
The TTC 2023 KMEHR to FHIR case
Dennis Wagelaar1

1 Corilus nv, Gaston Crommenlaan 4, 9050 Gent

Abstract
The history of medical information systems has seen many twists and turns, and while there has long been a global
standardization body in the form of HL7, it only recently gained a lot of traction with the FHIR standard. As a result, a number
of countries have developed their own medical data interchange formats over the years, which now need to be realigned with
the global FHIR medical data interchange format. One such example is the Belgian KMEHR format. For this TTC case, we
will focus on a specific kind of medical data interchange, namely the Patient Summarized Medical Record. In KMEHR, this is
called the Summarized Electronic Health Record (SumEHR). In FHIR, this is called the International Patient Summary (IPS).
The primary purpose of such a record is to provide an emergency “cheat sheet” to healthcare providers who don’t normally
see the patient in question, e.g. a hospital’s emergency department. Especially when a patient is abroad, the capability to
exchange such data is important, as it will often be the only source of medical background data. This TTC case will require
you to translate between the Belgian SumEHR format and the international FHIR IPS format.

1. Introduction
This Transformation Tool Contest case concerns the
transformation between two medical data interchange
formats: the Belgian “Kindly Marked-up Electonic
Healthcare Record” (KMEHR) standard [1], and the in-
ternational “Fast Healthcare Interoperability Resources”
(FHIR) standard by Health Level 7 (HL7) [2].

For this TTC case, we will focus on a specific kind
of medical data interchange, namely the Patient Sum-
marized Medical Record. In KMEHR, this is called the
Summarized Electronic Health Record (SumEHR) [3]. In
FHIR, this is called the International Patient Summary
(IPS) [4]. The primary purpose of a Patient Summarized
Medical Record is to provide an emergency reference
sheet to healthcare providers who don’t normally see
the patient in question, e.g. a hospital’s emergency de-
partment, or a different doctor than your regular doctor.
Especially when a patient is abroad, the capability to ex-
change such data is important, as it will often be the only
source of medical background data.

All resources for this case are available on Github1.
Please follow the link in the footnote and create a pull
request with your own solution.

The rest of the document is structured as follows: Sec-
tion 2 describes the structure of the KMEHR to FHIR
case. Section 3 describes the proposed tasks for this case.
Section 4 mentions the benchmark framework for those
solutions that focus on raw performance. Finally, Sec-
tion 5 mentions an outline of the initial audience-based

TTC’23: 15th Transformation Tool Contest, Part of the Software Tech-
nologies: Applications and Foundations (STAF) federated conferences,
Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20 July 2023,
Leicester, UK.
Envelope-Open dennis.wagelaar@corilus.be (D. Wagelaar)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://github.com/dwagelaar/ttc2023-kmehr2fhir

evaluation across all solutions, and the approach that will
be followed to derive additional prizes depending on the
attributes targeted by the solutions.

2. Case Structure
The case is intended to review the different approaches
for bridging the gap between two medical data standards,
KMEHR and FHIR, that use vastly different document
structures and medical code systems. The metamodels
for KMEHR and FHIR have been automatically generated
from their published XML schemas2 using the EMF XSD
generator3. The resulting metamodels are too large to
include in this paper, but they can be viewed online at
the “kmehr-emf”4 and “fhir-xml-emf”5 Github projects.
The metamodels consist of 297 and 1110 metaclasses,
respectively. Please note that the original XSD files are
also included in these GitHub repositories.

These metamodels aren’t only large because they cover
many concepts, but also due to accidental complexity that
is caused mostly by the process of a large standardization
body, and to a lesser extent by EMF’s representation in
Ecore of XML schemas. It is necessary for an industrial
transformation tool to be able to process the technical
space [5] that is used, and not require the end user to
manually translate from the provided technical format
to the modeling technology of choice. Having to bridge
technical spaces is common for industrial data format
standards, which often don’t target modeling technology.
It is also apparent that the level of accidental complexity
is proportial to the size of the standardization body, as

2FHIR canonically uses JSON representation, but the standard also
provides an XML representation.

3https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.emf.
doc%2Ftutorials%2Fxlibmod%2Fxlibmod.html

4https://github.com/dwagelaar/kmehr-emf
5https://github.com/dwagelaar/fhir-xml-emf

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dennis.wagelaar@corilus.be
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://github.com/dwagelaar/ttc2023-kmehr2fhir
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.emf.doc%2Ftutorials%2Fxlibmod%2Fxlibmod.html
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.emf.doc%2Ftutorials%2Fxlibmod%2Fxlibmod.html
https://github.com/dwagelaar/kmehr-emf
https://github.com/dwagelaar/fhir-xml-emf

can be seen in the size difference between the KMEHR
and FHIR metamodels. FHIR simply has a much larger
scope, and must be general enough to apply worldwide.
It therefore also covers many more corner cases than
KMEHR.

Figure 1 shows a small part of the FHIR metamodel
that shows how primitive types, such as strings, inte-
gers, and booleans, are wrapped inside a container object.
The KMEHR metamodel does not do this, and an addi-
tional translation step is necessary to bridge this – purely
technical – gap. In this case, the Composition metaclass,
which represents the body of the medical record sum-
mary, typically has a custodian. The custodian is the
medical party that is responsible for keeping the medical
record summary up to date, and is typically your general
practitioner in Belgium. The custodian property is repre-
sented as a reference string in FHIR, which resolves to the
type and identifier of a Resource (document attachment)
inside the same FHIR Bundle (document).

Composition

id : Id
 meta : Meta
 implicitRules : Uri
 language : Code
text : Narrative
 contained : ResourceContainer
 extension : Extension
 modifierExtension : Extension
url : Uri
 identifier : Identifier
 status : CompositionStatus
 type : CodeableConcept
category : CodeableConcept

 date : DateTime
 useContext : UsageContext
 note : Annotation
attester : CompositionAttester
 relatesTo : RelatedArtifact
 event : CompositionEvent
 section : CompositionSection

Reference

extension : Extension
type : Uri
identifier : Identifier

String

value : StringPrimitive
extension : Extension

StringPrimitive

java.lang.String

[0..*] subject

[0..1] encounter

[1..*] author

[0..1] custodian

[0..1] version

[0..1] name

[1..1] title

[0..1] reference

[0..1] display

Figure 1: Extract of the FHIR metamodel

A transformation tool’s ability to deal with this acci-
dental complexity is an important factor for industrial
acceptance. Not only should the transformation tool be
able to process the accidental complexity, but it should
also allow the user to hide away or otherwise modular-
ize the part of the transformation code/specification that
deals with this accidental complexity.

The reference transformation is written in
ATL/EMFTVM [6] and comprises approximately 1300
lines of code, divided over the main KMEHRtoFHIR.atl
transformation module and the libKMEHRtoFHIR.atl
helper library. Both of these files can be found in the
aforementioned case Github repository. It uses advanced
features of the EMFTVM runtime, such as multiple rule
inheritance and invocation of native Java code. It also
relies on the local search compiler included with the

4.8.0 release of ATL, which allows for efficient execution
of matched rules with many input element. For example,
the Posology rule shown in Listing 1 uses four input
elements, which would require iterating four times
through the entire input model before ATL 4.8.0. As
of ATL 4.8.0, the filter expressions on lines 7–9 are
translated by the compiler into local search expressions
for the tx, i, and s input elements. Only the f input
element needs to be found by iterating over the entire
input model. An additionalmapsTo keyword is required
to indicate that the output element t does not map to
the entire collection of input elements, as is the default,
but rather directly maps to the input element s. That
way, whenever another transformed model element
is assigned a reference to KMEHR!PosologyType s,
ATL’s implicit tracing mechanism will translate it to
FHIR!MedicationStatement t.

The Posology rule is responsible for translating the
statement of how and when medication must be ad-
ministered – e.g. ”once daily, after dinner” – from a
KMEHR!PosologyType to a FHIR!MedicationStatement,
as well as during which time period it is applicable (the
effectivePeriod). Another transformation rule Posolo-
gyWithUnitAndTakes exists, which extends the Posology
rule by adding a unit and dosage, e.g. ”1 caps.”. This rule
is shown in Listing 2.

Note how ATL modularizes the accidental complexity
of wrapped primitive types in FHIR by delegating the
creation of the wrapper objects to lazy rules, such as the
FhirString rule shown in Listing 3. The Posology rule
can now simply wrap the medication reference string
inside a FHIR String by invoking the lazy rule. Note
that the remaining medication reference wrapper objects,
CodeableReference and Reference, could also have been
modularized in a lazy rule, further increasing the clarity
of the Posology rule. This has not been done here, be-
cause those wrapper objects are only used once in the
entire transformation code. Instead, only the wrapper
objects that must be created several times are extracted
into lazy rules.

The transformation translates a SumEHR document,
which is effectively a KMEHR document with a header
and a folder that contains administrative patient data and
a “sumehr” type transaction. The sumehr transaction
contains a number of items of the following types:

• gmdmanager: the doctor that is responsible for
keeping the patient’s main medical record up-to-
date. It is translated to a custodian Practitioner
element in FHIR.

• contactperson: a key contact person of the pa-
tient, such as a family member or employer. It is
translated to a list of contact CodeableConcepts
in FHIR, embedded within the Patient element.

• socialrisk: a health-related risk originating from

Listing 1: Posology rule

rule Posology {
from
f : KMEHR!FolderType,
tx : KMEHR!TransactionType,
i : KMEHR!ItemType,
s : KMEHR!PosologyType (
i.posology = s and
tx.item->includes(i) and
f.transaction->includes(tx) and
i.isMedication)

to
t : FHIR!MedicationStatement mapsTo s (
id <- msid,
medication <- medCodRef,
status <- msstatus,
subject <- subRef,
effectivePeriod <- effectivePeriod,
dosage <- Sequence{dosage}),

msid : FHIR!Id (
value <- s.uuid),

medCodRef : FHIR!CodeableReference (
reference <- medRef),

medRef : FHIR!Reference (
reference <- thisModule.FhirString('

Medication/' + i.uuid)),
msstatus : FHIR!MedicationStatementStatusCodes

(
value <- #recorded),

subRef : FHIR!Reference (
reference <- thisModule.FhirString('Patient/'

+ f.patient.uuid)),
effectivePeriod : FHIR!Period (
start <- thisModule.FhirDateTime(i.

beginmoment),
end <- thisModule.FhirDateTime(i.endmoment)),

dosage : FHIR!Dosage (
timing <- timing),

timing : FHIR!Timing (
repeat <- repeat),

repeat : FHIR!TimingRepeat (
count <- thisModule.FhirPositiveInt(i.

dayperiod->size()),
periodUnit <- periodUnit,
when <- i.dayperiod->collect(dp | thisModule.

EventTiming(dp))),
periodUnit : FHIR!UnitsOfTime (
value <- #d)

}

the patient’s social context. It is not included in
a FHIR IPS document.

• risk: a health-related general risk for the patient.
It is not included in a FHIR IPS document.

• problem: an ongoing condition the patient suf-
fers from, or – if inactive – a historic condition.

Listing 2: Posology rule

rule PosologyWithUnitAndTakes extends Posology {
from
f : KMEHR!FolderType,
tx : KMEHR!TransactionType,
i : KMEHR!ItemType,
s : KMEHR!PosologyType (
not s.unit.oclIsUndefined() and
not s.takes.oclIsUndefined()

)
to
t : FHIR!MedicationStatement mapsTo s,
doseAndRate : FHIR!DosageDoseAndRate (
type <- thisModule.CodeableConcept(thisModule.

CodingWithDisplay(
'http://terminology.hl7.org/CodeSystem/dose-

rate-type',
'ordered',
'Ordered'

)),
doseQuantity <- doseQuantity

),
dosage : FHIR!Dosage (
doseAndRate <- Sequence{doseAndRate}

),
doseQuantity : FHIR!Quantity (
system <- qSys,
code <- qCode,
unit <- thisModule.FhirString(s.unit.cd.

toUnitsOfMeasureValue),
value <- thisModule.FhirDecimal(s.takes.high)

),
qSys : FHIR!Uri (
value <- 'http://unitsofmeasure.org'

),
qCode : FHIR!Code (
value <- '1'

)
}

It is translated to a Condition element in FHIR.
• medication: currently prescribed medication for

the patient. It is translated to a Medication ele-
ment in FHIR, with the embedded KMEHR Posol-
ogy being translated to a MedicationStatement
element in FHIR.

• vaccine: a vaccine/immunization the patient has
received in the past. It is translated to an Immu-
nization element in FHIR.

• adr: an adverse drug reaction that the patient suf-
fers from. It is translated to an AllergyIntolerance
element of type ”intolerance” in FHIR.

• allergy: an allergy the patient suffers from. It
is translated to an AllergyIntolerance element of
type ”allergy” in FHIR.

Listing 3: Posology rule

lazy rule FhirString {
from
s : String

to
t : FHIR!"fhir::String" (
value <- s

)
}

More types of information could be included in both
SumEHR and FHIR IPS, but for the purpose of the TTC
case, the types are limited to the ones listed.

In addition, the reference model transformation does
not (fully) translate between the medical coding systems
used in KMEHR and FHIR for the sake of simplicity, and
simply embeds the KMEHR medical codes within the
FHIR document. Submissions to this case should follow
the same strategy.

That said, a full translation would have to map addi-
tional medical coding systems in order to be complete,
notably units of measure6 and vaccine indication codes7.
Finally, a translation of the Belgian CNK codes for medi-
cation to the international ATC standard would be very
useful, but that would require incorporating a database
in the transformation, such as SAM8.

3. Task Description
There is a mandatory task and an optional task in this
case:

• The mandatory task is to re-implement or im-
prove the original transformation itself, in a way
that lends itself better to after-the-fact consis-
tency checking. Your transformation tool may
have better support for this, or ATL could bemade
to deal better with larger versions of this model.

• The optional task is to define the reverse trans-
formation that translates the generated FHIR IPS
document back to SumEHR.

Solutions can focus on efficiency, conciseness, or clar-
ity of presentation to the user. Clarity of presentation is
key for this kind of transformation, as domain experts
must typically validate the correctness of the transforma-
tion logic by reviewing the code.

6http://unitsofmeasure.org
7https://www.ehealth.fgov.be/standards/fhir/vaccination/
ValueSet-be-vs-vaccine-code.html

8https://www.samportal.be/

4. Benchmark Framework
If focusing on performance, the solution authors should
integrate their solution with the provided benchmark
framework. It is based on that of the TTC 2017 Smart Grid
case [7], and supports the automated build and execution
of solutions. For this specific case study, the visualisation
of the results is currently disabled.

The benchmark consists of three phases:

1. Initialization, which involves setting up the
basic infrastructure (e.g. loading metamodels).
These measurements are optional.

2. Load, which loads the input models.
3. Run, which runs the consistency checking, find-

ing a number of consistency violations in the mu-
tated DocBook model.

4.1. Solution requirements
Solutions should be forks of the main Github project9,
and should be submitted as pull requests.

Each solution wishing to use the benchmarking frame-
work should print to the standard output a line with the
following fields, separated by semicolons (“;”):

• Tool: name of the tool.
• Source: base name of the input KMEHR model

(e.g. “sumehr_example10.kmehr”).
• Target: base name of the output FHIR model (e.g.
“output.fhir”).

• RunIndex: index of the run of this combination
of tools and inputs.

• PhaseName: name of the phase being run. It
may be Initialization, Load, or Run.

• MetricName: the name of the metric. It may be
the Memory used (b) in bytes, the wall clock
Runtime (ns) spent in integer nanoseconds, or
the number of BundleEntries found in the output
FHIR model.

To enable automatic execution by the benchmark
framework, solutions should add a subdirectory to
the solutions folder of the benchmark with a
solution.ini file stating how the solution should be
built and how it should be run. As an example, the
solution.ini file for the reference solution is shown
on Listing 4. In the build section, the default option
specifies the command to build and test the solution, and
the skipTests option specifies the command to build the
solution while skipping unit tests. In the run section, the
cmd option specifies the command to run the solution.

The repetition of executions as defined in the bench-
mark configuration is done by the benchmark. For 3
9https://github.com/dwagelaar/ttc2023-kmehr2fhir

http://unitsofmeasure.org
https://www.ehealth.fgov.be/standards/fhir/vaccination/ValueSet-be-vs-vaccine-code.html
https://www.ehealth.fgov.be/standards/fhir/vaccination/ValueSet-be-vs-vaccine-code.html
https://www.samportal.be/
https://github.com/dwagelaar/ttc2023-kmehr2fhir

Listing 4: solution.ini file for the reference ATL solu-
tion

[build]
default=mvn package
skipTests=mvn package --skipTests=true

[run]
cmd=JAVA_OPTS="-Xms4g" \
java -cp target/reference-0.0.1-SNAPSHOT.jar:

target/dependency/* \
ttc2023.kmehr2fhir.reference.Driver $SourcePath

$TargetPath

runs, the specified command will be called 3 times, pass-
ing any required information (e.g. run index, or input
model name) through environment variables. Solutions
must not save intermediate data between different runs:
each run should be entirely independent.

The name and absolute path of the input model, the
run index and the name of the tool are passed using
environment variables Tool, SourcePath, TargetPath,
and RunIndex. Solution authors are suggested to study
the reference solution on how to use these values to run
their transformation.

4.2. Running the benchmark
The benchmark framework only requires Python 3.3 to
be installed. Furthermore, the solutions may require
additional frameworks. We would ask solution authors
to explicitly note dependencies to additional frameworks
necessary to run their solutions.

If all prerequisites are fulfilled, the benchmark
can be run using Python with the command python
scripts/run.py. Additional options can be queried us-
ing the option --help. The benchmark framework can be
configured through the config/config.json file: this
includes the input models to be evaluated (some of which
have been excluded by default due to their high cost with
the sample solution), the names of the tools to be run,
the number of runs per tool+model, and the timeout for
each command in milliseconds.

5. Evaluation
The evaluation will operate on several dimensions:

• How efficient is the approach in time and space
(memory)?

• How understandable is the transformation code
for domain experts to review and validate?

Acknowledgement
This paper used the TTC 2019 Live Case paper byAntonio
García-Domínguez and Georg Hinkel [8] as a template.

References
[1] KMEHR standard (v1.38), eHealth-platform, 2023.

Online: https://www.ehealth.fgov.be/standards/
kmehr/en.

[2] FHIR Specification (v5.0.0: R5), HL7 Community,
2023. Online: https://hl7.org/fhir/R5/.

[3] Summarised Electronic Healthcare Record v2.0,
eHealth-platform, 2016. Online: https://www.
ehealth.fgov.be/standards/kmehr/en/transactions/
summarised-electronic-healthcare-record-v20.

[4] International Patient Summary Implementation
Guide (v1.1.0), HL7 Community, 2022. Online: https:
//hl7.org/fhir/uv/ips/STU1.1/.

[5] J. Bézivin, Model driven engineering: An emerging
technical space, in: R. Lämmel, J. Saraiva, J. Visser
(Eds.), Proceedings of GTTSE 2005, Revised Papers,
volume 4143 of LNCS, Springer-Verlag, 2005, pp.
36–64. doi:10.1007/11877028_2.

[6] D. Wagelaar, M. Tisi, J. Cabot, F. Jouault, Towards a
general composition semantics for rule-based model
transformation, in: J. Whittle, T. Clark, T. Kühne
(Eds.), Proceedings of MoDELS 2011, volume 6981
of LNCS, Springer-Verlag, 2011, pp. 623–637. doi:10.
1007/978-3-642-24485-8_46.

[7] G. Hinkel, The TTC 2017 Outage System Case for In-
cremental Model Views, in: Proceedings of the 10th
Transformation Tool Contest, volume 2026, CEUR-
WS.org, Marburg, Germany, 2017, pp. 3–12. URL:
https://ceur-ws.org/Vol-2026/paper1.pdf.

[8] A. García-Domínguez, G. Hinkel, The TTC 2019
Live Case: BibTeX to DocBook, in: Proceedings
of the 12th Transformation Tool Contest, volume
2550, CEUR-WS.org, Eindhoven, The Netherlands,
2019, pp. 61–65. URL: https://ceur-ws.org/Vol-2550/
paper8.pdf.

https://www.ehealth.fgov.be/standards/kmehr/en
https://www.ehealth.fgov.be/standards/kmehr/en
https://hl7.org/fhir/R5/
https://www.ehealth.fgov.be/standards/kmehr/en/transactions/summarised-electronic-healthcare-record-v20
https://www.ehealth.fgov.be/standards/kmehr/en/transactions/summarised-electronic-healthcare-record-v20
https://www.ehealth.fgov.be/standards/kmehr/en/transactions/summarised-electronic-healthcare-record-v20
https://hl7.org/fhir/uv/ips/STU1.1/
https://hl7.org/fhir/uv/ips/STU1.1/
http://dx.doi.org/10.1007/11877028_2
http://dx.doi.org/10.1007/978-3-642-24485-8_46
http://dx.doi.org/10.1007/978-3-642-24485-8_46
https://ceur-ws.org/Vol-2026/paper1.pdf
https://ceur-ws.org/Vol-2550/paper8.pdf
https://ceur-ws.org/Vol-2550/paper8.pdf

	1 Introduction
	2 Case Structure
	3 Task Description
	4 Benchmark Framework
	4.1 Solution requirements
	4.2 Running the benchmark

	5 Evaluation

