
Using MDE with the Clean Architecture
Sobhan Yassipour Tehrani1, Kevin Lano2

1University College London, Gower Street, London, UK
2King’s College London, Strand, London, UK

Abstract
The ‘clean architecture’ is a set of principles for software architecture, which aim to reduce the eort required for software
maintenance and evolution. However it can require more initial eort, documentation and coordination within a development
process, and hence is a challenge for agile developments. In this paper we describe how the use of model-driven engineering
(MDE) can facilitate the application of the clean architecture principles and hence reduce the eort needed to employ them.

Keywords
Clean architecture, Model-driven Engineering, Agile development

1. Introduction
Agile development has become one of the most widely-
used software development approaches in practice [4].
However, the focus of agile development upon coding
rather than documentation, and upon rapid software pro-
duction for immediate needs, creates challenges for the
application of software architecture principles such as the
clean architecture [8]. In particular, it is dicult to main-
tain architectural models, and to keep them up-to-date
with code [2], [10]. In an agile context, frequent require-
ments change can lead to many changes to architectures,
based on the requirements. We consider that one ap-
proach to address this conict is to adopt an agile MDE
approach [1], whereby development eort is focussed at
the system specication level, with code artefacts being
automatically synthesised from the specication. This
facilitates rapid change to both specications and code,
and ensures that consistency is maintained between the
specication and code, and between dierent code arte-
facts.

In Section 2 we review the clean architecture concepts,
in Section 3we describe the relation ofMDE and the clean
architecture, and describe detailed technical combination
of MDE and the clean architecture in Sections 4 and 5.

2. Clean Architecture Concepts
The clean architecture [8] is a set of software design prin-
ciples and practices oriented towards improving software
maintainability and evolvability, and it focusses upon re-

AMDE 2023: Agile Model-driven Engineering Workshop, Part of the
Software Technologies: Applications and Foundations (STAF) federated
conferences, Eds. K. Lano, H. Alfraihi, S. Rahimi and J. Troya, 20 July
2023, Leicester, UK.
" sobhan.tehrani@ucl.ac.uk (S. Y. Tehrani); kevin.lano@kcl.ac.uk
(K. Lano)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

stricting the dependencies between software components,
where a component 𝑋 depends on component 𝑌 if 𝑋
refers to 𝑌 (or to a class, interface or operation contained
in 𝑌).
The core principle of the clean architecture is the de-

pendency rule𝐷𝑅:

Platform-specic components can depend
on platform-independent components but
not conversely.

The dependency rule helps to insulate the relatively
stable core business components of a system from the
more frequently-changing components such as data per-
sistence and UI elements. Thus the system becomes more
maintainable and evolvable because the eort involved
in technology changes is reduced.

Figure 1: Clean architecture system organisation and permit-
ted dependencies (From [8])

Figure 1 shows the clean architecture organisation of
systems as layers of components each at the same level
of abstraction from specic technologies. At the high-
est level of abstraction are components representing the

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sobhan.tehrani@ucl.ac.uk
mailto:kevin.lano@kcl.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

core business entities, which are independent of tech-
nologies and independent of the use cases of a particular
application. For example, in any hotel reservation system
we could have classes𝐻𝑜𝑡𝑒𝑙, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟,𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,
representing these concepts. The next layer consists of
components for the business operations – components
which implement the system functionality of the use
cases of the particular application. These depend on the
core business entities, but are independent of particu-
lar UI/data storage technologies. For example, a hotel
reservation application could have operations to create a
new reservation for a customer, or to update or cancel a
reservation. The algorithms for these procedures reside
in components termed the use case ‘interactors’ for such
room reservation operations.
The next layer consists of intermediary components

which link the business-specic parts of the system to
UI and data storage technologies. Typically there are
data-access objects (DAOs), otherwise known as ‘Gate-
ways’ or database interfaces, to manage a specic data
storage technology such as a relational database or cloud
datastore. There are also components which manage UI
interaction: Controllers, which control the UI navigation
sequence and implement UI logic, and Presenters, which
convert business data into specic formats (such as web
page content) for display via particular UI technologies.
Finally at the outermost level of the system there

are the platform-specic components such as relational
databases, web pages and device drivers.

2.1. The Clean Architecture: SOLID
principles

The clean architecture denes several principles of good
component design and architecture design, which encom-
pass many dierent kinds of system. The acronym SOLID
is used for the following ve principles of component
design.

SRP: Single responsibility principle This principle
states that each component should have only one reason
to change. A more explicit statement is that each compo-
nent should provide services for a single actor. SRP aims to
avoid the situation where a component has overloaded
responsibilities, trying to perform too wide a range of
capabilities, for dierent clients, and hence becomes ex-
cessively large and complex and expensive to maintain.

OCP: Open-closed principle This principle states
that components should be changed by adding new capa-
bilities, and not by modifying existing capabilities. This
provides a strong assurance of backwards compatibility
for existing clients of the component, whilst retaining

some exibility to enhance and extend the component
for new services and clients.

LSP: Liskov substitution principle This principle is
a strong constraint on how superclasses and subclasses
can be related [7]. Eectively it says that all subclass
behaviour should satisfy the superclass specication.

ISP: Interface segregation principle This principle
states that components should not depend on compo-
nents or interfaces that they don’t use: each such depen-
dency causes wasted eort and resources when maintain-
ing and deploying the system, and complicates the build
and deployment processes.

DIP: Dependency inversion principle This princi-
ple states that a high-level client should not depend on a
low-level supplier, because of the dependency rule. In-
stead, provided and required interfaces 𝑃𝑟𝑜𝑣𝐼 , 𝑅𝑒𝑞𝐼 of
supplier and client components are introduced, so that
the dependencies are as follows: (i) from the client im-
plementation to its required interface 𝑅𝑒𝑞𝐼 , (ii) from
the implementation of the supplier upon 𝑃𝑟𝑜𝑣𝐼 , and
(iii) from 𝑃𝑟𝑜𝑣𝐼 to 𝑅𝑒𝑞𝐼 . The nal dependency occurs
because 𝑃𝑟𝑜𝑣𝐼 needs to provide all the operations re-
quired by 𝑅𝑒𝑞𝐼 , in order that the assembly connection
is valid. Figure 2 shows a UML component diagram of
this structure.

Figure 2: Client-supplier relationship with dependency inver-
sion

Dependency inversion occurs if we place the required
interface 𝑅𝑒𝑞𝐼 into the client module, and the provided
interface 𝑃𝑟𝑜𝑣𝐼 into the supplier: the supplier module
then has a dependency to the client. The dependency
runs in the opposite direction to the calling relation: even
though the client calls the supplier, no name of any sup-
plier element occurs in the client.
This mechanism does not need to be used between

every pair of client/supplier modules, only in situations
where the client is at a higher abstraction level than
the supplier, for example, when the client is a use case

interactor and the supplier is a gateway or presenter in
the terms of Figure 1.

The clean architecture also states the following princi-
ple for the overall structure of an architecture:

• ADP: Acyclic dependencies principle: There
should be no cycles in the component dependency
graph.

3. MDE and Soware Modelling
Model-driven engineering was established at around the
same time as agile methods, in the late 1990’s and early
2000’s, and has also had extensive impact on the practice
of software engineering, although it has been less widely
adopted than agile methods.

Software models have several purposes:

• To facilitate communication and understanding
about the system within the development team,
and between the team and stakeholders

• To explore alternative designs
• To perform formal analysis, e.g., to check that
clean architecture principles are being followed

• As a starting point for automated code genera-
tion.

An advantage of software modelling is that issues and
alternatives for building the system can be explored be-
fore detailed coding begins. For architectural design,
UML component diagrams such as Figure 2 provide a
view of the possible ways in which a system can be de-
composed into components, and these components as-
sembled into the system as a whole. Issues such as the
need for dependency inversion between two components
can be recognised and resolved at this level of abstraction,
prior to coding the components (Section 4).
Another use of models for software architecture is to

derive an outline architecture from early-stage models
such as business concept models and use cases, using
these high-level models to infer what components, inter-
faces and connections are needed in the architecture of
the system [3].
Finally, from detailed models, the code of a system

can be generated, including interfaces, components and
dependencies conforming to a particular architectural
style and to the clean architecture principles (Section 5).
Version 2.2 of the AgileUML MDE toolset1 supports

the denition of UML component diagrams, the deriva-
tion of classes and interfaces from these diagrams, and
checks for conformance to the SRP, ISP, DR and ADP
clean architecture principles.

1github.com/eclipse/agileuml

4. Analysis of Clean Architecture
Principles at the Specification
Stage

The use of MDE for system specication enables the early
detection of architectural issues and problems, such as
violations of the clean architecture principles. Figure
3 shows one form of analysis which can be performed:
the usage relations between use cases and the data of
class diagram classes can be automatically identied and
graphically presented (green arrows denote read access
and red arrows write access).

Figure 3: Use case read and write dependencies to class dia-
gram

This form of analysis can detect violations of SRP, be-
cause these occur when two dierent use cases with dif-
ferent actors both access the same class (Figure 4). In this
example, the 𝑆𝑡𝑎𝑓𝑓 actor performs the 𝑢𝑝𝑑𝑎𝑡𝑒𝐴𝑐𝑐𝑜𝑢𝑛𝑡
use case, whilst the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 actor performs the
𝑞𝑢𝑒𝑟𝑦𝐴𝑐𝑐𝑜𝑢𝑛𝑡 use case.

Figure 4: SRP violation example

Table 1
Clean architecture checks

Principle Check

DR Warning issued if a platform-independent class is directly linked
by an association to a platform-dependent class

SRP Warning issued if a class is referenced by two use cases
which have dierent actors

OCP Warning issued when an operation definition is changed,
if there is any call to the operation in the system

LSP Informal or formal verification can be carried out based on
superclass and subclass operation specifications [5].

ISP (i) Check if there are excessive (≥ 20) numbers of operations in an interface.
(ii) Check if operations of supplier objects are called:
if no operation of referenced class 𝑆 is called within client 𝐶 ,
then 𝑆 can be removed as a supplier of 𝐶 (Figure 5).

ADP (i) Identify calling cycles between operations of dierent classes;
(ii) Identify reference cycles between classes.

Table 1 summarises the software modelling checks
which can be performed for the clean architecture princi-
ples. Settings for thresholds, such as the limit of number
of operations in an interface, can bemodied by changing
the default values given in 𝑇𝑒𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.𝑗𝑎𝑣𝑎.

Figure 5: ISP violation example

With regard to the dependency inversion principle,
component diagrams can be used to generate class di-
agram elements which have the appropriate interfaces
and relationships to support this. Figure 6 shows the
generation of a class diagram (in the top pane) from a
component diagram (lower pane).

To check the dependency rule, the AgileUML tool iden-
ties platform-specic and independent components, and
checks if platform-independent components directly re-
fer to platform-specic components (Figure 7). A class
is considered platform-specic if it directly utilises les,
processes, Excel functions, databases, sockets or internet
requests (library classes 𝑂𝑐𝑙𝐹 𝑖𝑙𝑒, 𝑂𝑐𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝐸𝑥𝑐𝑒𝑙,
𝑂𝑐𝑙𝐷𝑎𝑡𝑎𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑆𝑄𝐿𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡).

5. Generation of Clean
Architectures from Design
Models

MDE can also be used to generate the executable code for
applications, together with components, interfaces and
connections conforming to particular architectural styles
or principles, in particular to the clean architecture. This
can substantially reduce the manual eort required to
write code and organise it into appropriate architectures.
In particular, there may be some necessary duplication
of code within an architecture:

• In the UI tier, validation checks on the input data
for a use case are typically based on the business
rules for the use case, which are also represented
in the business tier. E.g., that a room reservation
must have start date before or equal to the end
date.

• Passing data between components in value ob-
jects – the value objects often have data based on
that of the core business entities.

By using automated code generation from design mod-
els, the necessary validation beans and value objects can
be generated from the same model entity/operation de-
nitions as the core business components. This ensures
consistency between the dierent artefacts, and reduces
coding eort. The design model in this respect serves as
the ‘single source of truth’ for the application code, and
should be maintained during system evolution.
As an example, consider a 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 business en-

tity from the hotel room booking system. A detailed
specication of this entity could be:

class Reservation
{ attribute reservationId : String;

Figure 6: Class diagram synthesis from component diagram

Figure 7: Dependency rule violation example

attribute startDate : String;
attribute endDate : String;
invariant startDate <= endDate;

reference hotel : Hotel;
reference customer : Customer;
....

}

The invariant states that the reservation interval must
be non-empty. Dates could be represented in the format
“YYYY:MM:DD", so that string comparison corresponds
to chronological order (e.g., “2023:12:31" < “2024:01:01").
This invariant should be checked for the input data
of 𝑚𝑎𝑘𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 and 𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 use

cases, and this could be done by a validation bean
𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, called from a UI tier component
such as a Controller (Figure 8). In addition, the invariant
needs to be checked in the database interface or Gateway
for data storage of 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 instances. Thus the
same semantic rule appears in widely-scattered places in
the application.

Figure 8: Room booking system UI tier/business tier

AgileUML can generate web-based applications, desk-
top applications and iOS and Android mobile apps from
UML/OCL specications [5]. Each of these implementa-
tionsmay involve the production ofmultiple inter-related
components at dierent levels in the clean architecture
hierarchy. In the case of SwiftUI mobile app synthesis

[6], we use the model-view-view model (MVVM) app
architecture, with the following specic components:

• Business entity classes 𝐸.𝑠𝑤𝑖𝑓𝑡 are generated
for each business entity 𝐸.

• The use case interactor component
𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒.𝑠𝑤𝑖𝑓𝑡 implements all ap-
plication use cases, and is generated from the
specications of these cases.

• SwiftUI views for each use case are generated
from the use case specication.

• Data access objects/gateway components
𝐷𝐴𝑂_𝐸.𝑠𝑤𝑖𝑓𝑡 are generated for each business
entity 𝐸.

• Value objects/data transfer objects 𝑒𝑉 𝑂.𝑠𝑤𝑖𝑓𝑡,
𝑢𝑐𝑉 𝑂.𝑠𝑤𝑖𝑓𝑡 are generated for each business en-
tity and for each use case.

• A database interface for local SQLite database
storage is generated for the local persistent busi-
ness entities.

• A cloud database interface for remote data stor-
age is generated for remote persistent business
entities.

It would be very dicult to manage this coding and
to maintain consistency between dierent components
manually. Instead, any changes to the system require-
ments can be carried out bymanual specication changes,
which are then automatically propagated to consistent
changes to the code of all components.
One problem with the use of MDE is the integration

of auto-generated code with manually-written and main-
tained code. This integration can be facilitated by sep-
arating MDE-generated and manual code into separate
components, which only interact via interfaces. For exam-
ple, in an embedded system, the low-level device drivers
could be manually coded andmaintained, whilst the main
control component would be auto-generated from design
models. When a change is needed to the strategy for code-
generation, this change should be made to the MDE code
generators, not by manual modication of the generated
code.

6. Related Work
AnMDE approach designed to generate mobile app archi-
tectures satisfying the clean architecture is described in
[11]. However this is specic to an Android and restore
implementation, whereas our approach is generally appli-
cable to any domain. Discussion of the clean architecture
in relation to mobile app patterns is given in [9]. They
propose a systematic use of the clean architecture, which
could be achieved using the MDE approach described
here.

Conclusions
In this paper we have identied the practical applica-
tion of Model-Driven Engineering (MDE) techniques in
enforcing clean architecture principles in architectural
design. The automated generation of components, in-
terfaces, and connections through MDE enables devel-
opers to maintain architectural integrity and coherence
throughout the software development process. Addition-
ally, the utilization of MDE techniques facilitates adapt-
ability and agility in the face of changing requirements.

References
[1] H. Alfraihi, K. Lano, The integration of agile de-

velopment and MDE: a systematic literature review,
Modelsward 2017.

[2] E. C. Arango, O. L. Loaiza, SCRUM Framework Ex-
tended with Clean Architecture Practices for Software
Maintainability. In: Silhavy, R. (eds) Software Engi-
neering and Algorithms. CSOC 2021. Lecture Notes
in Networks and Systems, vol 230. Springer, Cham.
https://doi.org/10.1007/978-3-030-77442-4_56

[3] J. Cheesman, J. Daniels, UML Components, Addison-
Wesley, 2000.

[4] R. Hoda, N. Salleh, J. Grundy, The Rise and Evolution
of Agile Software Development, IEEE Software, July
2018.

[5] K. Lano, Agile Model-based Development using UML-
RSDS, CRC Press, 2016.

[6] K. Lano, S. Kolahdouz-Rahimi and L. Alwakeel, Syn-
thesis of mobile applications using AgileUML, ISEC
2021, pp. 1–10, 2021.

[7] B. Liskov, J. Wing, A behavioral notion of subtyping,
ACM Trans. Program. Lang. Syst. 16(6), 1994, pp.
1811–1841.

[8] R. Martin, Clean Architecture, Prentice Hall, 2018.
[9] R. Nunkesser, Choosing a global archi-

tecture for mobile applications, TechRxiv,
https://doi.org/10.36227/techrxiv.14212571.v1,
2021.

[10] F. Gomes Rocha, S. Misra, M. Soares, Guidelines for
Future Agile Methodologies and Architecture Recon-
ciliation for Software-Intensive Systems, Electronics
2023, 12, 1582, 2023.

[11] D. Sanchez, A. Rojas, H. Florez, Towards a clean
architecture for Android apps using model transfor-
mations, IJCS, vol. 49, no. 1, 2022.

	1 Introduction
	2 Clean Architecture Concepts
	2.1 The Clean Architecture: SOLID principles

	3 MDE and Software Modelling
	4 Analysis of Clean Architecture Principles at the Specification Stage
	5 Generation of Clean Architectures from Design Models
	6 Related Work

