
Asymmetric and Directed Bidirectional Transformation for
Container Orchestrations with YAMTL and EMF-Syncer
Artur Boronat

1

1School of Computing and Mathematical Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, UK

Abstract

Container orchestration plays a vital role in DevOps practices, enabling efficient management of containers within complex

application architectures. However, a challenge arises in bridging the gap between high-level graphical representations of

container orchestration models and the concrete configuration files required by container orchestration tools. This paper

proposes a bidirectional and asymmetric transformation approach from container orchestrations to MiniYAML using YAMTL,

a unidirectional model-to-model transformation language, and the EMFSyncer, a bidirectional object syncer. We explore

the integration of YAMTL and the EMFSyncer to leverage their complementary strengths. The paper outlines the solution,

presents the transformation rules, and discusses the evaluation of the solution using benchmark criteria.

Keywords
Incremental model-to-model transformation, asymmetric transformation, EMF.

1. Introduction
In recent years, DevOps practices have gained significant

traction in software development, emphasizing the col-

laboration between development and operations teams

to achieve automated and continuous delivery of soft-

ware. As part of the DevOps process, container orches-

tration has become a crucial aspect, enabling the efficient

management of containers within complex application

architectures. Docker Compose, a popular container or-

chestration tool, allows developers to define and manage

multi-container applications.

However, a challenge arises when attempting to bridge

the gap between the high-level graphical representation

of container orchestration models and the concrete con-

figuration files required by container orchestration tools.

This transformation problem [1] involves translating a

domain-specific model, representing container orchestra-

tions, into YAML documents that adhere to the specific

requirements of Docker Compose.

The proposed case is bidirectional and asymmetric.

The transformation should not only support the con-

version from the container orchestration model to the

YAML document but also enable the reverse process. This

bidirectional nature allows developers to update and syn-

chronize changes made in either the model or the YAML

document. However, the Docker Compose YAML file

contains strictly more information than the high-level

TTC’23: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, United Kingdom.
$ artur.boronat@leicester.ac.uk (A. Boronat)

� https://arturboronat.info (A. Boronat)

� 0000-0003-2024-1736 (A. Boronat)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

model, and any changes made in the high-level model

should preserve those changes made in the configuration

files.

In this paper, we present our solution for the trans-

formation problem from container orchestrations to

MiniYAML using YAMTL [2], a unidirectional model-

to-model transformation language, and the EMF-Syncer

[3, 4], a bidirectional object syncer. While YAMTL and

the EMF-Syncer are designed for distinct use cases, in

this paper, we explore their integration to harness their

complementary strengths.

The structure of the paper is as follows: Section 2 pro-

vides a brief introduction to the YAMTL language and

to the EMF-Syncer ; Section 3 describes an outline of

the YAMTL solution; Section 4 presents the transforma-

tion definitions; Sections 5 and 6 show how to setup the

synchronization process; Section 7 assesses the solution

against the evaluation criteria of the benchmark; and

Section 8 discusses the evaluation of the solution with

the benchmark criteria.

2. YAMTL and EMF-syncer

2.1. YAMTL
YAMTL [5, 2] is a model transformation language for EMF

models, with support for incremental execution [4, 3],

which can be used as an internal language of any JVM

language. For this paper, we have chosen its Groovy

dialect.

A YAMTL model transformation is defined as a mod-

ule, a class specializing the class YAMTLModule, containing

the declaration of transformation rules. Each rule has

an input pattern for matching variables and an output

pattern for creating objects. An input pattern consists of

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:artur.boronat@leicester.ac.uk
https://arturboronat.info
https://orcid.org/0000-0003-2024-1736
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

in elements together with a global rule filter condition,

which is true if not specified. Each of the in elements is

declared with a variable name, a type and a local filter

condition, which is true if not specified. An output pat-

tern consists of out elements, each of which is declared

with a variable name, a type and an action block. Fil-

ter conditions and action blocks are specified as Groovy

closures
1

.

When applying a YAMTL transformation to an input

model, the pattern matcher finds all rule matches that

satisfy local filter conditions. When a total match is found,

the satisfaction of that match is finally asserted by the

rule filter condition. Once all matches are found, the

transformation engine computes an output match for

each input match using the expressions in the out action

blocks of the corresponding rule.

The YAMTL engine has been extended with an incre-

mental execution mode, which consists of two phases:

the initial phase, the transformation is executed in batch

mode but, additionally, tracks feature calls in objects of

the source model involved in transformation steps as

dependencies; and the propagation phase, the transforma-

tion is executed incrementally for a given source update

and only those transformation steps affected by the up-

date are (re-)executed. This means that components of

YAMTL’s execution model have been extended but the

syntax used to define model transformations is preserved.

Hence, a YAMTL batch model transformation can be ex-

ecuted in incremental mode, without any additional user

specification overhead.

In YAMTL transformations, changes made to the in-

put model after the initialization phase can be tracked

using the EMF adapter framework, and these changes

are linked to specific in or out elements in a rule. As a

result, only the action blocks of those elements are re-

executed. However, when an out element is re-executed,

the features of its matched object are reset to execute the

associated action block. While this approach prevents

the introduction of duplicities and ensures correctness,

it does not retain changes made in the output model

through independent concurrent changes. Furthermore,

resetting features that are subsequently updated in the

action block means that large parts of the input model

are removed via containment references and added again.

Such changes are also propagated to the output model.

Hence, this is the reason for using the EMF-Syncer to

synchronize the output model 𝑌1 of the transformation

with the target model 𝑌2.

2.2. EMF-Syncer
Given two EMF models, EMF-Syncer matches them and

then synchronizes their contents.

1
For a more detailed description of the YAMTL language, the

reader is referred to [2], including multiple rule inheritance.

Model synchronization can be performed from source

to target via the operation forwardSync or from target

to source via the operation backSync. EMF-Syncer au-

tomatically infers structural similarities between object-

oriented data models by mapping object structural fea-

tures by name, when found, translating both attribute

and reference values during the synchronization process.

When explicit matching is used, structural similarities

are inferred using the similarity relation via the oper-

ation match(). The generic similarity relation defined

over objects takes into account their attribute features

and the absolute position of the object within the model.

The aforementioned generic mapping strategy that is

built in EMF-Syncer can be customized in order to allow

for more complex data transformations between the data

models involved. A domain-specific mapping strategy is

declared with a mapping specification that maps a source

feature type to a target feature type, possibly including

feature value transformations, either from source to tar-

get, or from target to source, or both. Two main custom

mapping strategies can be declared: renaming of feature

types and transformation of feature values.

The synchronization process can be performed using a

push-based model (EAGER mode), where the entire source

program state is migrated, or using a pull-based model

(LAZY mode), where only those feature values accessed

in the target program are migrated.

Once two models have been synchronized, changes

that have been applied to an EMF model can be incre-

mentally propagated to their model counterpart. Such

changes are detected using the EMF adapter framework.

Incrementality in the EMF-Syncer entails that only the

changes performed in a model that was synchronized are

propagated and merged within the counterpart model.

3. Solution outline
The solution consists of a pattern formed by a incremen-

tal YAMTL transformation 𝑡 from source model 𝑆 to a

new target model 𝑇1, from different metamodels, and

an EMF forward syncing process syncF 0 with explicit

matching between the transformation target model 𝑇1

and a possibly existing target model 𝑇2, conforming to

the same metamodel. The model 𝑇2 may receive changes

𝜑𝑇 directly, in addition to those received via 𝑡. The dia-

gram in Figure 1 depicts the pattern of chained transfor-

mations based on commutative diagrams.

A source model change 𝛿𝑆 and a target model change

𝜑𝑇 can occur concurrently. The source model change

𝛿𝑆 is propagated along the YAMTL transformation 𝑡
that has already been initialized via YAMTL’s operation

propagate (𝑝 for short in the diagram), inducing a tar-

get change 𝛿𝑇 . 𝛿𝑇 is represented as a dashed arrow in

the diagram because it handled by the tool internally.

𝑆 𝑇1 𝑇2

𝑆′ 𝑇 ′
1 𝑇 ′

2

𝑆𝑖 𝑇 𝑖
1 𝑇 𝑖

2

𝛿𝑆,1

𝑡

𝛿𝑇,1

syncF0

𝜑𝑇,1

𝛿𝑆,𝑖

𝑝1

𝛿𝑇,𝑖

syncF1

𝜑𝑇,𝑖

𝑝𝑖 syncF𝑖

Figure 1: Pattern of chained transformations.

𝐶 𝑌1 𝑌2

𝐶 𝑌 ′
1 𝑌 ′

2

𝛿𝑆

c2y

𝛿𝑇

syncF0

𝜑𝑇

𝑝1 syncF1

Figure 2: Instantiation of the pattern.

A second syncing process syncF 𝑝 with explicit match-

ing is used to reconcile the changes 𝛿𝑇 and 𝜑𝑇 . Subse-

quent change propagations are represented by additional

diagrams, where transformations are labelled with the

exponent 𝑖.
The parameters of the pattern are the source model 𝑆

(and its metamodel), the target model 𝑇 (and its meta-

model), the transformation definition 𝑡, and the source

and target model changes 𝛿𝑆 and 𝜑𝑇 . The pattern needs

to be instantiated twice, once for each direction of the

transformation.

Figure 2 illustrates how the pattern is instantiated to

transform a container model into a YAML configuration.

Figure 3 shows how the reconciliation process works

in syncF 1, which is embodied by an explicit matching

process, which computes the alignment of the models 𝑌 ′
1

and 𝑌 ′
2 and the parts that are dissimilar. The part of the

model present in 𝑌 ′
1 but not in 𝑌 ′

2 is propagated to the

model 𝑌 ′
2 via syncF 1. Finally the delta 𝛿𝑇 applied to 𝑌 ′

2

is propagated to 𝑌 ′′
2 .

Section 4 shows the model transformation defini-

tion c2y . Section 5 shows how the top row of

transformations are configured and executed in the

method initiateSynchronisationDialogue of the

benchmark. Section 6 shows how the subsequent rows

of change propagations are executed in the method

performAndPropagateSourceEdit of the benchmark.

𝑌 ′
1 𝑌 ′

2

𝑌 ′′
2

syncF1

match

𝛿𝑇

Figure 3: Syncing process syncFp with explicit matching.

4. Transformation
Container2MiniYAML

The transformation from Containers to MiniYAML is

defined in YAMTLGroovy. The module defining the for-

ward transformation is defined as follows:

1 classYAMTLContainersToMiniYAMLextendsYAMTLModule {
2 publicYAMTLContainersToMiniYAML_helpers(EPackage CMM,

EPackage YMM) {
3 header().in('cmm',CMM).out('ymm',YMM)
4 ruleStore([/* rule declaration */])
5 helperStore([/* helper operations */])
6 }
7 }

Listing 1: Transformation definition: module declaration.

The transformation rules in the forward transforma-

tion module are defined as follows:

1 rule('Composition2MainMap')
2 .in('c', CMM.composition)
3 .out('m', YMM.map, {
4 m.entries.add(mapEntry('version', scalar('2.4')))
5 m.entries.add(
6 mapEntry('services', map(
7 fetch(c.getNodes().findAll{itinstanceof

Container}))))
8 m.entries.add(
9 mapEntry('volumes', map(

10 fetch(c.getNodes().findAll{itinstanceofVolume})
)))

11 }),
12
13 rule('Container2MapEntry')
14 .in('cn', CMM.container)
15 .out('meContainer', YMM.mapEntry, {
16 def cn = fetch('cn')
17 defmeContainer = fetch('meContainer')
18 meContainer.key = cn.name
19 meContainer.value = map
20 })
21 .out('map', YMM.map, {
22 def cn = fetch('cn')
23 def map = fetch('map')
24 if (cn.image)
25 map.getEntries().add(
26 mapEntry('image', scalar(cn.image.image)))
27 if (cn.replicas != 1)
28 map.getEntries().add(
29 mapEntry('replicas',

scalar(cn.replicas.toString())))

30 if (cn.volumeMounts)
31 map.getEntries().add(
32 mapEntry('volumes', list(fetch(cn.volumeMounts))))
33 if (cn.dependsOn)
34 map.getEntries().add(
35 mapEntry('depends_on', list(

cn.dependsOn.collect{scalar(it.name)}
)))

36 }),
37
38 rule('VolumeMount2Scalar')
39 .in('vm',CMM.volumeMount)
40 .out('s', YMM.scalar, {
41 s.value = "${vm.volume.name}:${vm.path}"
42 }),
43
44 rule('Volume2MapEntry')
45 .in('v',CMM.volume)
46 .out('me', YMM.mapEntry, {
47 me.key = v.name
48 })

Listing 2: Transformation definition: rule declaration.

The helper operations in the forward transformation

module are defined as follows:

1 def YFactory = MiniyamlFactory.eINSTANCE;
2
3 def scalar(String text) {
4 def sc = YFactory.createScalar()
5 sc.value = text
6 sc
7 }
8 def map(entries) {
9 def map = YFactory.createMap()
10 map.entries += entries
11 map
12 }
13 def mapEntry(key,value) {
14 def me = YFactory.createMapEntry()
15 me.key = key
16 me.value = value
17 me
18 }
19 def list(values) {
20 def map = YFactory.createList()
21 map.values += values
22 map
23 }

Listing 3: Transformation definition: helper declaration.

The backward transformation, from the metamodel

MiniYAML to the metamodel Containers, is declared in

a separate module. The transformation rules in the back-

ward transformation module are defined as follows:

1 rule('MainMap2Composition')
2 .in('m', YMM.map).filter{ m.eContainer() ==null }
3 .out('c', CMM.composition),
4
5 rule('MapEntry2Container')
6 .in('m', YMM.mapEntry)
7 .filter { m.eContainer()?.eContainer()?.key == 'services'

}

8 .out('c', CMM.container, {
9 c.name = m.key

10 addToRoot(m, c)
11
12 def image = getFieldValue(m, 'image')
13 if (image)
14 c.image = fetch(image, 'im', 'Scalar2Image',
15 ['root': m.eContainer().eContainer().eContainer()])
16
17 def replicas = getFieldValue(m, 'replicas')?.value
18 if (replicas) c.replicas = (replicasasint)
19
20 def volumes = getFieldValue(m, 'volumes')?.values
21 if (volumes)
22 c.volumeMounts +=fetch(volumes, 'vm',

'Scalar2VolumeMount')
23
24 defdependsOnItem = getFieldValue(m,

'depends_on')?.values?.value
25 if (dependsOnItem) {
26 dependsOnItem.each{ depName ->
27 def list = fetch(allInstances(YMM.mapEntry))
28 .findAll{itinstanceofContainer}
29 def dep = list.find{ it.name==depName}
30 if (dep) c.dependsOn.add(dep)
31 }
32 }
33 }),
34
35 rule('Scalar2Image').isUniqueLazy()
36 .in('s', YMM.scalar)
37 .out('im', CMM.image, {
38 im.image = s.value
39 def c = fetch(root)
40 c.nodes.add(im)
41
42 }),
43
44 rule('Scalar2VolumeMount').isUniqueLazy()
45 .in('s', YMM.scalar).filter { s.value.contains(':') }
46 .out('vm', CMM.volumeMount, {
47 def parts = s.value.split(':')
48 vm.volume = fetch(allInstances(YMM.mapEntry))
49 .findAll{ itinstanceofVolume }
50 .find{ v -> v.name==parts[0]}
51 vm.path = parts[1];
52 }),
53
54 rule('MapEntry2Volume')
55 .in('m', YMM.mapEntry)
56 .filter { m.eContainer()?.eContainer()?.key == 'volumes' }
57 .out('v', CMM.volume, {
58 v.name = m.key
59 addToRoot(m, v)
60 })

Listing 4: Backward transformation definition.

5. Initiate Synchronization
Dialogue

The synchronization dialogue starts by configuring the

YAMTL engine, shown in Listing 5, and the EMF-Syncer

engine, shown in Listing 6.

The transformation is initialized by in-

stantiating the transformation module.

YAMTLGroovyExtensions.init(xform) initializes the

transformation module adding syntactic sugar for calling

helper operations. The transformation is instantiated

as INCREMENTAL with granularity level ELEMENT and

feature calls are tracked within the package containers.

These configuration options enable YAMTL to track

feature calls within the package containers for the

Container metamodel, and incremental evaluation

will be performed at the level of in and out elements,

without having to match/re-execute the entire rule.

The input model is loaded using the operation

loadInputResource(), the transformation is exe-

cuted via the operation execute(), and the input

model is adapted to listen for notifications using

adaptInputModel("cmm"), where "cmm" is the name of

the domain to be adapted.

1 xform = newYAMTLContainersToMiniYAML(
2 ContainersPackage.eINSTANCE,
3 MiniyamlPackage.eINSTANCE);
4 YAMTLGroovyExtensions.init(xform);
5 xform.setExecutionMode(ExecutionMode.INCREMENTAL);
6 xform.setIncrementalGranularity(
7 IncrementalGranularity.ELEMENT);
8 xform.adviseWithinThisNamespaceExpressions(
9 List.of("containers..*"));
10 xform.loadInputResources(Map.of("cmm", source));
11 xform.execute();
12 xform.adaptInputModel("cmm");

Listing 5: YAMTL configuration.

The EMF-Syncer is configured with pushed-based syn-

chronization mode via enableEagerMode. Lines 3-7 in

Listing 6 configure the two domains of the syncer, which

correspond to the EMF metamodel MiniYAML. The out-

put model 𝑌1 of the YAMTL transformation is set as the

source model of the syncer in lines 8-10, whereas the

target model is set to the target model 𝑌2 in lines 11-

13. The synchronization is then performed by matching

the overlapping elements in 𝑌1 and 𝑌2 and the comple-

ment 𝑌1∖𝑌2 is then merged into 𝑌2 via the operation

forwardSync.

1 syncer = new EMFSyncer();
2 syncer.enableEagerMode();
3 var miniyamlDomain = newEMFSyncerParameter_EMF(
4 "miniyaml",
5 Map.of("pk", MiniyamlPackage.eINSTANCE));
6 syncer.setSourceModelHandler(miniyamlDomain);
7 syncer.setTargetModelHandler(miniyamlDomain);
8 syncer.setSourceModel(
9 xform.getOutputModel("ymm").getContents()
10 .stream().map(o ->

(Object)o).collect(Collectors.toList()));
11 syncer.setTargetModel(
12 target.getContents()

13 .stream().map(o ->
(Object)o).collect(Collectors.toList()));

14 syncer.match();
15 syncer.forwardSync();

Listing 6: EMF-Syncer configuration.

6. Performing and propagating
source change

The propagation of the source edit is then performed

by propagating all changes tracked for the model 𝐶′

in domain "cmm" via xform.propagateDelta("cmm").

The synchronization is then performed by matching

the overlapping elements in 𝑌 ′
1 and 𝑌 ′

2 and the com-

plement 𝑌 ′
1∖𝑌 ′

2 is then merged into 𝑌 ′
2 via the operation

forwardSync.

1 edit.accept(getSourceModel());
2 xform.propagateDelta("cmm");
3 syncer.match();
4 syncer.forwardSync();

Listing 7: Propagating source changes.

7. Evaluation
The current solution, available at https://github.com/

arturboronat/benchmarx/ (as a fork of the case repos-

itory), implements the pattern that synchronizes a con-

tainer model 𝐶 with an existing miniYAML model 𝑌2.

This includes accommodating subsequent edits on both

the source 𝐶 and the target 𝑌2. Reverse synchronization

has also been implemented, with the pattern partially

used as the case only needs batch backward transforma-

tions.

Correctness. The solution successfully passes batch

forward, forward incremental, and batch backward tests,

without considering the order of the references.

Principle of Least Change. In this solution, the EMF-

Syncer calculates the components of the model 𝑌1 that

differ from those in 𝑌2. Differencing is based on model

matching using a generic similarity relation, which is

computed considering the shape of an object and its posi-

tion relative to the containment structure, excluding the

full graphical structure. Once two objects are matched

as similar, the emerging graphical structure from each

object is compared, and differing references are marked

as conflicts that need to be resolved. After performing

a match(), when the EMF conducts a forwardSync(),

it merges the differing parts of the source model into

the target model. The operation match() is performed

incrementally in subsequent runs.

https://github.com/arturboronat/benchmarx/
https://github.com/arturboronat/benchmarx/

Conciseness vs Runtime. For this solution, we used

an experimental version of YAMTL and EMF-Syncer that

employ a Groovy dialect of the YAMTL transformation

language and replace native AspectJ for detecting feature

calls with a proxy-based mechanism using SpringAOP.

Model transformations are thus defined using Groovy as

the host language, with YAMTL serving as an internal

DSL for developing model transformations.

Both changes simplify the configuration and improve

readability of transformations, at the cost of sacrificing

runtime performance. Groovy provides syntactic flexi-

bility for customizing syntax. For instance, the matched

object of an in or out pattern element in a rule can be

accessed within the corresponding filter or action block

without the need to explicitly declare the variable. This

is possible due to dynamic typing in Groovy, which, how-

ever, means that typing information is not available to

assist in traditional code completion. On the other hand,

by using SpringAOP, there is no need to define aspects

explicitly when defining a new transformation.

Groovy classes are compiled to Java bytecode using

the Gradle plugin ’groovy’, resulting in poorer runtime

performance compared to when Java classes are used.

However, YAMTL enables the definition of model trans-

formations in Xtend or Java, using native aspects, for

optimizing transformations defined in YAMTL.

Scalability. The scalability of the transformation is

shown in Figure 4 using benchmark scalability tests. The

runtime of the batch forward transformation seems to

grow approximately quadratically with the number of

containers. Conversely, the incremental forward trans-

formation demonstrates a more linear relationship with

the number of containers. Analyzing the plotted data,

we observe that the Incr. FWD runtime increases more

slowly with the number of containers compared to the

Batch FWD runtime. This suggests that the Incr. FWD
transformation has a near-constant runtime when com-

pared to the Batch FWD transformation. This is a positive

result considering that the incremental step involves re-

executing a YAMTL transformation for 𝐶′
, matching the

incrementally updated miniYAML model 𝑌 ′
1 with the

edited one 𝑌 ′
2 , and propagating additions from 𝑌1 to 𝑌 ′

1 .

8. Conclusions
The solution presented in this paper successfully ad-

dresses the transformation problem from container or-

chestrations to MiniYAML. The implementation supports

the synchronization of a container model with an exist-

ing MiniYAML model, facilitating subsequent edits on

either the source or the target. The solution also incorpo-

rates the principle of least change, where only differing

parts of the models are updated, ensuring efficient model

synchronization.

The solution demonstrates correctness, passing batch

forward, forward incremental, and batch backward tests.

The pattern used for synchronization is partially used for

reverse synchronization, as the case only requires batch

backward transformations. Despite its correctness, the

solution trades off runtime performance for the sake of

conciseness and readability. Using the Groovy dialect for

YAMTL transformation language and replacing native

AspectJ with a proxy-based mechanism for detecting fea-

ture calls resulted in easier configuration and readability,

but at the expense of runtime performance. Despite the

performance trade-off, the solution exhibits good scala-

bility.

Overall, the proposed solution effectively solves the

transformation problem, providing a robust, scalable, and

bidirectional transformation mechanism between con-

tainer orchestration models and MiniYAML documents.

Future work could explore further optimizing the runtime

performance while maintaining the benefits of readability

and ease of configuration.

References
[1] A. Garcia-Dominguez, Asymmetric and di-

rected bidirectional transformation for con-

tainer orchestrations, 2023. URL: https:

//www.transformation-tool-contest.eu/TTC_

2023_paper_3-v2.pdf.

[2] A. Boronat, Expressive and efficient model transfor-

mation with an internal dsl of Xtend, in: Proceedings

of the 21th ACM/IEEE International Conference on

MoDELS, ACM, 2018, pp. 78–88.

[3] A. Boronat, Code-first model-driven engineering:

On the agile adoption of MDE tooling, in: Proceed-

ings of the 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2019), San

Diego, CA, November 11-15, ACM, 2019.

[4] A. Boronat, EMF-Syncer: scalable maintenance of

view models over heterogeneous data-centric soft-

ware systems at run time 1619-1374 (2023). URL:

https://doi.org/10.1007/s10270-023-01111-7.

[5] A. Boronat, Incremental execution of rule-based

model transformation, International Journal on Soft-

ware Tools for Technology Transfer 1433-2787 (2020).

URL: https://doi.org/10.1007/s10009-020-00583-y.

doi:10.1007/s10009-020-00583-y.

https://www.transformation-tool-contest.eu/TTC_2023_paper_3-v2.pdf
https://www.transformation-tool-contest.eu/TTC_2023_paper_3-v2.pdf
https://www.transformation-tool-contest.eu/TTC_2023_paper_3-v2.pdf
https://doi.org/10.1007/s10270-023-01111-7
https://doi.org/10.1007/s10009-020-00583-y
http://dx.doi.org/10.1007/s10009-020-00583-y

50 100 150 200 250 300 350 400 450
Number of Containers

0

5

10

15

20

Ru
n

Ti
m

e
(s

)

Run Time Comparison of Two Transformations
Batch FWD
Incr. FWD

Figure 4: Runtime (seconds) for the scalability tests (forward and incremental forward)

	1 Introduction
	2 YAMTL and EMF-syncer
	2.1 YAMTL
	2.2 EMF-Syncer

	3 Solution outline
	4 Transformation Container2MiniYAML
	5 Initiate Synchronization Dialogue
	6 Performing and propagating source change
	7 Evaluation
	8 Conclusions

