
KMEHR to FHIR case solution with UML-RSDS
Kevin Lano1, Alireza Rouhi2

1King’s College London, Strand, London, UK
2Azabaijan Shahid Madani University, Tabriz, Iran

Abstract
The KMEHR to FMIR case is a large-scale transformation in the medical domain, translating content from the Belgium KMEHR
electronic health record (EHR) format to the international standard FHIR format. We analyse the existing ATL solution with
regard to measures of quality, and propose an improved solution using UML-RSDS. We show that this solution has eective
performance on the test models provided with the case. We also show how an inverse transformation can be constructed
from the UML-RSDS solution.

Keywords
Model transformation, UML-RSDS, ATL

1. Introduction
The existing ATL solution for this case [5] is a large-scale
transformation, consisting of 20 matched rules, 32 lazy
rules, 36 helper operations and 6 helper attributes. The
library package is 346 LOC, and the main transformation
module is 973 LOC. Some individual rules are also large
(over size 100 using the c-measure of syntactic complexity
from [1]).
Apart from the size of the transformation, there are

also other quality aspects which could hinder the under-
standing and maintenance of the transformation:

• Maximum OCL expression length (MEL): token
count of the largest subexpression within a rule,
considered to be a aw if greater than 10 [6]

• Excessive fan-out (EFO): more than a threshold
number (5) of dierent operations are called from
the rule [1]

• Excessive parameter length (EPL): more than a
threshold number (5) of rule input, output or local
variables [1]

• Excessive rule size (ERS): rule size c > 100 [1]
• Magic numbers (MGN): literal constants (other
than 0, 1, true, false, null, enumeration literals
and the empty string) are used within a rule

• Duplicated code (DC): exactly cloned sections of
a rule occurring in two or more rules.

High MEL, ERS, EFO and EPL in a rule can make compre-
hension of the rule dicult, and also increase the cost of

TTC’23: 15th Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, UK.
" kevin.lano@kcl.ac.uk (K. Lano); rouhi@azaruniv.ac.ir (A. Rouhi)
� 0000-0002-9706-1410 (K. Lano)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

testing it. MEL can also imply high memory use. MGN
and DC can increase the work needed for maintenance.

Table 1 summarises the quality issues of the matched
rules of the main transformation module of the ATL case
solution.
Overall, there are 85 quality aws in the main ATL

module rules, including 23 rules with MGN, 5 with ERS,
7 MEL cases and 4 exact clones. There are some incom-
pleteness issues, e.g., the mandatory feature title of an
FHIR Composition is not set by the SumEHRTransaction
rule or its extensions. The msgSender function is left
undened.

Some of these issues can be addressed by revising the
ATL specication, for example, the large number of magic
numbers can be removed by dening the constant val-
ues as helper attributes in a library. Rule inheritance
can be used to reduce rule size and EPL. Clones can be
refactored into helper operations. However, other is-
sues are dicult to resolve within ATL, in particular the
MEL case of size 110 tokens in the Folder rule, which
involves the union of several collections of FHIR Bundle
entries derived by specic mapping rules from dierent
kinds of KMEHR transactions. This arises because ATL
out pattern assignments cannot be split into dierent
steps which successively accumulate subsets of a com-
plex result, instead the entire result collection has to be
assembled in one expression and assigned in one step.
Similarly with the MEL case in SumEHRTransaction.
For these reasons, we decided to explore the possi-

ble improvement of the transformation by expressing
it in UML-RSDS, which has more powerful facilities for
decomposing complex transformation processing into
smaller and more comprehensible parts.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:kevin.lano@kcl.ac.uk
mailto:rouhi@azaruniv.ac.ir
https://orcid.org/0000-0002-9706-1410
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Table 1
Quality issues in the ATL transformation

Rule Issues

Folder c = 133, MEL (size = 110 tokens), EFO = 8
SumEHRTransaction c = 124, MEL (size = 25 tokens), EFO = 12, MGN = 6
SumEHRTransactionWithAuthor MGN = 3
SumEHRTransactionWithCustodian MGN = 4, DC: the refPrex out-pattern of these rules is

a parameterised clone.
Patient c = 99, EFO = 6, MEL (size = 16 tokens)
PatientContact DC: cloned out-pattern for humanName with Patient rule
Organization MGN = 1, DC: cloned out-patterns for oid, nihii, riziv with

Practitioner rule
Practitioner MGN = 1
Medication MEL (size = 15), this expression is also cloned in Vaccine (DC)
Posology c = 160, EPL = 11, MGN = 2
PosologyWithUnitAndTakes EPL = 6, MGN = 5
AllergyOrIntolerance c = 111, MGN = 12
AllergyOrIntoleranceWithCode MEL (size = 17 tokens), this expression is cloned in

ProblemWithCode (DC)
Problem c = 108, EFO = 6, MGN = 7
Vaccine c = 118, EPL = 7, MGN = 2, MEL (size = 15, DC)

2. Migrating from ATL to
UML-RSDS

The AgileUML toolset for UML-RSDS already contains
a parser and analyser for ATL, which translates ATL
rules and helpers into UML-RSDS use case postconditions
and operations, respectively, because use cases in UML-
RSDS express model transformations, corresponding to
ATL modules[2]. Quality aw analysis is performed on
the ATL source. As part of our work on this case, the
translation from ATL to UML-RSDS has been extended
to include the advanced ATL features used in the case:

• Rule and operation inheritance, including multi-
ple inheritance

• The mapsTo keyword to explicitly associate a
given source object of a rule to a specic target
object, for purposes of target resolution and trac-
ing.

Corresponding to ATL rule inheritance, UML-RSDS
has rule conjunction, which enables separation of dierent
target mappings into separate rules/postconditions.

For example, the ATL rules:

rule A2B {
from a : A
to b : B

(y <- a.x)
}

rule A2C extends A2B {
from a : A

to b : B (cs <- Set{c}),
c : C (z <- a.x->size())

}

are translated to:

A::
B->exists(b | b.$id = self.$id &

b.y = self.x)

A::
B->exists(b | b.$id = self.$id &
C->exists(c | c.$id = "c_" + $id &
c.z = self.x->size() & b.cs = Set{c}))

Because the $id attributes are identity attributes for each
entity A, B, C, the same B instance is updated by both
constraints, for a given A instance, so that eectively
the conjunction of the two inner predicates b.y = self .x
and c.z = self .x→size() & b.cs = Set{c} of the post-
conditions is achieved. Secondary output variables such
as c : C can also be shared and updated by both rules,
because of the key assignments c.$id = “c ”+ $id. Any
number of rules can be conjoined using this technique,
in particular multiple rule inheritance can be expressed.

The mapsTo keyword of ATL translates into predicates
linking the specic input and output elements by the
same identity value:

to
t : T mapsTo s (...)

for the rst out variable t of a rule and non-default source
s means that t.$id = s.$id in the UML-RSDS translation
instead of t.$id = self .$id.

Unlike with ATL rule inheritance, where only one child
rule in a rule family may be executed for a given input
element, in UML-RSDS any number of rules may execute
for a given element. This enablesmore exible splitting of
rules, in particular the Entity splitting pattern [3] can be
applied to dene separate rules to instantiate individual
target elements derived from a single source element,
thus reducing or eliminating EPL aws. Entity splitting
can also help to reduce ERS and EFO aws [4].
ATL also supports inheritance between lazy rules,

which correspond to use case operations in UML-RSDS.
This form of inheritance can be expressed in UML-RSDS
by conjunction of the operation postconditions of the in-
herited and inheriting operations, this applies in the same
manner as the conjunction of use case postconditions
(UML-RSDS transformation rules) given above.

To address MEL aws, ne-grained decomposition of
postconditions can be dened in UML-RSDS rules (use
case postconditions) or operations. In particular, assign-
ing a union of two or more collections to a target feature
g:

t.g = s.f1->union(s.f2)

can be split into multiple separate and simpler conjuncts:

s.f1 <: t.g & s.f2 <: t.g

within one rule succedent, or further split into separate
postconditions of successive rules. <: denotes the subset
operator⊆. Interpreted operationally it adds all elements
of the left argument to the right.
UML-RSDS provides (since 2014) the “Restrict input

ranges" pattern [3] to optimise rules which involve mul-
tiple linked input elements. This corresponds to the new
ATL Version 4.8 optimisation feature for this situation
[5].

3. Improved Solution in
UML-RSDS

The transformation was re-expressed in UML-RSDS us-
ing a similar set of main rules and auxiliary operations,
however with a greater degree of factoring to reduce the
number of clones and to exploit the similarities between
the processing involved in dierent ATL rules.
For example, several ATL rules call the

CodeableConcept and CodingWithDisplay opera-
tions together to wrap a Coding instance in a Codeable
instance. This double call can be replaced by a single
operation call of an operation CodeableConceptForCoding
which performs both the instance creation and wrapping.

As an example of translation and refactoring we con-
sider the ATL Patient rule. As detailed in Table 1 above,
this rule has MEL and DC aws. In its original form the
rule is:

rule Patient {
from
f : KMEHR!FolderType,
s : KMEHR!PersonType (

f.patient = s
)
to
t : FHIR!Patient mapsTo s (

id <- pid,
active <-
thisModule.FhirBoolean(true),

name <- Sequence{humanName},
gender <-
thisModule.AdministrativeGender(
s.sex),

birthDate <-
thisModule.FhirDate(s.birthdate),

address <- s.address,
telecom <- s.telecom,
contact <- f.transaction

->collect(tx | tx.item
->select(i | i.isContactPerson)
->collect(i |
i.content->collect(c | c.person))
)->flatten()

),
pid : FHIR!Id (

value <- s.uuid
),
humanName : FHIR!HumanName (

family <-
thisModule.FhirString(
s.familyname),

given <-
s.firstname->collect(fn |
thisModule.FhirString(fn))

)
}

The creation of humanName : HumanName is a dupli-
cate of the same coding in PatientContact. We there-
fore factored out this code into a called operation
PersonType2HumanName called from both rules. The
complex initialisation of the contact eld of the result
Patient is also factored out into a new called operation
allContactPersonInformation. These two refactorings re-
move a case of DC and reduce the MEL of the rule from
16 to 10. The revised rule in UML-RSDS is:

FolderType::
self.patient /= null &
patientx = self.patient =>
Patient->exists(fhirpx |

fhirpx.$id = patientx.$id &
Id.newId(AuxOps.uuid(patientx)) :
fhirpx.id &

fhirpx.active =
Set{

FhirBoolean.newFhirBoolean(
"true") } &

AuxOps.PersonType2HumanName(
patientx) :

fhirpx.name &
AuxOps.SexType2AdministrativeGender(

patientx.sex) :
fhirpx.gender &

fhirpx.address =
Address[patientx.address.$id] &

fhirpx.telecom =
ContactPoint[
patientx.telecom.$id] &

AuxOps.allContactPersonInformation(
self) <:

fhirpx.contact)

The rule length is reduced from 30 LOC to 15, and the c
measure from 99 to 95. Fan-out has been reduced from 6
to 5, removing an EFO aw.

The UML-RSDS transformation is organised using the
Phased construction and Object indexing patterns [3].
Phased construction is used to build complex target ob-
jects successively from their parts. Object indexing is
used for target object lookup, and to ensure that basic
types such as FhirBoolean and FhirString behave like value
types: there are not multiple instances of the types which
have the same values1. The transformation is represented
as a UML use case called mainModule. Auxiliary opera-
tions are placed in a class AuxOps, corresponding to the
ATL auxiliary module.

The UML-RSDS solution is provided in the umlrsds
directory in the case solutions folder on github. The
KMEHR metamodel, and the relevant subset of the FHIR
metamodel, are represented in KM3 format in the le
kmehr.km32. The forward transformation, together with
auxiliary operations, is dened in ttc23.km3. To pro-
duce an implementation for the transformation, these
les are successively loaded using the AgileUML File
menu option “Load metamodel → KM3". The speci-
cation should be type-checked (Analysis menu), and a
design generated (Synthesis menu), then code generated
using the “Java6" option on the Build menu. The gener-
ated Java code is placed in the kmehr subdirectory and
can be compiled using javac kmehr/Controller.java fol-
lowed by javac kmehr/GUI .java. The GUI can be run
as java kmehr/GUI , and provides a visual interface, the
loadXMLModel option loads in.xmi,mainModule runs the

1Provided that the target platform permits this. Some platforms
may require instead that separate copies of the same value are re-
tained.

2KMEHR and FHIR metamodel aws, such as the use of
UML/OCL keywords as class or feature names, have been manually
corrected in this version.

transformation, and saveModel saves the target model to
out.txt.

3.1. Quality improvement
The transformation clarity has been improved in several
aspects: (i) it is more concise, in particular the matched
rules part is reduced to 45% of the original length in terms
of LOC; (ii) a ‘bottom-up’ process is used to construct
complex target objects successively from simpler objects,
whereas the ATL transformation uses a top-down pro-
cess; (iii) explicit conversion of source elements to target
elements is used, whilst the ATL transformation uses
implicit conversion. For example, the UML-RSDS OCL
expression Address[patientx.address.$id] returns the col-
lection of FHIR Address instances corresponding to the
KMEHR AddressType instances in patientx.address; (iv)
clones and closely similar processing steps have been
replaced by calls of operations that factor out the dupli-
cated code; (v) the frequency of magic numbers and other
aws has been reduced. Table 2 compares the ATL and
UML-RSDS solutions for the matched rules. Rule length
is measured in LOC.

Table 2
Rule size (LOC) in ATL and UML-RSDS versions

Rule ATL UML-RSDS

DocumentRoot 8 5
Folder 25 12
SumEHRTransaction 48 24
SumEHRTransaction 24 7

WithAuthor
SumEHRTransaction 27 10

WithCustodian
Patient 30 15
Address 11 7
Telecom 16 11
PatientContact 23 11
Organization 23 7
Practitioner 27 8
Medication 23 7
Posology 54 13
PosologyWithUnitAndTakes 35 15
AllergyOrIntolerance 45 22
AllergyOrIntoleranceWithCode 20 7
Problem 39 24
ProblemWithCode 19 7
Vaccine 44 14

Total 541 226

The total number of ‘magic numbers’ in the matched
rules have been reduced from 47 to 13. TheMEL values of
matched rules have been reduced, in particular the MEL
for Folder has been reduced from size = 110 to 6, and the
MEL for SumEHRTransaction from size = 25 to 12. The

MEL over all matched rules has been reduced to 13 (for
DocumentRoot). The maximum c value of matched rules
has been reduced from 160 to 144. The 4 exact clones
and 1 parameterised clone of the ATL version have been
factored out. The Organization and Practitioner rules
are now closely similar and could be further factored.
Likewise for Patient and PatientContact.
On the other hand, although the rule and operation

inheritance organisation in the ATL version has been
retained in UML-RSDS, the explicit inheritance relations
in ATL are only implicitly represented in the UML-RSDS
version by the fact that the related rules operate on in-
stances of the same source types3.

3.2. Performance
The UML-RSDS transformation was tested on the pro-
vided examples. The protocol dened in [5] was fol-
lowed. Table 3 shows the average execution time of the
UML-RSDS transformation (runtime of the transforma-
tion not including loading) on each input model, using
three independent executions. These times are for Java
version 1.8 with 25% processor allocation on a 4-core
Windows 10 laptop with Intel i5-7440HQ CPU at 2.8GHz,
8GB RAM. Standard Java settings are used, except that
for the largest model the stack size was increased to 8MB:
java -Xss8m (needed for XML parsing, rather than the
transformation itself). Memory use was measured using
the Windows task manager. In Figure 1 we compare the
execution times with the reported times for the runtime
of the reference solution. Both solutions appear to have
exponential time complexity, although more data points
would be needed to conrm this.

Table 3
Performance of UML-RSDS version

Input Execution Output model Memory
model time (ms) size (KB) use (MB)

1 31.3 77 64
10 56.3 440 457
100 194.3 4171 780
1000 3857 42560 1073

The produced output models are provided in the
umlrsds solution repository on Github.

4. Inverse Transformation
Apart from facilitating formal analysis, the logical expres-
sion of transformation rules in UML-RSDS also supports

3The AgileUML tools do however issue warnings when two
rules may update the same target object, as in the case of matched
rule inheritance.

Figure 1: Runtimes of ATL and UML-RSDS solutions

the synthesis of inverse transformations in many cases
[2]. For certain forms of predicates Succ which may ap-
pear in a rule postcondition, an inverse Succ∼ can be
dened. For example, an assignment t.g = Set{s.f } in-
verts to s.f = t.g→any(). The inverse of a rule

A::
PCond(a) =>
B->exists(b | b.$id = $id &

SCond(b) & Succ(a,b))

for invertible Succ is:

B::
SCond(b) =>
A->exists(a | a.$id = $id &

PCond(a) & Succ~(a,b))

The inverse rule expresses an invariant of the forward
transformation.

The task of the inverse transformation in the KMEHR
to FHIR case is to reconstruct the KMEHR source infor-
mation from a FHIRmodel which has been built using the
forward transformation. A common situation in the for-
ward transformation is the assignment of some function
of a source attribute to a target attribute, of the form

t.g = expr(s.f)

If an inverse function expr∼ exists, then this assign-
ment inverts to s.f = expr∼(t.g). Likewise, t.g =
Set{expr(s.f)} inverts to s.f = expr∼(t.g→any()).
Thus in the UML-RSDS version of the Address rule, the
assignment

addrx.postalCode =
Set{FhirString.newFhirString(self.zip)}

inverts to:

self.zip = addrx.postalCode.any.value

Specic inverse functions may need to be introduced, eg.,
to invert the addressLine() operation of an AddressType
instance to recover the individual street, housenumber
and postboxnumber values from the tab-separated con-
catenation of these values. In some cases the basic map-
pings of values are not injective (e.g., the mapping of
gender designations from KMEHR to FHIR, where both
#changed and #undened values in KMEHR map to
#other in FHIR). For these cases the inverse will néed to
be custom-coded for the specic problem.
The inverse of a→collect(x | expr(x)) assembly is

a →collect of expr∼ values. For example:

t.given =
s.firstname->collect(fn |

FhirString.newFhirString(fn))

inverts to

s.firstname =
t.given->collect(gn | gn.value)

In general, the FHIR metamodel and representation
is more elaborate than the KMEHR representation, so
that one KMEHR object may map to a group of linked
FHIR objects (e.g., a TelecomType instance maps to linked
ContactPoint, ContactPointSystem and ContactPointUse
instances). Therefore the inverse transformation needs
to combine information from multiple FHIR objects to
populate the corresponding KMEHR object.

For example, the ContactPoint rule:

TelecomType::
ContactPoint->exists(contactx |
contactx.$id = self.$id &
ContactPointSystem->exists(cpsys |
cpsys.$id = "cpsys_" + $id &
cpsys.value = self.system() &
ContactPointUse->exists(cpuse |
cpuse.$id = "cpuse_" + $id &
cpuse.value =
self.contactPointUse() &

cpsys : contactx.system &
cpuse : contactx.use &
FhirString.newFhirString(

telecomnumber->trim()) :
contactx.value)))

inverts to the rule:

ContactPoint::
cpsys : self.system &
cpuse : self.use =>
TelecomType->exists(telex |
telex.$id = self.$id &
CDTELECOM.newCDTELECOM(cpsys.value) :

telex.cd &
telex.telecomnumber =

self.value.any.value)

We have dened inverse rules for the Patient rule and
all rules that contribute to the PersonType to Patient map-
ping, so that it is possible to recover KMEHR PersonType
information from an FHIR Patient. The inverse transfor-
mation is dened by the fhir2kmehr use case.
In some cases, source information is not mapped to

the target, e.g., the text of an allergy or intolerance. In
such cases there is no way to reconstruct the complete
source information from the target.

The inverse transformation is implemented in the same
way as the forward transformation. The inverse transfor-
mation, together with auxiliary operations, is dened in
fhir2kmehr.km3. kmehr.km3 and fhir2kmehr.km3 are
successively loaded using the AgileUML File menu option
“Load metamodel→ KM3". Rename the specication to
fhir2kmehr (File menu, rst option). The specication
should be type-checked (Analysis menu), and a design
generated (Synthesis menu), then code generated using
the “Java6" option on the Build menu. The generated
Java code is placed in the fhir2kmehr subdirectory and
can be compiled using javac fhir2kmehr/Controller.java
followed by javac fhir2kmehr/GUI .java. The GUI can
be run as java fhir2kmehr/GUI , the loadModel option
loads in.txt (this should be the same le out.txt produced
by the forward transformation), mainModule runs the
transformation.

Conclusions
We have described an alternative solution to the KMEHR
to FHIR case, using UML-RSDS to provide a more concise
version of the transformation, with improved quality
measures compared to the original. The eciency of this
solution is satisfactory and it can also be used to construct
an inverse transformation from FHIR to KMEHR.

References
[1] S. Kolahdouz Rahimi, K. Lano et al, A comparison

of quality aws and technical debt in model trans-
formation specications, JSS, 2020.

[2] K. Lano, Agile Model-based Development using UML-
RSDS, CRC Press, 2016.

[3] K. Lano et al., A survey of MT design patterns in
practice, JSS, 140, pp. 48–73, 2018.

[4] A. Rouhi, K. Lano, Towards a pattern-based model
transformation framework, Software: Practice and
Experience, 2023.

[5] D. Wagelaar, The TTC 2023 KMEHR to FHIR Case,
TTC 2023, STAF 2023.

[6] M. Wimmer, S. Martinez, F. Jouault, J. Cabot, A
Catalogue of Refactorings for model-to-model trans-
formations, Journal of Object Technology, vol. 11,
no. 2, 2012, pp. 1–40.

	1 Introduction
	2 Migrating from ATL to UML-RSDS
	3 Improved Solution in UML-RSDS
	3.1 Quality improvement
	3.2 Performance

	4 Inverse Transformation

