
A BXtendDSL Solution to the TTC2023 Asymmetric and
Directed Bidirectional Transformation for Container
Orchestrations Case
Thomas Buchmann1,*,†

1Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf

Abstract
Container orchestration is a critical component in the realm of DevOps practices, enabling the efficient management of
containers within complex application architectures. However, a significant challenge arises in reconciling the disparity
between high-level graphical representations of container orchestration models and the concrete configuration files essential
for container orchestration tools. To address this issue, this paper proposes a novel bidirectional and asymmetric transformation
approach, facilitating the translation from container orchestrations to MiniYAML through the utilization of BXtendDSL, a
hybrid bidirectional and incremental model-to-model transformation language capable of supporting both declarative and
imperative specification of model transformations. The paper presents the proposed solution, outlining the transformation
rules, and assesses the effectiveness of the approach using benchmark criteria.

Keywords
container orchestration, bidirectional transformations, model merging, graphical models, YAML, BXtendDSL

1. Introduction
The transformation case described in this paper is of sig-
nificant relevance to DevOps engineers and addresses
real-world scenarios. Leite et al. [1] define DevOps as
a collaborative and multidisciplinary effort within orga-
nizations to automate the continuous delivery of new
software versions while ensuring correctness and relia-
bility. With the increasing interest in DevOps, various
domain-specific modeling notations have been created,
covering aspects like microservice architectures [2], De-
vOps processes [3], and multi-cloud applications [4].

DevOps heavily relies on tools that facilitate auto-
mated deployment, often accomplished by reading declar-
ative descriptions written in structured formats like
YAML1. These structured formats adhere to loosely de-
fined schemas that may evolve across different versions,
exemplified by the Docker Compose file format 2.

The proposed case draws inspiration from Piedade et
al. [5] and revolves around container orchestration using
Docker Compose. It entails transforming an Ecore [6]
model representing the abstract syntax of a high-level
graphical DSL for container orchestration into another
Ecore model representing the abstract syntax of a Docker
Compose YAML file. The transformation must be bi-
directional, allowing changes in both models to be prop-

TTC’23, 15th Transformation Tool Contest, July 20, 2023, Leicester, UK
$ thomas.buchmann@th-deg.de (T. Buchmann)
� https://tbuchmann.github.io/ (T. Buchmann)
� 0000-0002-5675-6339 (T. Buchmann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://yaml.org/
2https://docs.docker.com/compose/compose-file/

agated back and forth seamlessly. Additionally, changes
in the high-level graphical DSL should be conveyed to
the YAML file while preserving elements containing in-
formation that cannot be represented in the high-level
DSL.

This transformation case results in a directed but asym-
metrical transformation process. In this paper, we present
our solution to this proposed transformation using BX-
tendDSL [7, 8, 9], our hybrid language designed for bidi-
rectional and incremental model transformations.

The paper is structured as follows: In Section 2, we pro-
vide an overview about BXtendDSL. Section 3 describes
both the declarative and imperative parts of our solution
to the transformation case, followed by a detailed evalu-
ation according to different criteria in Section 4. Section
5 concludes the paper.

2. BXtendDSL
BXtendDSL [7, 8, 9] is a state-based framework for defin-
ing and executing bidirectional incremental model trans-
formations on demand that is based on EMF [6] and the
programming language Xtend3. It builds upon BXtend
[10], a framework that follows a pragmatic approach
to programming bidirectional transformations, with a
special emphasis on problems encountered in the practi-
cal application of existing bidirectional transformation
languages and tools.

When working with the stand-alone BXtend frame-
work, the transformation developer needs to specify both
transformation directions separately, resulting in BXtend

3https://eclipse.dev/Xtext/xtend/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:thomas.buchmann@th-deg.de
https://tbuchmann.github.io/
https://orcid.org/0000-0002-5675-6339
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://yaml.org/
https://docs.docker.com/compose/compose-file/

transformation rules with a significant portion of repeti-
tive code.

To this end, BXtendDSL adds a declarative layer on top
of the BXtend framework, which significantly reduces the
effort required by the transformation developer. Figure
1 depicts the layered approach of our tool: First, the
external DSL (BXtendDSL Declarative) is used to specify
correspondences declaratively. Second, the internal DSL
(BXtendDSL Imperative) is employed to add algorithmic
details of the transformation that can not be expressed
on the declarative layer adequately.

Transformation code
(BXtendDSL Declarative)

Hand written code
(BXtendDSL Imperative)

Generated code
(BXtend)

Framework code
(BXtend)

+

Transformation code
(BXtend)

Transformation
developer

Source model
Correspondence

model
Target model

Figure 1: Layered approach used in BXtendDSL

The handwritten code and the generated code are com-
bined with framework code to provide for an executable
transformation. The transformation developer is relieved
from writing repetitive routine parts of the transforma-
tion manually using a code generator. The generated
code ensures round-trip properties for simple parts of
the transformation. Since the declarative DSL usually
is not expressive enough to solve the transformation
problem at hand completely, the generated code must
be combined with handwritten imperative code. Certain
language constructs of the declarative DSL define the in-
terface between the declarative and the imperative parts
of the transformation. From these constructs, hook meth-
ods are generated, the bodies of which must be manually
implemented. Hook methods are used, e.g. for imple-
menting filters or actions to be executed in response to
the deletion or creation of objects, etc.

Incremental change propagation relies on a persis-
tently stored correspondence model, which allows for m
: n correspondences between source and target model
elements. A powerful internal DSL may be used at the
imperative level, to retrieve correspondence model ele-
ments associated with a given element from the source
and target models, respectively. Please note that the trans-
formation developer does not have to deal with managing
correspondences at the declarative level, rather all the al-

gorithmic details of managing the correspondence model
are handled by our framework automatically.

3. Solution
In this section, we explain the details of our BXtendDSL
solution for the Asymmetric and Directed Bidirectional
Transformation for Container Orchestrations. We will
discuss the different layers in separate subsections. The
sources for our solution are publicly available on Github:
GitHub

3.1. Declarative Layer
BXtendDSL code at the declarative layer is used to define
transformation rules between elements of source and
target models respectively. Listing 1 depicts the code for
the transformation at the declarative layer.

1 sourcemodel "http://york.ac.uk/ttc/containers/1.0.0"
2 targetmodel "http://york.ac.uk/ttc/miniyaml/1.0.0"
3

4 rule Volume2MapEntry
5 src Volume v;
6 trg MapEntry me | filter;
7

8 v.name <--> me.key;
9

10 rule Image2MapEntry
11 src Image img;
12 trg MapEntry me | filter, creation;
13

14 img.image <--> me.value;
15

16 rule VolumeMount2Scalar
17 src VolumeMount vm;
18 trg Scalar sc | filter;
19

20 vm.path vm.volume --> sc.value;
21

22 rule Container2MapEntry
23 src Container c;
24 trg MapEntry me | filter;
25

26 c.name <--> me.key;
27 c.image c.replicas c.dependsOn {c.volumeMounts:

VolumeMount2Scalar} --> me.value {me.value:
VolumeMount2Scalar};

28 c.image c.replicas c.dependsOn <-- me.value;
29

30 rule Composition2Map
31 src Composition c;
32 trg Map m | filter, creation;
33

34 {c.nodes: Image2MapEntry, Container2MapEntry, Volume2MapEntry}
--> m.entries {m.entries: Image2MapEntry,
Container2MapEntry, Volume2MapEntry};

35 c.nodes <-- m.entries {m.entries: Image2MapEntry[img],
Container2MapEntry[c], Volume2MapEntry[v]};

Listing 1: BXtendDSL code at the declarative layer

The code at the declarative layer comprises the trans-
formation rules for all required model elements. Each
rule consists of src and trg patterns. The trg patterns con-
tain modifiers, such as filter and creation, which result in
the generation of hook methods. The implementation of
the hook methods is described in Section 3.2. After declar-
ing the src and trg patterns in each rule, the respective

https://github.com/tbuchmann/benchmarxTTC2023

mappings are declared. Mappings may be bidirectional,
depicted by the double arrow <-->, or specified for a
certain transformation direction, for example, forward
(-->) or backward (<--). A very simple bidirectional
mapping is depicted in Line 8 of Listing 1: the attribute
name of a Volume is assigned to the attribute key of a
MapEntry and vice versa.

Note that BXtendDSL was intentionally left incomplete
when designed to keep the language as simple and as
small as possible. To this end, we did not incorporate
an expression language into BXtendDSL. Instead, we
decided to apply the generation gap pattern [11] and
generate hook methods that are called from the generated
code at the respective steps during the transformation.
Bodies for hook methods are supplied at the imperative
layer using the Xtend programming language.

Consequently, a mapping that has one element on each
side of the arrow may be transformed directly into exe-
cutable code. Hook methods are generated for mappings
with more than one element on one side of the arrow
symbol. The mapping depicted in line 20 of Listing 1
is used to map the attributes path and volume to the at-
tribute value of the target pattern. Because the declarative
language does not comprise mechanisms to describe how
the two attributes are mapped to a single attribute on the
target side, a hook method is generated (cf., Listing 2).

The transformation specification on the declarative
layer also comprises mappings of (containment) refer-
ences between the elements of the source and target
models. Lines 27 and 28 depict the respective mapping
in the forward and backward directions. In the forward
direction (Line 27), the cross reference image, attribute
replicas, cross reference dependsOn, and containment ref-
erence volumeMounts of the class Container are mapped
to the respective MapEntry in the YAML model. Please
note that BXtend rules are executed in their textual or-
der specified in the BXtendDSL declarative file. That is,
rules Volume2MapEntry, Image2MapEntry, and VolumeMo-
unt2Scalar are executed before rule Container2MapEntry.
Thus, we can be sure that all the elements required for
this mapping actually exist and can be retrieved. The
syntax of the mapping specified in line 27 contains curly
brackets. This indicates that for this feature, the corre-
spondence/trace model is accessed to obtain the respec-
tive model elements from the source and target models.
The specification of this mapping also results in the gen-
eration of a hook method, which is used to describe all
the algorithmic details to realize this mapping on the
imperative layer.

Rule Composition2Map (c.f., Line 30-35 in Listing 1)
maps the root elements of both models. These elements
(transitively) contain all other model elements via refer-
ences nodes and entries. To realize the transformation,
this rule is executed after all other rules are executed to
ensure that the respective model elements actually exist

when they are assigned to the containment references of
the source and target root elements. In the forward direc-
tion, Images, Containers, and Volumes are assigned to the
respective entries of the target Map. Again, please note
that curly brackets are used to access the correspondence
model and retrieve the already existing target elements
for Images, Containers, and Volumes. A similar mapping
is required for the backward transformation (see Line 35
in Listing 1).

3.2. Imperative Layer
On the imperative layer, the bodies for hook methods
must be supplied. This holds for the specification of
modifiers (e.g., filter or creation), as well as for mappings
where further information is required, which cannot be
supplied using the declarative language.

Listing 2: Hook method for mapping attributes path and
volume to Scalar.value

1 override protected valueFrom(String path, Volume
volume) {

2 return new Type4value(volume.name + ":" + path)
3 }

Listing 2 shows the imperative code that is required
to realize the mapping vm.path vm.volume --> sc.value, as
depicted in Line 20 of Listing 1. The value attribute of the
scalar is a concatenation of the name of the Volume and
the path, separated by ":".

Please note that this rule does not specify the back-
ward direction; rather, it is addressed in the imperative
code for mapping c.nodes <-- m.entries ... from the rule
Composition2Map in Listing 1.

Listing 3 depicts the code required on the imperative
layer to realize the rule Image2MapEntry, as specified in
Lines 10-14 in Listing 1.

Listing 3: Imperative code for rule Image2MapEntry

1 override protected filterMe(MapEntry me) {
2 me.key == "image"
3 }
4
5 override protected onMeCreation(MapEntry me) {
6 me.key = "image"
7 }
8
9 override protected valueFrom(String image) {

10 new Type4value(MiniyamlFactory.eINSTANCE.
createScalar() =>

11 [value = image])
12 }
13
14 override protected imageFrom(Value value) {
15 return new Type4image(((value as Scalar).value))

16 }

The implementation of the modifiers filter and creation
is shown in Lines 1-7 of Listing 3. The modifiers result
in the generation of methods filterMe and onMeCreation,
and the transformation developer only needs to supply a
body to realize the desired behavior. In this case, an Image
from the container model is transformed into a MapEntry
of the YAML model. The corresponding MapEntry has a
key attribute with the value "image". The filter is applied
when transforming in backward direction and it is used
to filter all MapEntry elements from the target model and
only retrieve the ones whose key attribute contains the
value "image".

Methods valueFrom and imageFrom are hook methods
that are generated from the mapping depicted in Line
14 of Listing 1. Note that in this case, the mapping only
contains a single element on each side of the arrow, but
the respective attributes are of different types. Thus,
hook methods are required to specify how these types
are mapped onto each other. In the forward direction
(method valueFrom), the "image" String is transformed
into a Scalar, where the attribute value is assigned to the
value attribute of the scalar. The value of this attribute is
returned in the backward direction.

Listing 4: Imperative code for mapping specified in Line
27 of Listing 1

1 override protected valueFrom(Image image, int
replicas,

2 List<Container> dependsOn, List<Scalar> volSc,
3 Value oldValue) {
4 var entry = yamlFactory.createMap()
5 if (replicas > 1) {
6 val me = yamlFactory.createMapEntry() =>
7 [key = "replicas"
8 value = yamlFactory.createScalar() =>
9 [value = "" + replicas]

10]
11 entry.entries += me
12 }
13 if (image !== null)
14 entry.entries += (elementsToCorr.get(image).

getTarget()
15 .get(0) as SingleElem).element as MapEntry
16 if (!dependsOn.isEmpty) {
17 val me = createMapEntry("depends_on")

18 val list = me.value as miniyaml.List
19 for (Container c : dependsOn)
20 list.values += yamlFactory.createScalar() =>
21 [s | s.value = c.name]
22 entry.entries += me
23 }
24 if (!volSc.empty) {
25 val me = createMapEntry("volumes")
26 val list = me.value as miniyaml.List
27 for (Scalar s : volSc) {
28 list.values += s
29 }
30 entry.entries += me
31 }
32 ...

33 new Type4value(entry)

Listing 4 depicts the imperative code that is required
to realize the mapping of image, replicas, dependsOn and
volumeMounts attributes and references of a Container to
respective MapEntrys in forward direction. The impera-
tive code contains several conditional blocks that need
to be processed if certain conditions hold, for example,
if the value of the integer attribute replicas is > 1. In this
case, a new MapEntry with appropriate key-value pairs
is created and added to the parent Map. If additional
MapEntrys are required for dependencies and volumes,
they are also created using this hook method. Respective
entries are then also added to the map, which is then
returned at the end of the hook method.

4. Evaluation
The aim of the proposed transformation case is to an-
swer research questions concerning conciseness (i.e., how
much specification effort is required to solve this case
with current bx tools), preservation of information that
cannot be mapped on the other model, and scalability (i.e.,
how well the proposed solution scales with increasing
model sizes).

To this end, the transformation is classified accord-
ing to the evaluation criteria discussed in the following
subsections.

4.1. Correctness
The correctness of the transformation may be verified
using two different and supplied comparators. The
MiniYAMLComparator ignores the order of elements in
the respective models, whereas the MiniYAMLExactCom-
parator also considers the ordering of elements.

MiniYAMLComparator The BXtendDSL solution
passes all supplied tests (forward, backward, incre-
mental forward) for the benchmarx testsuite using the
MiniYAMLComparator; for example, we achieved 100%
correctness in this case.

MiniYAMLExactComparator For the MiniYAMLEx-
actComparator, the BXtendDSL solution passes eight out
of nine batch forward tests, seven of eight batch back-
ward tests, and four of five incremental forward tests,
which leads to a correctness rate of 86.4%. The following
test cases fail, due to incorrect ordering of elements in
a multi-valued reference: completeModel in both Batch-
Forward and BatchBackward, as well as updateReplicas in
IncrementalForward

4.2. Conciseness
To measure the conciseness of the transformation spec-
ification, nodes in the respective AST/ASG of the lan-
guages used should be counted. To this end, solution
developers are required to provide specific implementa-
tions of the AST-counter. In our case, an AST-counter
for the BXtendDSL language and an AST-counter for the
Xtend programming language are required. However,
an additional problem remains. First, BXtend does not
provide static libraries; rather, framework code is gen-
erated specifically for each transformation. That is, the
project contains a significant portion of the generated
Xtend and Java code, which must be excluded when the
AST nodes are computed. Furthermore, large parts of the
Xtend code that are used to implement hook methods on
the imperative layer are generated as well. Consequently,
the transformation developer is required to specify only
the bodies of the respective languages. However, an AST-
counter works on a valid source code, that is, an Xtend
class that has no compile errors and counts all nodes
present in the class. This would lead to incorrect results
because large parts of the generated code would be con-
sidered. From our understanding, however, conciseness
should only take the parts of the code into account that
the transformation developer must supply to make the
transformation work. To this end, we decided to provide
conciseness information using the LOC metrics defined
in [12] and [13]. We further split up the numbers into
code required on the declarative and the imperative layer
respectively. Table 1 presents the results.

BXtendDSL BXtendDSL
Declarative Imperative

Lines of code 32 202
Number of words 100 788
Number of characters 862 5967

Table 1
Size of the transformation definitions of both solutions

The results clearly indicate that a significant portion of
the transformation was specified on the imperative layer.
This is due to the asymmetric nature of the transforma-
tion case, which cannot be handled adequately in the
declarative layer of BXtendDSL. However, the resulting
transformation specification is still concise if we compare
it to similar transformation cases such as AST2Dag [14].

4.3. Least Change
Beyond correctness, the transformation should preserve
additional information in the YAML file that cannot be
expressed in the Containers model. When executing the
transformation in the two modes (MiniYAMLComparator,
which checks the general correctness, and MiniYAMLEx-

actComparator, which also considers the order of ele-
ments in the YAML model), we observe that the trans-
formation can preserve the additional information spec-
ified in the YAML file, but not in the exact order of ele-
ments. Test cases specified in class IncrementalForward
were considered for this test. While the BXtendDSL so-
lution achieves 100% accuracy for Mode 2, it passes four
out of five tests for Mode 1, resulting in an accuracy of
80% when the exact order of the elements matters.

4.4. Scalability
To measure how well the transformation scales to mod-
els with increasing numbers of containers, volumes, and
images, different scalability tests have been executed in
the forward and backward directions, as well as both in
batch and incremental situations. We attempted to com-
pare the results of BXtendDSL to the provided reference
implementation, but unfortunately, the backward mea-
surements failed with errors on our computers. To this
end, only the plots for batch forward and incremental
forward transformations contain data for the reference
implementation as well. All scalability tests were per-
formed on the same computer in isolation to avoid side
effects. A desktop PC with an AMD Ryzen 7 3700x CPU
was used, running at a standard clock of 3.60 GHz, with
32 GB of DDR4 RAM and Microsoft Windows 11 64-bit as
the operating system. We used Java 13.0.2, Eclipse 4.27.0,
and EMF version 2.33.0, to compile and execute Java code
for the scalability test suite. Each test was repeated five
times, and the median measured time was computed.

For each test, we used the provided class for scalability
measurements, which created models of increasing sizes
up to 1000 elements. BXtendDSL proves to scale very
well with increasing model sizes, as depicted by the plots
for batch forward (c.f., Figure 2), incremental forward
(c.f., Figure 3), batch backward (c.f., Figure 4), and incre-
mental backward (c.f., Figure 5). Please note that two
plots are given per figure: one with linear scaling of the
x and y axes and the other with logarithmic scaling. The
linear plot is meant to provide a realistic impression for
the actual complexity curve of the BXtendDSL solution
compared to the reference implementation. The logarith-
mic plots help zoom into finer details for smaller models
(practically invisible in the linear plot), and zoom out for
larger models so even large differences in runtime can
still be presented qualitatively.

5. Conclusion
The BXtendDSL solution provided for the asymmetric
and directed bidirectional transformation for the con-
tainer orchestration case has proven to be concise, suffi-
ciently correct, and scalable.

model elements

tim
e

in
 s

0

200

400

600

800

200 400 600 800

Reference BXtendDSL

Batch Forward: Reference Implementation and BXtendDSL

model elements

tim
e

in
 s

0,01

0,1

1

10

100

60 80 100 200 400 600 800

Reference BXtendDSL

Batch Forward: Reference Implementation and BXtendDSL

Figure 2: Forward batch transformation: Linear/linear scale (left) and log/log scale (right)

model elements

0

250

500

750

1000

200 400 600 800

Reference BXtendDSL

Incremental Forward: Reference Implementation and
BXtendDSL

model elements

0,01

0,1

1

10

100

60 80 100 200 400 600 800

Reference BXtendDSL

Incremental Forward: Reference Implementation and
BXtendDSL

Figure 3: Forward incremental transformation: Linear/linear scale (left) and log/log (right)

Because BXtendDSL allows us to specify details of
the transformation on both declarative and imperative
levels, the transformation developer may choose (almost)
freely which programming paradigm is best suited for the
transformation problem at hand. A combination of both
results in high expressive power while simultaneously
maintaining low specification effort at the same time.

The transformation case revealed small bugs in the

code generation engine, which was used to generate exe-
cutable code from declarative specifications. Thus, minor
tweaks of the generated code are required. These issues
have already been addressed, and will be incorporated
into BXtendDSL in the upcoming release.

model elements

tim
e

in
 s

0

10

20

30

40

200 400 600 800

BXtendDSL Reference

Batch Backward: Reference Implementation and BXtendDSL

model elements

tim
e

in
 s

0,01

0,1

1

10

60 80 100 200 400 600 800

BXtendDSL Reference

Batch Backward: Reference Implementation and BXtendDSL

Figure 4: Backward batch transformation: Linear/linear scale (left) and log/log (right)

model elements

tim
e

in
 s

0

10

20

30

40

200 400 600 800

BXtendDSL Reference

Incremental Backward: Reference Implementation and
BXtendDSL

model elements

tim
e

in
 s

0,01

0,1

1

10

60 80 100 200 400 600 800

BXtendDSL Reference

Incremental Backward: Reference Implementation and
BXtendDSL

Figure 5: Backward incremental transformation: Linear/linear scale (left) and log/log (right)

References
[1] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles,

A Survey of DevOps Concepts and Challenges,
ACM Computing Surveys 52 (2020). doi:10.1145/
3359981.

[2] J. Sorgalla, P. Wizenty, F. Rademacher, S. Sach-
weh, A. Zündorf, Applying Model-Driven Engi-
neering to Stimulate the Adoption of DevOps Pro-
cesses in Small and Medium-Sized Development
Organizations, SN Computer Science 2 (2021).
doi:10.1007/s42979-021-00825-z.

[3] A. Colantoni, L. Berardinelli, M. Wimmer, De-
vOpsML: towards modeling DevOps processes and
platforms, in: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engi-
neering Languages and Systems: Companion Pro-
ceedings, ACM, Virtual Event Canada, 2020. doi:10.
1145/3417990.3420203.

[4] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lush-
penko, A. Solberg, CloudMF: Model-Driven Man-
agement of Multi-Cloud Applications, ACM Trans-
actions on Internet Technology 18 (2018). doi:10.
1145/3125621.

[5] B. Piedade, J. P. Dias, F. F. Correia, Visual no-
tations in container orchestrations: an empirical
study with Docker Compose, Software and Sys-
tems Modeling 21 (2022) 1983–2005. doi:10.1007/
s10270-022-01027-8.

[6] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks,
EMF Eclipse Modeling Framework, The Eclipse Se-
ries, 2nd ed., Addison-Wesley, Boston, MA, 2009.

[7] M. Bank, T. Buchmann, B. Westfechtel, Combin-
ing a declarative language and an imperative lan-
guage for bidirectional incremental model trans-
formations, in: S. Hammoudi, L. F. Pires, E. Sei-
dewitz, R. Soley (Eds.), Proceedings of the 9th
International Conference on Model-Driven En-
gineering and Software Development, MODEL-

SWARD 2021, Online Streaming, February 8-10,
2021, SCITEPRESS, 2021, pp. 15–27. URL: https:
//doi.org/10.5220/0010188200150027. doi:10.5220/
0010188200150027.

[8] T. Buchmann, M. Bank, B. Westfechtel, Bxtenddsl:
A layered framework for bidirectional model
transformations combining a declarative and an im-
perative language, J. Syst. Softw. 189 (2022) 111288.
URL: https://doi.org/10.1016/j.jss.2022.111288.
doi:10.1016/j.jss.2022.111288.

[9] T. Buchmann, M. Bank, B. Westfechtel, Bx-
tenddsl at work: Combining declarative and im-
perative programming of bidirectional model trans-
formations, SN Comput. Sci. 4 (2023) 50. URL:
https://doi.org/10.1007/s42979-022-01448-8. doi:10.
1007/s42979-022-01448-8.

[10] T. Buchmann, Bxtend - A framework for
(bidirectional) incremental model transformations,
in: S. Hammoudi, L. F. Pires, B. Selic (Eds.),
Proceedings of the 6th International Confer-
ence on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2018, Fun-
chal, Madeira - Portugal, January 22-24, 2018,
SciTePress, 2018, pp. 336–345. URL: https://
doi.org/10.5220/0006563503360345. doi:10.5220/
0006563503360345.

[11] M. Fowler, Domain-Specific Languages, The
Addison-Wesley signature series, Addison-Wesley,
2011. URL: https://martinfowler.com/books/dsl.
html.

[12] A. Anjorin, T. Buchmann, B. Westfechtel, The Fam-
ilies to Persons Case, in: Proceedings of the 10th
Transformation Tool Contest, volume 2026, CEUR-
WS.org, Marburg, Germany, 2017, pp. 27–34. URL:
http://ceur-ws.org/Vol-2026/paper2.pdf.

[13] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin,
H.-S. Ko, R. Eramo, G. Hinkel, L. Samimi-
Dehkordi, A. Zündorf, Benchmarking bidirec-
tional transformations: theory, implementation,

http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1007/s42979-021-00825-z
http://dx.doi.org/10.1145/3417990.3420203
http://dx.doi.org/10.1145/3417990.3420203
http://dx.doi.org/10.1145/3125621
http://dx.doi.org/10.1145/3125621
http://dx.doi.org/10.1007/s10270-022-01027-8
http://dx.doi.org/10.1007/s10270-022-01027-8
https://doi.org/10.5220/0010188200150027
https://doi.org/10.5220/0010188200150027
http://dx.doi.org/10.5220/0010188200150027
http://dx.doi.org/10.5220/0010188200150027
https://doi.org/10.1016/j.jss.2022.111288
http://dx.doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.1007/s42979-022-01448-8
http://dx.doi.org/10.1007/s42979-022-01448-8
http://dx.doi.org/10.1007/s42979-022-01448-8
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563503360345
http://dx.doi.org/10.5220/0006563503360345
http://dx.doi.org/10.5220/0006563503360345
https://martinfowler.com/books/dsl.html
https://martinfowler.com/books/dsl.html
http://ceur-ws.org/Vol-2026/paper2.pdf

application, and assessment, Software and Sys-
tems Modeling 19 (2020) 647–691. doi:10.1007/
s10270-019-00752-x.

[14] O. Hacker, T. Buchmann, NICE: A flexible ex-
pression language, in: F. J. D. Mayo, L. F.
Pires, E. Seidewitz (Eds.), Proceedings of the 11th
International Conference on Model-Based Soft-
ware and Systems Engineering, MODELSWARD
2023, Lisbon, Portugal, February 19-21, 2023,
SCITEPRESS, 2023, pp. 63–74. URL: https://doi.org/
10.5220/0011712700003402.

http://dx.doi.org/10.1007/s10270-019-00752-x
http://dx.doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.5220/0011712700003402
https://doi.org/10.5220/0011712700003402

	1 Introduction
	2 BXtendDSL
	3 Solution
	3.1 Declarative Layer
	3.2 Imperative Layer

	4 Evaluation
	4.1 Correctness
	4.2 Conciseness
	4.3 Least Change
	4.4 Scalability

	5 Conclusion

