. Buchmann); anamaria.ghiran@econ.ubbcluj.ro (A.M. Ghiran)

 0000-0002-7385-1610 (R.A. Buchmann); 0000-0001-7890-9386 (A.M. Ghiran)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/

information systems development. The current version builds on references to databases (from
SQL to NoSQL), general Web development (moving away from Java libraries towards PHP,
Python, JavaScript), Web interoperability (from REST APIs to SPARQL endpoints), search engine
optimization (from traditional SEO to Schema.org), and diagrammatic knowledge capture
(conceptual modeling). Logic and reasoning-mechanisms become an upper layer of cognitive
mechanisms serving for semantic enrichment in the above contexts already familiar to students,
rather than a topic perceived as a niche of academic interest but little pragmatic relevance. The
content further feeds into subsequent courses on network/graph analytics or the interplay
between knowledge graphs and machine learning.

Diagrammatic conceptual modeling also plays a key role contributing as a means of knowledge
graph enrichment, after many years of being taught strictly as visual documentation - typically as
chapters/tools of other disciplines. We've previously discussed this by framing conceptual
modeling education as a "design problem" in [2] and tackling it there from a Design Science
Research perspective, to emphasize two key principles: the dual nature of diagrammatic models
(both human-readable and machine-readable) and the potential agility of their metamodels
enabling a mediation role recently recognized by the literature [3] and a more generalized model
value proposition [4].

The starting point for this journey was a traditional and inertial disconnect between AI topics
and the other disciplines of our programs, as well as between knowledge representation (in the
sense of symbolic AI) and knowledge acquisition by diagrammatic means. Symptoms of this
disconnect included a general sense of disjointedness regarding the study programs and certain
oversimplifications in understanding the nature and applicability of conceptual modeling (we
discussed these fallacies based on teaching cases in [2] and [5]). The strategy for tackling the
situation was to bring forth conceptual modeling as a standalone discipline providing tooling and
thinking that can be adopted for diverse purposes and application domains - be it software
engineering, business process management, knowledge graph building. This has generally flipped
the perception on conceptual modeling - from tooling that belongs to other disciplines to a
standalone discipline having diverse application areas, serving them with means of abstraction,
complexity reduction and semantic mediation. This is not limited to information systems or
enterprise modeling, but also extends to domain-specificity through DSMLs (domain-specific
modeling languages) - we presented a teaching artifact for maintaining a repository of cooking
recipes in [5].

Secondly, in constructivist spirit we aimed to identify points of convergence and possible
bridging between knowledge representation, enterprise modeling and the disciplines already
part of the study program stem - i.e. business analysis, software/Web development, databases.
Finally, we benefitted from an accelerated commercial visibility and adoption of semantic
technologies - moving away from viewing tools as experimental artifacts of "old-fashioned"
symbolic AI towards modern databases (graph databases), search engine optimization (through
Schema.org), Web development (through RDF-based programming libraries), Web
interoperability (as a viable alternative to XML/JSON) and finally converging with diagrammatic
modeling as means of enabling machine reasoning over enterprise models (BPMN, Archimate
etc.) or as possible mediators for model-driven engineering.

The remainder of the paper is structured as follows: the evolution stages of this curricular re-
design are summarized in the next section. Section 3 provides insights about the current
structure, design rationale and learning outcomes based on a revised Bloom taxonomy. Section 4
enumerates the teaching tools and key enablers. Section 5 comments on related work on
educational experiences and strategies for conceptual modeling. The paper concludes by
highlighting some success indicators.

2. Context and evolution stages

One major challenge with teaching knowledge representation and conceptual modeling topics in
the host university has been the context of a dominant outsourcing culture of the regional IT

industry, which rewards (and influences through direct involvement in curricula design or even
volunteering for teaching activities) the topics that are strictly relevant to their portfolio of IT
service provision: software testing, maintenance or customization of legacy systems,
development of low-innovation products (templated Web shops, apps, REST interfaces), database
or cloud management, document management.

In such a pragmatic context, there have been struggles with preserving curricular modules
that do not have a direct correspondent in the prioritized skill profiles - examples of disciplines
suffering from this have been Business Process Management (partially revigorated recently by
the popularity of RPA), Enterprise Architecture Management, Conceptual Modeling/Model-
driven Engineering, Artificial Intelligence (a rollercoaster of "winters" and hype "springs"). A
vicious circle started to manifest - of students arguing that there are "no jobs" for certain skills
versus companies arguing that there is no talent available in the region for the same skills.
Education is responsible for defusing such situations, therefore we took on a long term endeavor
to advocate the value proposition for knowledge representation and conceptual modeling.

The Artificial Intelligence topics in the Business Informatics programs have been redesigned
many times to optimize their position and relevance, oscillating between formalism-focused and
tool-focused. Initially an AI course aimed to balance coverage of symbolic and non-symbolic AI
notions in line with the AIMA textbook2 , but was perceived as disconnected from the rest of the
program, from student preferences and prior knowledge or local industry needs. While the
original vision was not entirely dropped, a number of revisions have been tested at master level
(and pushed to bachelor level once validated and streamlined). A first wave of revisions was
applied in 2009 by introducing a Knowledge Management Systems course focusing on ontology
engineering with Protégé and OWL/XML-based tooling, backed by description logics foundations,
which also met some resistance caused by user experience gaps already recognized by the
literature [6][7] or because of the comprehension challenges raised by description logics and
ontology formalisms [8][9]. A second wave of revisions followed in 2011-2012 shifting towards
the Linked Data paradigm - i.e. a perspective of open data management and federation took
precedence, although the graph nature was still obscured by the legacy Prolog-inspired focus on
logic, and by the cumbersome RDF/XML standard. During 2015-2016, as commercial tooling and
RDF graph visualizers became available to students, the SEO incentive of Schema.org and DBPedia
gained traction and RDF programming libraries improved in robustness, this could be pushed
closer towards the dominant interest of students - i.e. connected at bachelor level with Web
application development.

Similar challenges were met by diagrammatic conceptual modeling - scattered among many
disciplines (object-oriented programming, systems design, database design, business process
management), modeling was dominantly perceived as visual documentation following some
loose guidelines - i.e. missing important aspects such as model-driven engineering or
metamodeling. A recent revision turned this into a standalone discipline with diverse application
areas, dedicating a full semester to multi-perspective modeling through UML, BPMN, DMN,
Archimate and brief introductions to other notations or DSMLs.

Finally, on master level a convergence between the Semantic Web topics and the diagrammatic
modeling methods was also introduced - to be detailed in the next section.

3. Content and task designs

The current content design is split between bachelor-level and master-level courses. In the
bachelor-level, diagrammatic conceptual modeling and knowledge graphs are covered by parallel
courses and kept generally separate, with only brief cross-references between them. On master
level, the two types of conceptual modeling converge into knowledge engineering and semantics-
driven engineering modules where the interplay between diagrammatic enterprise models,
DSMLs (domain-specific modeling languages) and knowledge graphs is exploited. An overview of
the redesigned content and tasks is provided in Figure 1, to be detailed in the following.

2 https://aima.cs.berkeley.edu/

Figure 1 The re-designed content/tasks for conceptual modeling education

The current approach for teaching knowledge graphs at bachelor level is a bottom-up one -
instead of starting from high-level logical formalisms and knowledge representation foundations
(that traditionally never made it into pragmatic examples), we hook into popular disciplines for
which students already acquired pragmatic skills. We rely on existing Web development projects
where students gained the skills to develop a simple Web shop using a traditional technological
stack - JavaScript-PHP-MySQL, in a context also touching on e-business principles and search
engine optimization. On this pre-existing skillset, students are tasked to gradually incorporate
granular knowledge graph ingredients from a Web developer perspective, in an additive manner:

1. First, the MySQL database of the Web shop is replaced with an RDF triplestore holding
equivalent data (Web shop-oriented, i.e. users, products, orders etc.), which gives
opportunities for several early "revelations" induced by analogies and differentiators: how
tabular structures are mapped to graph structures; how primary keys compare to URIs; how
table JOINS compare to graph path navigation; how a relational schema compares to a graph
schema. The discussion focuses on database concepts already familiar to students,
intentionally avoiding any AI-related background or open world assumptions;
2. SQL queries in the Web shop are replaced by equivalent graph queries without breaking
the legacy functionality. The simplest PHP library is used to run the queries3, which mimics
the way students are used to run SQL queries in PHP. Later the low-level HTTP details of using
the SPARQL HTTP protocol are also revealed - this time by analogy with general HTTP
interoperability;
3. Then, the HTML front-end is dynamically enriched by JSON-LD graph fragments using
Schema.org mark-up4, which gives the opportunity to discuss novel approaches to semantic
SEO and search engine driven interoperability. It is also an opportunity to showcase the ease
by which JSON-LD graph fragments can be injected into Web pages if the back-end store is
already graph-based (with additional tricks such as JSON-LD framing5 to obtain a targeted
JSON structure);
4. The Linked Data aspect is then revealed by incorporating DBPedia links, and expanding a
few of the queries to bring federated data to the existing front-end;

3 https://www.easyrdf.org/
4 https://schema.org/
5 https://www.w3.org/TR/json-ld11-framing/

5. Finally, basic machine reasoning is introduced by a few simple SPARQL inferences to
generate information not present in the initial data store - e.g. generating networks of
users/actors involved with the same products/items.

This flow ensures not only that students work on code and patterns they already developed
before, but that at every step there's an opportunity for analogies, comparisons and anchoring to
patterns they are familiar with, before spiraling away from them. Only a superficial AI framing is
provided in the bachelor-level theoretical lectures, the general focus being on providing a natural
extension for Web developers towards alternative databases, novel querying and SEO techniques,
new types of objects manipulated in Web scripts (e. g. graph objects in PHP).

In parallel, the stream of diagrammatic conceptual modeling is covered by a separate course
that primarily provides training on modeling standards (predominantly UML, BPMN, DMN,
Archimate). It also hints towards research-driven languages (i*, e3value) as well as DSMLs. The
objective here is manifold:

1. to reveal the diversity of modeling languages in relation to diversifying purposes, to
discuss their occasional overlapping or semantic divergence, and finally their inherently
limited competence (limited by a constraining metamodel);
2. to reveal the notion of "model queries" (as a flavor of "competence questions") - i.e. means
of retrieving contents from a repository of models; this can be demonstrated either by XPath
over the XML serializations provided by most standards, or by dedicated model query
languages such as AQL in the Bee-Up modeling tool6 ;
3. to detach conceptual modeling from the software engineering domain where it is
previously used by other courses (through class diagrams and data models);
4. as a consequence of all the above, to position conceptual modeling as a standalone
discipline supporting knowledge structuring and retrieval for any application areas.

The two streams (diagrammatic modeling and non-diagrammatic knowledge graphs) converge
on master level along two modules building both abstraction and engineering skills:

a) In Knowledge Engineering we discuss similarities and possibilities of interplay between
ontologies and metamodels. OWL ontologies and inference rules come now into focus
(expanding from the earlier graph database schema perspective), with foundational
background on description logics and pragmatic examples of axioms/rules over the previously
developed graph-driven Web project;
b) In Semantics-driven Engineering we introduce means of engineering artifacts that
retrieve knowledge by semantic queries or reasoning applied over a semantic repository of
hybrid content consisting of (a) legacy datasets semantically lifted (with transformation rules
in the OntoRefine tool 7), (b) OWL/SHACL axioms and rules, (c) diagrammatic contents
converted to RDF - initially from established model types available in the Bee-Up modeling
tool (BPMN, DMN, UML etc.) and later from model types pertaining to DSMLs developed by
students to support their preferred domain and competence questions. This hybrid knowledge
graph is hosted by an OWL-enabled repository on GraphDB8 and exposed to semantics-driven
artifacts developed by each student according to their engineering preferences (mobile apps,
Web pages, IoT devices). Many repetitions of this engineering approach have been crystallized
in a specific flavor of model-driven engineering that we've discussed in more detail in [10]
under the label of "model-aware engineering" and can be clearly distinguished from
traditional model-driven approaches where a fixed metamodel makes possible stable
transformation rules.

6 https://www.adoxx.org/live/adoxx-query-language-aql
7 https://www.ontotext.com/products/ontotext-refine/
8 https://www.ontotext.com/products/graphdb/

Table 1 summarizes the targeted outcomes that are basis for exam evaluations aligned with
the revised Bloom taxonomy of learning levels proposed in [11]. Each cell lists outcomes for both
the knowledge graph and the diagrammatic modeling stream.

Table 1 Outcomes according to the Bloom (revised) taxonomy

Taxonomy
level

Bachelor-level outcomes Master-level outcomes

Remember The ability to recall and give informal
definitions on basic RDF-related
concepts: URI, blank nodes, triple,
predicate etc.
The ability to recall whether a modeling
standard offers or not certain concepts
(i.e. matching-based, not recalling the
full lists of concepts available in each
modeling standard).

The ability to recall and give informal
definitions on basic OWL-related
concepts: inverse property,
symmetric property etc.
The ability to recall and give informal
definitions on the building blocks of a
modeling method or Agile Modeling
Method Engineering phases cf. [12].

Understand The ability to describe in natural
language a situation (and associated
data) depicted in an RDF graph written in
Turtle.
The ability to describe in natural
language a situation or pattern depicted
in a diagrammatic model (using the
notions previously mentioned)

The ability to describe in natural
language the knowledge structure
depicted by an OWL ontology and a
set of SPARQL/SHACL rules.
The ability to describe in natural
language a metamodel depicted as a
class diagram. The ability to draw a
mock diagram conforming that
metamodel.

Apply The ability to "translate" a piece of
natural text into an RDF graph written in
Turtle, with an RDFS schema and a
minimal number of terms adopted from
Schema.org. The ability to run queries on
that.
The ability to represent a given situation
or pattern in a diagrammatic model,
while preserving as much as possible of
the details provided in the textual
description.

The ability to define the RDFS+OWL
knowledge structure capturing all
relationships and classes involved in
a natural language description of a
situation.
The ability to draw the domain-
specific metamodel capturing all
relationships and types involved in a
natural language description of a
situation.

Analyze The ability to assess whether a certain
SPARQL query can be satisfied by an RDF
graph exemplar - given in Turtle or JSON-
LD formats.
The ability to assess whether a
competence question can be satisfied by
the contents of a diagrammatic model.

The ability to assess whether an RDF
triple will be generated or not by a
certain mix of OWL axioms and
SPARQL/SHACL rules.
The ability to assess whether a
competence question can find its
answer in models created according
to a given domain-specific
metamodel (given a legend a mock
symbols).

Evaluate The ability to find syntactic and structural
mistakes in RDF graph exemplars
(written in Turtle), relative to a situation
it is supposed to represent.

The ability to formulate all explicit
triples that will be generated from a
given RDF dataset by a given set of
OWL axioms and SPARQL/SHACL
rules.

The ability to find mistakes in
diagrammatic models, relative to a
situation or pattern they are supposed to
represent (same modeling languages
mentioned above).

The ability to assess whether a
domain-specific diagram deviates
from a domain-specific metamodel it
is supposed to be governed by.

Create The ability to build a Web site that
populates and stores all data in a
knowledge graph, including links to
DBPedia and a graph fragment published
as JSON-LD in the front-end.
The ability to create a multi-perspective
cross-consistent set of models (of
different model types) depicting
different facets of a complex situation or
architecture.

The ability to implement a novel
modeling tool deploying a DSML. The
ability to use it to describe at least
two different situations, to ensure it
is not a "single use" (i.e., too specific)
language.
The ability to build a knowledge
graph incorporating the models
depicting those situations, with
additional semantic enrichment and
data linked to them. The ability to
build a front-end that demonstrates
for this knowledge graph the
application of reasoning, model
navigation and data aggregation
constrained by model contents.

4. Key technological and organizational enablers

The tooling required to deploy the new course designs consists of two ecosystems: (i) for the
knowledge graph management part, the tooling around Ontotext's GraphDB was chosen; (ii) for
the modeling, metamodeling and model-to-RDF interoperability, OMiLAB's Digital Innovation
environment [12] was adopted.

Ontotext's GraphDB was chosen due to the availability of a free edition that students can
immediately get hands-on experience with and, equally important, due to the commercial
credibility as a production-ready system offering rich connectors, plug-ins and APIs that can be
accessed from different programming languages. Earlier tools have been perceived by students
as "professor-ware" (irrelevant outside academic context) or locked into a Java ecosystem (for
the early Semantic Web tools). Usability, visualization and easy configuration features of
GraphDB made it a key ingredient earlier than competing products became available, and
licensed versions were also successfully adopted in institutional projects with scaling
requirements that can demonstrate to students production-readiness [13].

The OMiLAB Digital Innovation environment is a digital ecosystem and a hardware-software
installation providing a complex toolset: (a) the previously mentioned Bee-Up9 - out of the box
modeling tool for BPMN, ER, EPC, UML, Petri Nets, DMN and other languages. The tool also
provides an RDF export for any of the supported languages, allowing several layers of semantic
enrichment of diagrammatic elements; (b) the ADOxx metamodeling platform 10 - for
implementing modeling tools and experimenting not only with DSML, but also with the inner
workings of Bee-Up to enable design-oriented research (such as [14] where BPMN was
specialized to describe user experience flows), or empirically-oriented research that requires the
logging of modeling actions as in [15]. An RDF export for any DSML deployed on ADOxx is
openly available 11 , based on representation and reasoning patterns discussed in [16]; (c) a
number of hardware (robotic) components and adapters to enable interoperability between
models and Internet of Things environments, which further provide input to an IoT course that

9 https://bee-up.omilab.org/activities/bee-up/
10 https://www.adoxx.org/live/home
11 Tool available at https://code.omilab.org/resources/adoxx-modules/rdf-transformation

is not in the scope of this paper - we only mention its relation to a number of conference tutorials
presented in recent years12 . The ecosystem and tooling hereby summarized was collected over
the years based on exploratory teaching in several contexts: (a) interactions facilitated by the
NEMO summer school series and the enterprise modeling community involved there13; (b) recent
adoption in our university of an OMiLAB node 14 and its digital innovation toolkits; (c)
coordination of the master program on Business Modeling and Distributed Computing15, where
most of the hereby reported curricular revisions were initially tested, before transferring some
of the modules to bachelor level.

5. Related work

We incorporate under the notion of "conceptual modeling education" the efforts pertaining to
both diagrammatic (using UML, BPMN etc.) and non-diagrammatic (i.e. ontologies, knowledge
graphs) conceptual modeling. The two categories are rarely investigated in convergence and even
rarer taught in tandem, because of limited tooling - except for the previously mentioned support
in Bee-Up and ADOxx, recent research reported tools that may be employed for comparable
teaching tasks: AOAME [17], Archi's plug-in for Neo4J [18], EAKG [19], earlier works hinting at
specific demonstrators for business process modeling [20]. A recent systematic mapping on the
convergence of conceptual modeling and the Semantic Web provides a comprehensive inventory
[21]. We could not identify teaching reports on using such tools, nor on knowledge graph
development education - scholarly work focuses on adoption of knowledge graphs for
educational knowledge management. Related works have covered comprehension challenges
regarding ontology formalisms such as frames or description logics [8][9].

On the other hand, research on the education of diagrammatic conceptual modeling is much
better represented: [22] analyzed student modeling tasks to quantify modeling errors, [15]
investigated modeling styles, [23] proposed a Bloom-based framework for teaching conceptual
modeling and metamodeling, [24] advocated several course re-designs to strengthen the position
of conceptual modeling as a standalone discipline, [25] discussed the need for animated notations
to improve BPMN diagrams comprehension.

6. Connections to learning theories

Although we did not derive novel learning theories from this experience, we can point to existing
theories that are embodied in the reported approach (and were previously ignored by the legacy
approach).

First of all, constructivist learning [1] posits that students should build on what they already
know and should derive knowledge by their own construction effort rather than by direct
assimilation of content. The initial "old-fashioned AI" course built only on priors related to
propositional logic (introduced to most students in high schools and not revisited afterwards)
and was perceived as being mostly disconnected from the rest of the curriculum or software
engineering practices employed by the local industry. The new approach successfully hooks into
(and extrapolates from) already familiar technologies and practices: databases, Web
development and architecting, SEO, diagrammatic modeling. Students extend code they already
developed with granular ingredients that are able to frame knowledge graphs more naturally, as
learning objects connected to those already acquired.

Secondly, the spiraling strategy advocated by J. Bruner [26] inspired a recurring revisitation
of the same topics throughout the curriculum. Such spiraling was already manifesting by
somewhat redundant revisitation of certain more mainstream topics (relational databases, SQL
queries, Web development presented in different flavors and tools, by different courses or

12 See the ER tutorial at https://er2023.inesc-id.pt/program-overview/tutorials/#tutorial3
13 NEMO summer school series, https://nemo.omilab.org/
14 OMiLAB-FSEGA node, https://econ.ubbcluj.ro/omilab/index.php
15 BMDC master program, https://econ.ubbcluj.ro/programe/bmdc/index.php

modules), traditionally converging into bachelor or master theses. The current approach hooked
into these spirals by presenting knowledge graphs and conceptual modeling as natural spin-offs
of those dominant topics rather than disconnected disciplines or parallel content streams.

7. Concluding evaluation

The main goal of this longitudinal redesign was to enable, in the spirit of the humboldtian
education model adopted by the university, a steady stream of scientific research from students
- thus making them more prepared for emerging technologies, for innovation-oriented
entrepreneurship (in contrast to a legacy outsourcing culture) or for junior research work in
projects and PhD programs. None of this was happening in the areas of symbolic AI and model-
driven engineering prior to 2016, when the second major curricular redesign was applied. Since
then, conference publications based on master dissertations became regular, in venues such as
ENASE, REFSQ, AMCIS, ISD, ECIS etc.16 The first local start-up that produces a domain-specific
(for cybersecurity) knowledge graph with a diagrammatic layer emerged in the region17 and a
number of companies known as early adopters of knowledge graphs opened off-shore offices in
the region, creating further cooperation opportunities. Institutional projects became possible,
employing talent already available among students without the need for a risky and expensive
learning curve. One example of institutional project deals with the semantic lifting of legacy
databases available in the university, for master data management [13].

In terms of weaknesses, there is still a disconnect from non-symbolic AI topics such as deep
learning and natural language processing, which we aim to bridge in future revisions by
developing demonstrators for neuro-symbolic AI and by exploiting the recently launched
interfaces of GraphDB to OpenAI18.

References

[1] V. Richardson, Constructivist Teaching and Teacher Education: Theory and Practice. In

Richardson, V. (ed.): Constructivist Teacher Education: Building a World of New Under-
standings, Routledge, 1997, pp. 3–14.

[2] R. A. Buchmann, A. M. Ghiran, V. Döller and D. Karagiannis, Conceptual modeling education
as a “design problem”. Complex Systems Informatics and Modeling Quarterly, 21 (2019) 21-
33. doi: 10.7250/csimq.2019-21.02.

[3] J. Recker, R. Lukyanenko, M. Jabbari, B. M. Samuel, A. Castellanos, From representation to
mediation: a new agenda for conceptual modeling research in a digital world. MIS Quarterly,
45(1) (2021) 269-300. doi: 10.25300/MISQ/2021/16027.

[4] A. M. Ghiran, C. C. Osman, R. A. Buchmann, Advancing conceptual modeling education
towards a generalized model value proposition, in: Advances in Information Systems
Development, LNISO 39, Springer, 2020, pp. 1-18. doi: 10.1007/978-3-030-49644-9_1.

[5] R. A. Buchmann, A. M. Ghiran Engineering the cooking recipe modelling method: a teaching
experience report. In: CEUR-WS 1999 (2017) https://ceur-ws.org/Vol-1999/paper5.pdf.

[6] H. Knublauch, M. Horridge, M. Musen, A. Rector, R. Stevens, N. Drummond, P. Lord, N. F. Noy,
J. Seiedenberg, H. Want, The Protege OWL Experience, in Proceedings of OWLED 2005, CEUR-
WS 188 (2005) https://ceur-ws.org/Vol-188/sub14.pdf.

[7] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang, C. Wroe,
OWL pizzas: practical experience of teaching OWL-DL: common errors and common
patterns, in Proceedings of EKAW 2004, LNAI 3257, Springer, 2004, pp. 63-81,
https://doi.org/10.1007/978-3-540-30202-5_5.

16 A list of student papers is maintained at https://econ.ubbcluj.ro/omilab/publications.php
17 See https://cyscale.com/products/security-knowledge-graph/
18 See https://graphdb.ontotext.com/documentation/10.3/gpt-queries.html

[8] B. Dizza, B.-L. Shiry, A controlled experiment of teaching ontology formalisms, Human
systems Management 35(3) (2016) 213-228. doi:10.3233/HSM-160870.

[9] P. Warren, P. Mulholland, T. Collins, E. Motta, Improving comprehension of knowledge
representation languages: a case study with description logics, International Journal of
Human-Computer Studies 122 (2019) 145-167. doi: 10.1016/j.ijhcs.2018.08.009.

[10] R. A. Buchmann, M. Cinpoeru, A. Harkai, D. Karagiannis, Model-aware software engineering
- A knowledge- based approach to model-driven software engineering. Proceedings of
ENASE 2018, ScitePress, 2018, pp. 233-240, doi: 10.5220/0006694102330240.

[11] D. R. Krathwohl, A revision of Bloom’s taxonomy: An overview. Theory into practice 41(4)
(2002) 212–218. doi: 10.1207/s15430421tip4104_2.

[12] D. Karagiannis, R. A. Buchmann, W. Utz, The OMiLAB Digital Innovation environment: agile
conceptual models to bridge business value with Digital and Physical Twins for Product-
Service Systems development. Computers in Industry, 138 (2022) 103631.

[13] R. A. Buchmann, R. Dragoș, A. M. Ghiran, From the application-centric to the knowledge-
centric university: a design science proof-of-concept. In Proceedings of ISD 2021, AIS
eLibrary, 2021, https://aisel.aisnet.org/isd2014/proceedings2021/currenttopics/14/.

[14] Ș. Uifălean, Employing knowledge graphs for capturing semantic aspects of robotic process
automation. Proceedings of CAiSE 2023 Workshops, Springer, 2023, pp. 152-162.

[15] K. Rosenthal, J. Wagner, S. Strecker, Modeling styles in conceptual data modeling: reflecting
observations in a series of multimodel studies, in Proceedings of ECIS 2022, AIS eLibrary,
2022, https://aisel.aisnet.org/ecis2022_rp/73/.

[16] R. A. Buchmann, D. Karagiannis, Pattern-based transformation of diagrammatic conceptual
models for semantic enrichment in the Web of Data, in Proceedings of KES 2015, Procedia
Computer Science 60, Elsevier, (2015) pp. 150-159. doi: 10.1016/j.procs.2015.08.114.

[17] E. Laurenzi, K. Hinkelmann, A. van der Merwe, An agile and ontology-aided modeling
environment, in Proceedings of PoEM 2018, LNBIP 335, Springer, 2018, pp. 221-237. doi:
10.1007/978-3-030-02302-7_14.

[18] ***, Archi database plug-in, https://github.com/archi-contribs/database-plugin/wiki
[19] P. L. Glaser, J. A. Syed, E. Sallinger, D. Bork, Exploring enterprise architecture knowledge

graphs in Archi: the EAKG toolkit, in Proceedings of EDOC 2022 workshops, LNBIP 466, 2023,
pp. 332-338, Springer. doi: 10.1007/978-3-031-26886-1_21.

[20] O. Thomas, M. Fellmann Semantic process modeling – design and implementation of an
ontology-based representation of business processes. Bus Inf Sys Eng 1(6) (2009) 438-451

[21] C. Th. Eggerth, Conceptual modeling and Semantic Web: a systematic mapping study, TU
Vienna, 2022. doi:10.34726/hss.2022.99981.

[22] D. Bogdanova, M. Snoeck, Domain modelling in Bloom: deciphering how we teach it. In
Proceedings of PoEM 2017. LNBIP 305, Springer, 2017, pp. 3-17. doi: 10.1007/978-3-319-
70241-4_1.

[23] D. Bork, A framework for teaching conceptual modeling and metamodeling based on Bloom’s
revised taxonomy of educational objectives. In: Proceedings of HICSS 2019, AIS eLibrary,
2019, https://aisel.aisnet.org/hicss-52/set/methods_models/7/.

[24] S. Strecker, U. Baumol, D. Karagiannis, A. Koschmider, M. Snoeck, R. Zarnekow, Five inspiring
course (re-)designs. Business & Information Systems Engineering, 61(2) (2019) 241-252.
doi: 10.1007/s12599-019-00584-5.

[25] I. Maslov, S. Poelmans, Advancing the BPMN 2.0 Standard with an Extended Animated
Notation: A Research Program for Token-Based Process Modeling Education, Proceedings of
BIR 2023 Workshops and Doctoral Consortium, 2023, in press.

[26] J. S. Bruner, The process of education. Cambridge, MA: Harvard University Press, 1960.

https://www.sciencedirect.com/science/article/pii/S0166361522000264
https://www.sciencedirect.com/science/article/pii/S0166361522000264
https://www.sciencedirect.com/science/article/pii/S0166361522000264
https://doi.org/10.34726/hss.2022.99981

