ODbligations that Require
and Affect Authorizations

William Winsborough
Department of Computer Science
University of Texas at San Antonio

Joint work with:

Keith lrwin

Ting Yu

Computer Science Department
North Carolina State University

Obligations and Security

m Obligations are an essential part of security
practice

— Integrity, reliability, privacy, etc.
m Examples

— System admin must remove accounts and physical access
within 24 hours when an employee leaves the company

— Private data must be deleted after one year
— Help desk must respond to tickets within 4 hours

— Dr. Alice must finalize her analysis of the lab reports
within one week after receiving them

— If you check code out, you have to check it back in

— If you submit a purchase order, your manager has to
approve or deny it

Increasing Importance

m Policy-based automated systems are
managing more interactions and workflows

— Many involve not just access control, but also
obligations

m New laws Iincrease obligation requirements
— HIPAA
— Sarbanes-Oxley

m Security languages increasingly model
obligations

— Ponder, Rel

What is an Obligation?

m User action to be performed in future

— As opposed to system action (XACML,
KA0S)

— System cannot ensure obligation is fulfilled
— Fulfillment can be monitored

m Time limit
— Deadlines make the world go round

— (user, action, [t ., t 1)

Some of the Prior Work

m System obligations: XACML, KA0S
m User obligations: Ponder, SPL, Rel

m Obligations incurred via access
control: Bettini

= Monitoring: Heimdall
— Deadlines: xSPL

Obligations In Security
Policies

m ODbligations arise from user actions

— To take action A, you must agree to
perform action B later

m File a travel report

— When you take action A, someone else
has to do action B later

m Help desk ticket, bug report
m Could also be triggered by other
events

Distinguishing our Work

m Interaction between access control and
obligations
— Obligatory actions are subject to access control
— Obligatory actions affect authorization state
— This creates dependencies between obligations

m New access-control requirements

— Prevent assigning obligations that
m Perform unauthorized actions

m Change authorization state in a way that interferes
with other obligations

— Prevent performing any action that interferes
with existing obligations

Policy Model

m Policy statements associate actions
with access control conditions and the
obligations the actions produce

— action(subject, objects) « condition :
{obligations}

Example: Research
Organization Library

m Items must be returned
— CheckOut(u,b) < Employee(u) A Book(b) :
{(u, CheckIn(b), [today, today + 1 month])}
— CheckOut(u,d) < Employee(u) A DVD(d) :
{(u, CheckIn(d), [today, today + 1 week])}

m Video camera borrowers must log footage

— ReturnCamera(u, x, y) < TakenWith(x, y) :
{(u, LogFootage(y), [today, today + 1 week])}

Example: Research
Organization Library

m Magazine requests must be reviewed
promptly
— Request(u,x) «— Magazine(x) -
{(Librarian, ApproveOrDeny(x), [today,
end of next week])}

Goals for Obligations

m System cannot guarantee that all
obligations are fulfilled

m Want to ensure that all obligations are
authorized
m Obligations are like a contract

— User agrees to take an action

— System agrees to ensure action is authorized,
provided other users are diligent

11

Talk Outline

m Accountabllity: ensuring diligent users
have the rights they need to perform
their obligations
— [Irwin, Yu, Winsborough, ACM CCS 2006]
— Full article submitted for publication

m Assigning responsibility when
obligations are unfulfilled
— [Irwin, Yu, Winsborough, IFIPTM 2008]

Reference Monitor

m If a user requests an action that
assigns an obligation, will the
obligatory action be authorized?

m (WO easy answers
— Definitely!
m Grant the request

— Absolutely Not!
m Deny the request

m But what about the rest of the time? =

Option 1: Be Pessimistic

m If there Is any possibility that the
obligatory action will be unauthorized,
deny the request

m But ...

- W
- W
ta

nat If the possiblility is really remote?
nat If there’s a super user who can

Ke away privileges?

14

Option 2: Be Optimistic

m If there Is any possibility that the
obligatory action will be authorized,
grant the request

m But ...

— What if the possibility is really remote?

— What if there’s a super user who can
grant permissions?

15

A More Satisfactory
Approach

m Assume that the other obligations In
the system will be fulfilled

— If they are not, it is not the system'’s fault

m Assume that only obligatory actions
will occur

— When other actions are requested,
analyze their impact at that time

16

Accountability

m A property of states

— State = authorization state + set of
pending obligations

— Property intuition: if all users are diligent,
then all obligations will be fulfilled

m When accountabllity 1s maintained,
obligatory actions are always
authorized at the appropriate times

17

Maintaining
Accountability

m When deciding whether to grant an

acti

on request, determine whether

— Obligations it introduces will be
authorized

-7
O
-7

ne action itself interferes with existing
pligations

ne obligations in introduces interfere

with existing obligations

Metamodel
(Fully Abstract)

m Subjects, Objects, Actions

m Policy: set of policy rules
— action < condition : obligation set

m System State:
— Current subject and object sets
— Time
— Set of Obligations

— Abstract component of state
m Models authorization state and effects of actions

19

Example: Research
Organization Library

Subjects: employees, librarians...
Objects: books, DVDs, cameras...
Actions: checkout, reserve...

Policy: rules from previous slides

State:
— Eligible borrowers, collection contents
— Time, pending obligations

— Application-specific state: What is checked out,
who has it, patron authorizations, etc.

20

Strong Accountability vs.
Weak Accountability

m Strong accountability

— At any point within an obligation’s time
Interval, the obligatory action is authorized

m Weak accountabllity

— By the end of an obligation’s time interval,
the obligatory action is authorized

m Useful in different situations

21

The Accountability
Problem

Given a policy and a system state, Is the

state strongly (resp., weakly) accountable

— Will all obligations be authorized if all users are
diligent

Undecidable in the fully abstract case

outlined above

— Fully abstract state can represent Turing
machine configuration

— Obligatory action performs one step and
generates an obligation to perform the next

Polynomial time for some important specific
cases

22

An Abstract Subproblem
That I1s Polynomial

= Monotonicity
— Once action Is authorized, it remains authorized

m No cascading obligations

— Actions are partitioned.:
m Those that can impose obligations
m Those that can be obligations

s Commutative, time-independent actions

— If two actions are authorized, the result of
performing both of them is independent of the
order in which they are performed

— The authorization of an action is independent of
the time at which it is requested

23

This Abstract Subproblem
Is Polynomial

m Results:
— O(nm) algorithm for Weak Accountability

— O(n?m) algorithm for Strong Accountability
m N is the number of pending obligations
m M IS the number of rules in the policy

— If only two of the three assumptions holds,
the problem is co-NP Hard

24

A Concrete Model That i1s
Poly-time: Access Matrix

m Model authorization state as access matrix
— A set of triples of (subject, object, permission)
m Action conditions are a logical combination

of positive and negative tests for
permissions

m Action effects are the granting or revoking
of permissions

— Deleting a subject or an object is treated like
revoking all their permissions at once

25

Poly-time Concrete Model

m No cascading obligations
m Conditions are expressed in CNF

m Results:

— O(n*m?) algorithm for Strong
Accountability
m N is the number of pending obligations
m M IS the size of the policy

— Weak Accountability is co-NP Hard

26

Corrections to CCS paper

m Access-matrix Strong Accountability
algorithm in the paper Is not correct

— Sound, but not complete
— See tech report for correct algorithm

m Access-matrix Weak Accountability

algorithm promised to be in the tech report
does not exist

— We had a sound algorithm, which we did not
realize was not complete

— Completeness co-NP Hard
— See tech report for a reduction

27

User Obligation Management System

g
~ Qutside

User —— - World

| Explanation and/or plan

Action request \ Unmnlmllat:]e events
’ l ! ’ "\ -" '\
Authorzalion Farws
Chogter | Foodtadk / nmur
e l i L.] r \.._ [o
’ ! ’ LY “
Obligation , Oulgaton F"':m
, \ I v, """!"'
“ ol o }
)
Reference Monitor Event Manager

28

Talk Outline

m Accountabllity: ensuring diligent users
have the rights they need to perform
their obligations
— [Irwin, Yu, Winsborough, ACM CCS 2006]
— Full article submitted for publication

m Assigning responsibility when
obligations are unfulfilled
— [Irwin, Yu, Winsborough, IFIPTM 2008]

Why Fault Assessment IS
Needed

Obligation systems should strive to

maintain accountability

— Depends on users fulfilling their obligations if
they can

When they do not or cannot not, It is
Important to know who dropped the ball

— Contractual obligations, reputation, trust

In an accountable system, any single failure
IS the fault of the user who did not fulfill
their obligation

When multiple failures have occurred, the
assignment of fault is more complex

30

Why Fault Assessment IS
Tricky

m User obligations can have complex
Interdependencies

m One possible approach is analyzing
dependencies after the fact

— Assigning fault on this basis Is difficult to do
appropriately

m Appropriate assignment of fault relies on a
notion of responsibility

— This often depends on exogenous factors, such
as agreements, job roles, and the order in which
obligations were incurred

31

Example

m Carol, a manager, needs to submit a
situation report to her boss

m Alice and Bob both work for Carol

— Both are assigned an obligation to
prepare a situation report

— Neither does so, so Carol cannot submit
m \WWho Is at fault?

32

Example

m While Alice and Bob might be equally at fault, this
IS not a satisfactory conclusion in general
— Dubious managerial practice
— Does not scale when there are cascading failures

m Perhaps Alice’s primary responsibility is to prepare
situation reports
— Bob was supposed to do one only as a training exercise

m Perhaps Alice had a family emergency
— Bob assured her that he would prepare the report

m None of this can be reasoned about simply by
examining dependencies among obligations

33

Appropriate Fault
Assessment

m |ldeally, when an obligation b is violated, we
would like to identify a set of prior
obligations that were authorized but not
fulfilled and that, had they been fulfilled,
would have enabled b to be fulfilled

s We would like the set to be minimal

m When either of two or more obligations
could be included in the set, we seek a basis
for selecting which to include

Our Approach

m We propose on-line “responsibility” tracking
— Subset of the dependence relation

m Use a policy to determine which obligations are
considered responsible for enabling which others
as the system state evolves

— Example policy: the first obligation that was introduced
and ensures a given obligation is authorized is responsible
for it

m This allows for accurate fault assessment when an
obligation is violated

— Note: responsibility does not entail fault

m Helps users understand the consequences of their
actions and inactions -

Bounds of Responsibility

m Users whose obligations are strictly need
for a given obligation to be fulfilled should
be held responsible for it

m Users whose obligations cannot affect a
given obligation should not be held
responsible for it

m There are many different ways to assign
responsibility within those bounds

36

Concrete Fallure
Assessment Algorithm

m In the paper, we show how to
construct the responsibility graph
Incrementally as the system state
evolves

m This Is done for an access-matrix-
based system

Ongoing Work

m Currently looking at planning technigues to
be used for two purposes:

— Restoring accountability after an obligation is
unfulfilled

— When a desired action would make the system
unaccountable, what compensating actions
would allow the action

m Techniques under investigation:

— Al planners

— Model checking

38

Future Work

m Extending our techniques to

— Support events that cannot be prevented
by the system

— Ensure obligatory actions have needed
resources as well as authorizations

39

Other Recent Work

m Alternate model in which

authorizations are granted based on
assigned tasks (cf. obligations)

— [Irwin, Yu, Winsborough, SACMAT 08]

— We prevent insecure combinations (and

sequences) of privileges and actions in
this model

m Static analysis
m Dynamic control of privileges
m Dynamic control of actions

40

Conclusions

m Accountabllity: ensuring diligent users
have the rights they need to perform
their obligations
— [Irwin, Yu, Winsborough, ACM CCS 2006]
— Full article submitted for publication

m Assigning responsibility when
obligations are unfulfilled
— [Irwin, Yu, Winsborough, IFIPTM 2008]

Thank You

m Questions?

	Obligations that Require and Affect Authorizations
	Obligations and Security
	Increasing Importance
	What is an Obligation?
	Some of the Prior Work
	Obligations in Security Policies
	Distinguishing our Work
	Policy Model
	Example: Research Organization Library
	Example: Research Organization Library
	Goals for Obligations
	Talk Outline
	Reference Monitor
	Option 1: Be Pessimistic
	Option 2: Be Optimistic
	A More Satisfactory Approach
	Accountability
	Maintaining Accountability
	Metamodel �(Fully Abstract)
	Example: Research Organization Library
	Strong Accountability vs. Weak Accountability
	The Accountability Problem
	An Abstract Subproblem That is Polynomial
	This Abstract Subproblem is Polynomial
	A Concrete Model That is Poly-time: Access Matrix
	Poly-time Concrete Model
	Corrections to CCS paper
	User Obligation Management System
	Talk Outline
	Why Fault Assessment is Needed
	Why Fault Assessment is Tricky
	Example
	Example
	Appropriate Fault Assessment
	Our Approach
	Bounds of Responsibility
	Concrete Failure Assessment Algorithm
	Ongoing Work
	Future Work
	Other Recent Work
	Conclusions
	Thank You

