
Incremental MTL vs. GPLs: Class into Relational Database
Schema
Sandra Greiner1, Stefan Höppner2, Frédéric Jouault3,4, Théo Le Calvar5 and Mickael Clavreul3,4

1Software Engineering Group - University of Bern, 3012 Bern, Switzerland
2University of Ulm, 89069 Ulm, Germany
3University of Angers, LERIA, 49000 Angers, France
4ESEO-TECH / ERIS, 49100 Angers, France
5IMT Atlantique, LS2N (UMR CNRS 6004), France

Abstract
Model transformation languages (MTLs) are domain-specific languages tailored to express model-to-model transformation
programs. In contrast to general-purpose languages (GPLs), MTLs typically offer specific higher-level syntactic constructs,
such as rules, and specific features, such as automatic traceability support. Moreover, some MTLs allow for multiple execution
modes, such as incremental or bidirectional, based on a single specification. Many MTLs have been proposed over the past
decades, but GPLs are still widely used to write model transformations in practice. Previous work has identified some reasons
for this, in the context of the batch execution mode, such as the fact that modern GPLs are not much more verbose than
MTLs. Our working hypothesis is that the situation is different for other execution modes. Therefore, this transformation
tool contest case calls for incremental solutions implemented using various MTLs and GPLs, with the purpose of building a
data set consisting of labeled solutions specified in diverse languages. The overall objective is to leverage this data set to gain
a better understanding whether MTLs are better suited than GPLs to perform incremental tasks.

Keywords
Incremental Transformations, Model-Driven Software Engineering, Model Transformation Languages

1. Introduction
Within the Model Driven Engineering methodology,
model transformation languages (MTLs) are typically seen
as the best means of expressing model transformations.
However, many transformations are defined in general
purpose languages (GPLs), particularly, in real-world sit-
uations, which poses several challenges [1]. One main
issue is a lack of understanding of the benefits and func-
tionality of MTLs compared to GPLs [2]. This can lead
to "hidden" model transformations that may not be ex-
plicitly denoted as such, and the unawareness that a
transformation is performed.

To address this problem, the aim of the Incremental
Class2Relational transformation tool contest case is to
compare GPL solutions specified in heterogeneous lan-
guages, such as Python, Java, C#, and Xtend, with MTL
solutions, focusing on their syntactic complexity [3]. For

TTC’23: 15th Transformation Tool Contest, Part of the Software Tech-
nologies: Applications and Foundations (STAF) federated conferences,
Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20 July 2023,
Leicester, UK.
$ sandra.greiner@unibe.ch (S. Greiner);
stefan.hoeppner@uni-ulm.de (S. Höppner);
frederic.jouault@eseo.fr (F. Jouault);
theo.le-calvar@imt-atlantique.fr (T. Le Calvar);
Mickael.CLAVREUL@eseo.fr (M. Clavreul)
� 0000-0001-8950-0092 (S. Greiner)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

comparing the solutions, we require submissions to label
their transformation code with the syntactic complex-
ity of each statement (see Section 3.3) and the purpose
the statement serves for in the transformation process.
By comparing the complexity of these languages, we
can guide software developers in deciding which type of
language to use and provide suggestions for developing
transformation-specific language support in GPLs.

Through the tool case, our goal is to evaluate and
compare the case solutions and work towards a journal
paper that examines the differences between GPLs and
MTLs for writing incremental transformations answering
the following research questions:

RQ 1: How does the distribution of incremental transfor-
mation parts, such as model loading and saving or trans-
formation rules, of GPLs compare with MTLs?

RQ 2: How do GPLs differ from MTLs in terms of the
number of errors?

RQ 3: In which situations are transformation DSLs better
than GPLs for incremental transformations, and in which
parts of the development process?

With RQ1 we aim to investigate how well aspects of
incremental transformations are abstracted in dedicated
MTLs and how much ‘effort’ it takes to reimplement
these abstractions in a general purpose programming lan-
guage. Literature and language developers often claim,

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:sandra.greiner@unibe.ch
mailto:stefan.hoeppner@uni-ulm.de
mailto:frederic.jouault@eseo.fr
mailto:theo.le-calvar@imt-atlantique.fr
mailto:Mickael.CLAVREUL@eseo.fr
https://orcid.org/0000-0001-8950-0092
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

that using MTLs reduces the amount of errors that are
introduced during development [2, 1]. Through the sub-
missions for this case and our benchmarking framework
(see Section 3.1&4.2), we aim to provide empirical data
for this discussion by answering RQ2. The overall goal
of our work is to assess the usefulness of MTLs and GPLs
for specifying incremental model transformations. RQ3
addresses this goal. We try to answer it based on exam-
ining the solution submissions for this transformation
case.

To attract a large number of solution submissions, our
transformation case is an incremental variant of the well-
known ‘Class2Relational’ transformation [4]. We mea-
sure the success of each submitted solution by assessing
whether it produces a correct target model for a given
source model, and whether it is properly labeled.

Different variants of the Class2Relational transforma-
tion exist in literature, such as a transformation of entire
Ecore models into self-defined relational database schema
[5], or as part of language specifications [6] and exam-
ples thereof [7]. While these transformations may be
beneficial to address real-world scenarios, it is complex
to define them as batch transformation and, thus, even
harder to define proper incremental behavior. To pursue
our goal of attracting a multitude of solutions in diverse
languages, we decided to reduce the transformation size
and complexity to focus on concise and key incremental
scenarios apparent in the Class2Relational transforma-
tion. For the same reason, we do not consider former
cases of bidirectional, incremental transformations [8, 9]
because they are trimmed for MTLs and do not ask for
labeling the solution. Furthermore, our case is easy to
specify in one direction and does not have to deal with
information loss, which is an additional challenge that
bidirectional transformations are confronted with, on top
of propagating changes from a source to a target model.

The rest of this paper is structured as follows: Sec. 2
and Sec. 3 introduce the transformation case and tasks
we would like participants to solve. In Sec. 4, we describe
how we evaluate the submitted solutions. Lastly, Sec. 5
details how we will value the contributions and which
rewards we propose to give to the participants.

2. Transformation case
As we aim for many solutions, we propose the Class2Re-
lational transformation [4] as our transformation case
similar to the definition proposed in the ATL zoo [10]. In
contrast to the variant of the ATL zoo, we do not regard
the batch execution mode but the incremental one. Since
the scenario is well-known as a de-facto hello-world ex-
ample for MTLs, we expect that an implemented variant
of the case exists already in several MTLs. To provide the
adequate variant for this transformation case, this section

NamedElt

name : String

Classifier

DataType Class
Attribute

multiValued : Boolean

owner

*
att

{ordered}

type

Figure 1: Class metamodel.

introduces the specific class and relational metamodels
as well as the expected transformation behavior.

2.1. Metamodels
Class Metamodel Figure 1 depicts the source meta-
model of the transformation. It comprises named classi-
fiers, which are either datatypes or classes. Classes may
contain several single- or multi-valued attributes, which
are either typed with a primitive DataType or a complex
type (i.e., of a specific Class). Explicit references do not
exist between classifiers but can be expressed in terms
of attributes of complex types. As such, any Ecore model
can be translated into a simplified representation being
an instance of this metamodel. A corresponding trans-
formation (called Ecore2Class) is available besides the
transformation in the ATL zoo.

Relational Database Schema Metamodel Figure 2
depicts the target metamodel. A model consists of several
tables that each contain an ordered list of typed columns.
A column may serve as key for a table. The metamodel
does not distinguish foreign from primary keys. Tables,
columns, and types are named elements and are identified
accordingly.

Notes on Challenges Some points can be regarded
as specific to the transformation case. Firstly, neither
the source nor target metamodels possess a unique root
element. Accordingly, the input and output models may
comprise several top-level classes and tables, respectively.
Additionally, primary keys are not explicitly present in
the source or target model, but an id column may serve
as such for each table created for a source class.

Named

name : String

Table Column Type
key *

owner *
col {ordered}

type

Figure 2: Relational schema metamodel.

2.2. Transformation Behavior
The transformation behavior may vary with respect to
the execution mode. We describe the state-of-the-art
batch behavior, as implemented in the ATL zoo, first. Sec-
ond, we describe the variants of executing the incremental
transformation correctly.

General (Batch) Mappings In the batch transforma-
tion defined in the ATL zoo, the transformation rules
establish the following mappings:

• Class→ Table and objectID-Column
• DataType→ Type
• single-valued, primitive Attribute→ Column
• multi-valued, primitive Attribute→
Table, id-Column, and value-Column

• single-valued, class Attribute→ id-Column
• multi-valued, class Attribute→
Table, id-Column, and foreign-Column

Accordingly, for each class a table and a column serv-
ing as (implicit) primary key are created. The objectID
column is a Column with name ‘objectId’ and of type
Integer.

Furthermore, each single-valued attribute is trans-
formed into a column whereas, for multi-valued at-
tributes, a new table is created. In the latter case, one
column of the new table serves as foreign key of the class
owning the attribute and a second column represents the
value of the attribute. Thus, a Column of type Integer
and named as the owner followed by the attribute name
(i.e., "a.owner.name + ’_’ + a.name") is created,
as well as a second column typed Integer and named
as the attribute itself followed by ‘Id‘. Columns created
for single-valued attributes are integrated into the table
created for the containing class.

This behavior serves as a baseline for executing the
transformation. Please note: (1) no dedicated root exists
in the transformation; (2) primary keys are integrated
implicitly when creating a table for a class; and (3) inher-
itance relationships are not covered as they are absent
from the class metamodel.

Incremental Behavior In the incremental case, the
behavior of the transformation can vary with respect to
handling updates to the input model. We assume that, at
any point in time of re-executing the incremental trans-
formation, the input model is a valid model which does
not violate the syntax defined through the metamodels.
Firstly, create, update, and delete changes may occur at
all levels of the input model. Thus, objects, such as classes
and their attributes, can be deleted or added. Addition-
ally, their structural features can change, for example, a
class can be renamed or its name can be deleted.

Secondly, varying behaviors can be supported through
the transformation engines and the definitions in the in-
cremental execution mode. Handling null-values (e.g.,
of incomplete source models with unset references or
deleted attribute values) represents one example. For
instance, when concatenating a null-value of a missing
name with an existing String, a transformation may
either terminate (e.g., with an exception), or it can be
tolerated. As an example, ATOL transformations [11]
support concatenation of (potentially empty) Strings
and replace a null-reference with the verbatim String
“null”. As such, we consider the handling of null-values
as variants of the incremental transformation. A rel-
atively simple solution is to ignore null-values and to
assume that the input is correct. A more sophisticated
variant will replace null-values with default values. Han-
dling unset references represents another example of
behavior that results from deleting or adding objects.
Sec. 3.2 presents the entire list of incremental behaviors
expected in the case.

3. Task
The task of the incremental Class2Relational case is to de-
fine the incremental Class2Relational transformation. As
we require correct and labeled transformations as (min-
imal) solutions, this section introduces the criteria for
successfully passing the transformation case. It explains
how correctness is evaluated, elaborates on the expected
incremental behavior, demonstrates how (manual) label-
ing can be accomplished, and finally points to further
properties which solutions can report.

3.1. Correctness: Commutativity
As correctness criterion, we enforce commutativity of
batch and incremental transformations. We will consider
the incremental transformation correct if a batch trans-
formation produces the same result for the same input
model as the incremental one making them interchange-
able.

Consequently, the correctness depends on the behavior
of the batch transformation. As ground truth transfor-

mation, we propose the permissive incremental ATOL
Class2Relational transformation1. The ATOL transforma-
tion (engine) is more permissive than the batch variant
defined in the ATL zoo as it tolerates null-values. While
it is more fault-tolerant, the ATOL variant could be con-
sidered incorrect compared to the transformation from
the ATL zoo, which does not allow for null-values.

3.2. Completeness: Incremental Behavior
Variants of the incremental transformation may differ
in how they handle missing or added elements resulting
from incremental updates to the source model. We will
consider a transformation as complete if it passes the
correctness criteria defined above. If the transformation
fails at any point, we gradually consider it as incomplete
by manually inspecting the reasons for the failure. The
following criteria will be evaluated.

Null Values The structural features of objects in the
source model may assume null or other default values
when their original value is deleted. When accessing a
null-value, an incremental transformation can:

1. fail (e.g., due to a null-pointer exception)
2. ignore the access and continue with the next rule
3. resolve the problem by replacing the null-value

with a default value

The reference batch solution assumes behavior (3). How-
ever, which strategy is optimal in each situation may
depend on the concrete transformation case and a spe-
cific rule. Therefore, while we consider solutions which
discontinue the transformation (1) as well as silently ig-
noring the failure (2) as incomplete, we still provide a
reduced score for the solution which continues the exe-
cution (2), ideally with a (log-)message to the user.

Adding Objects Due to added objects (i.e., classes,
datatypes, or attributes), references between objects may
be missing. Ideally, the input model should be validated
first to avoid such situation, however, due to human
errors this situation may occur.

If a single object is added without a reference, as con-
sequence of the missing reference in the source model,
it will depend on the object type whether references in
the target model are needed or not. A table and a type
can be integrated into the target model as root elements
of the target model without requiring a container. In
contrast, a Column requires a table to be present. If a
source Attribute is not contained in a Class, it depends on
the type of the attribute which transformation behavior
shall occur.

1https://github.com/ATL-Research/incremental-class2relational

For a multi-valued attribute, a table may be created, but
accessing the owner of the attribute may be an access to
a null-value, which will have to be solved as explained in
the previous paragraph on null-values. On the contrary,
for single-valued attributes, only a column is created,
which should be added to the table created for its owner.
When the link to the owner is missing, the transformation
can assume the following behavior:

1. do not create the dangling Column object (roll-
back)

2. ignore the missing link and leave the dangling
object

3. add the Column object to the first object of the
right type (i.e., Table)

Again, these three potential solutions can be scored in
ascending order. Rolling-back will create a valid target
model but misses to propagate the information added
to the source model, in this case to integrate a new ob-
ject. The second solution produces an invalid model but
propagates the same information. The third solution
guarantees a valid target model, however, it is possible
that the object is added to the wrong container.

The reference ATOL transformation assumes the sec-
ond behavior. While the solution may not be ideal, solu-
tion (3) would add the column to a potentially undesired
wrong table. We do not consider a semi-automated alter-
native of computing all potential containers and propos-
ing them to the user [12], which may not scale in terms
of execution time and storage.

Removing Objects Similarly to adding objects, re-
moving objects can provoke undesired side effects. Some
references may point to obsolete target objects. If one
end is missing while the other end and the reference
remains, the transformation engine can either

1. remove the link, or
2. create a new default-object for the missing end

in the target model. Our reference batch transforma-
tion assumes strategy (2). If a solution assumes strategy
(1), similarly, we will manually score it as correct and
complete, as it is a valid approach, too.

Further Criteria Our list of solutions to updates and
problems potentially occurring in incremental transfor-
mations may not be exhaustive. Particularly, depending
on the transformation engine’s properties, further auto-
mated solutions may be possible which are not available
in ATOL. While we use the ATOL transformation as ref-
erence incremental transformation based on which we
score solutions, we welcome further reference transfor-
mations as part of the solution submission, which we can
respect in future work.

https://github.com/ATL-Research/incremental-class2relational

3.3. Syntactic Complexity: Labeling of
Transformations

To compare solutions developed in different languages,
we rely on ‘syntactic complexity’. This metric measures
the amount of words that are separated either by whites-
paces or other delimiters used in the languages, e.g. dot(.)
and different parentheses (()[]{}) [3]. As it is difficult to
offer a tool which computes the metric generically for
any MTL or GPL, we require submissions to self report
the values of this measure for each line of their code.
For comparing solutions, we are interested in how much
code is written for different transformation aspects. The
aspects we require for this purpose are:

• Setup, i.e., code required to make the transforma-
tion work

• Model Traversal, i.e., traversing the input to find
model element(s) to transform

• Helper/Expression Outsourcing, i.e., modular code
that outsources expressions that are used multiple
times in a transformation

• Tracing, i.e., explicit code that establishes or re-
solves trace links between input and output ele-
ments

• Incrementality, i.e., explicit code that manually
implements incrementality functionality

• Transformation, i.e., the code that actually trans-
forms input model elements to output model ele-
ments

For each statement in the transformation code we re-
quire submissions to provide the transformation aspect
that it implements as well as the complexity value in form
of a comment above the statement. The ‘labels’ must be
provided in the following format:

<CommentDelimiter> TransformationAspect Value.
Ideally, each label only includes one transformation as-
pect and one complexity value. If a single statement
of code implements the functionality of several aspects,
we will expect the complexity value to be split between
these aspects respective to the share of the statement
that implements them. Each label must be reported in a
separate line within the code. Within each solution, the
symbols used to comment the complexity labels must be
consistent through the entire submitted project.

Figure 3 depicts an excerpt of a Java implementation
of the Class2Relational case which is labeled as described
above. Line 3 implements setup functionality to create
model elements of the relational metamodel. It contains
eight separate words and, thus, its syntactic complex-
ity value is eight. Consequently, using the format we
propose, it is labeled with 𝑆𝑒𝑡𝑢𝑝 8.

As another example, lines 43-48 (split into multiple
lines for readability) implement transformation function-
ality as well as trace resolution. Thus, the syntactic com-

plexity of the statement is given as 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 12
and 𝑇𝑟𝑎𝑐𝑖𝑛𝑔 16 because 12 words in the statement im-
plement part of the transformation and 16 words imple-
ment trace resolution.

In the event that a solution is provided using a non-
textual transformation language such as a graphical rep-
resentation, we expect authors to count the number of
model elements used to design the transformation and
to label these elements with notes using the same format
we propose in this section. This should be provided in a
separate file following the described labeling schema.

3.4. Additional Features: Performance
and Quality

The main criteria that are evaluated automatically for
passing the case are the correctness and thereby indi-
rectly the completeness of the proposed solution. Addi-
tionally, we require authors to label their solution so that
we can evaluate its complexity as explained in Sec. 3.3.
We compute the score of a submitted solution based on
these three criteria.

Still, we welcome authors to elaborate on further fea-
tures of their solution. Although not explicitly required,
the authors can report on further quality aspects which
their solution contributes. For instance, the performance
in terms of execution times may be an additional upside
of the transformation. Similarly, further criteria, such as
strategies to efficiently compute and perform the incre-
mental update or saving memory consumption may be
regarded to compare the solutions.

4. Benchmark
This section introduces the evaluation criteria and the
benchmark framework used to evaluate solutions sub-
mitted by participants.

4.1. Evaluation Criteria
The evaluation fosters two kinds of criteria, automati-
cally measured and self-reported ones. In the sequel, we
describe both types of criteria.

Automatically Measured Criteria regard the com-
pleteness of the transformation as well as the correctness.
We use the latter implicitly to determine the complete-
ness.
Completeness: Completeness describes for how

many of the tasks described in Sec. 3 a solution is submit-
ted. Since this call aims for a comprehensive comparison
between the languages, completeness also encompasses
analyzing the submitted solution to detect variants in the

transformation process and how does it compare with
the reference implementation behavior.
Correctness: Correctness describes the degree to

which the submitted solutions commute with the ref-
erence solution. The incremental contributed solution
should commute with the provided batch reference trans-
formation when the same change was applied to the
source model. Authors can use the benchmark frame-
work to evaluate the correctness of their solution and to
improve their transformation.

Self-Reported Measures regard the syntactic com-
plexity in terms of labeling the solution specification
as well as further optionally reported solution-specific
properties which may be beneficial, such as the means
to increase the performance in terms of execution time.
Syntactic Complexity: For the purpose of this case,

we are interested in how much code is written to imple-
ment different aspects of model transformation. The
quality of a solution is measured in how much code,
measured in the amount of words that are separated
either by whitespaces or other delimiters used in the lan-
guages, e.g. dot(.) and different parentheses (()[]{}) [3].
We ask authors of submitted solutions to kindly provide
the measures for their solutions separately using the la-
beling format introduced in Sec. 3.3. The quality of a
submission is ranked based on how much of its code is
focused on the actual transformation, i.e. Transformation
and Helper/Expression Outsourcing definitions, compared
to the transformation specific additional aspects Setup,
Model Traversal and Tracing.
Additional Properties which may help to perform

the tasks in a submitted solution may be reported. For
instance, performance describes how timely the solution
can produce a result for a given input task. The degree
of correctness does not factor into the performance eval-
uation. Solutions may report on the execution time of a
given task using a unit of time (e.g. in milliseconds, in
seconds, in minutes). Specific values in the chosen unit
of time are not required but can be reported if they are
known to the authors.

While we will not score additional properties, they may
still positively influence complexity and performance
(e.g., explicit or implicit trace maintenance) and therefore,
may be additional relevant information.

4.2. Benchmark Framework
We provide a benchmark framework to automate verifi-
cation of correctness and completeness of solutions. De-
tailed information on the framework and how to use and
integrate your solution is available in the repository of
the case2. Source code of the batch ATL transformation,

2https://github.com/ATL-Research/incremental-class2relational

the incremental ATOL transformation, source models,
change models, and expected models are also available
in the repository.

We provide metamodels in Ecore and models in XMI
formats. Change models use the same format as pro-
posed in the TTC 2018 Social Network case, refer to
Reference [13] for detailed explanations.

4.2.1. Correctness evaluation

We evaluate correctness, as defined in Sec. 3.1, by com-
paring two executions of a transformation. The first
execution performs the following actions:

1. load a source model
2. apply the transformation
3. load and apply a change model to the source

model
4. propagate the change to the target
5. save the target model

The second execution performs the following actions:

1. load a source model that already has the change
applied

2. apply the transformation
3. save the target model

To pass the correctness test, solutions must return
identical solutions for both executions. We use the
SimpleEMFModelComparator3 tool to compare the tar-
get models of the first and second execution.

4.2.2. Completeness evaluation

Unlike correctness, completeness, as described in Sec. 3.2,
is evaluated using a set of source models and changes
that test specific behaviors to determine which level of
completeness the solution achieves. Using a script, the
benchmark automatically executes proposed transforma-
tions on various test cases and compares the transfor-
mation outputs to the outputs we expected. We provide
the expected target model besides the source and change
model.

The procedure is as follow:

1. load a source model
2. apply the transformation
3. load and apply a change model that corresponds

to the test case
4. propagate the change
5. save the target model

Like correctness testing, we compare each target model
of a transformation test case to the expected model of
this case using the SimpleEMFModelComparator tool.
3https://github.com/ATL-Research/EMFModelFuzzer/blob/
main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/
SimpleEMFModelComparator.xtend

https://github.com/ATL-Research/incremental-class2relational
https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend
https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend
https://github.com/ATL-Research/EMFModelFuzzer/blob/main/lib/src/main/java/io/github/atlresearch/emfmodelfuzzer/SimpleEMFModelComparator.xtend

4.2.3. Expected submission bundle

The benchmark framework provides automated tooling
to check correctness and completeness of solutions. In or-
der for the benchmark to support submissions, we expect
solutions to implement the following calling interface.

Parameters of the transformation are passed using the
following environment variables:

• SOURCE_PATH: path of the source model
• TARGET_PATH: path of the target model
• CHANGE_PATH: optional, path of the change

model

All input and change models are given in XMI format,
we expect target models to also be in XMI format. If the
variable CHANGE_MODEL is not provided as we call the
execution of a transformation, it should behave like a
batch transformation.

Solutions can freely use stdout and stderr to print
warning, information or debug messages. For EMF-based
solutions, we provide an abstract runner that handles
model loading and application of changes to the source
model.

5. Evaluation
The benchmark framework will provide independent
measurements of the completeness and the correctness
of the solutions submitted by the participants. Attendees
to the contest will also evaluate the performance and the
quality of their own solution. To recognize contributions
and give appeal to this contest, we propose to award five
prizes:

• "Best Overall in GPL" to the GPL solution with
the highest ranking over all four evaluation crite-
ria.

• "Best Overall in MTL" to the MTL solution with
the highest ranking over all four evaluation crite-
ria.

• "Most Complete" to the solution with the high-
est ranking over the Completeness evaluation
criteria.

• "Best Quality" to the solution with the highest
ranking over the Quality evaluation criteria based
on the information given by authors.

• "Best Contributor" to the author that submits
the highest number of solutions in different lan-
guages. Authors which provide solutions in both
GPL and MTL categories will be given extra
points.

References
[1] S. Höppner, Y. Haas, M. Tichy, K. Juhnke, Advan-

tages and disadvantages of (dedicated) model trans-
formation languages 27 (2022) 159. doi:10.1007/
s10664-022-10194-7.

[2] S. Götz, M. Tichy, R. Groner, Claimed
advantages and disadvantages of (dedicated)
model transformation languages: a system-
atic literature review 20 (2021) 469–503. URL:
https://doi.org/10.1007/s10270-020-00815-4. doi:10.
1007/s10270-020-00815-4.

[3] S. Höppner, T. Kehrer, M. Tichy, Contrasting dedi-
cated model transformation languages vs. general
purpose languages: A historical perspective on
atl vs. java based on complexity and size, Soft-
ware and Systems Modeling (2021). doi:10.1007/
s10270-021-00937-3.

[4] INRIA, ATL Transformation Example. Class
to Relational, 2005. URL: https://www.eclipse.
org/atl/atlTransformations/Class2Relational/
ExampleClass2Relational[v00.01].pdf, modified:
November 23, 2022 at 22:26:16 GMT+1.

[5] B. Westfechtel, A case study for a bidirectional
transformation between heterogeneous metamod-
els in qvt relations, in: L. A. Maciaszek, J. Fil-
ipe (Eds.), Evaluation of Novel Approaches to
Software Engineering, Springer International Pub-
lishing, Cham, 2016, pp. 141–161. doi:10.1007/
978-3-319-30243-0_8.

[6] Object Management Group (OMG), Meta Object Fa-
cility (MOF) 2.0 Query/View/Transformation Spec-
ification. Version 1.3, formal/2016-06-03 ed., Need-
ham, MA, 2016. https://www.omg.org/spec/QVT/1.
3/PDF.

[7] Daniel Strueber, Henshin/Examples/Ecore2RDB
- Eclipsepedia, Modified: February 11, 2023 at
12:53:21 GMT+1. https://wiki.eclipse.org/Henshin/
Examples/Ecore2RDB.

[8] A. Anjorin, T. Buchmann, B. Westfechtel, The fam-
ilies to persons case, in: A. García-Domínguez,
G. Hinkel, F. Krikava (Eds.), Proceedings of the
10th Transformation Tool Contest (TTC 2017), co-
located with the 2017 Software Technologies: Ap-
plications and Foundations (STAF 2017), volume
2026 of CEUR Workshop Proceedings, CEUR-WS.org,
2017, pp. 27–34. URL: https://ceur-ws.org/Vol-2026/
paper2.pdf.

[9] A. García-Domínguez, G. Hinkel, The TTC 2019 live
case: Bibtex to docbook, in: A. García-Domínguez,
G. Hinkel, F. Krikava (Eds.), Proceedings of the
12th Transformation Tool Contest, co-located with
the 2019 Software Technologies: Applications and
Foundations, TTC@STAF 2019, Eindhoven, The
Netherlands, July 19, 2019, volume 2550 of CEUR

http://dx.doi.org/10.1007/s10664-022-10194-7
http://dx.doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.1007/s10270-020-00815-4
http://dx.doi.org/10.1007/s10270-020-00815-4
http://dx.doi.org/10.1007/s10270-020-00815-4
http://dx.doi.org/10.1007/s10270-021-00937-3
http://dx.doi.org/10.1007/s10270-021-00937-3
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
http://dx.doi.org/10.1007/978-3-319-30243-0_8
http://dx.doi.org/10.1007/978-3-319-30243-0_8
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://wiki.eclipse.org/Henshin/Examples/Ecore2RDB
https://wiki.eclipse.org/Henshin/Examples/Ecore2RDB
https://ceur-ws.org/Vol-2026/paper2.pdf
https://ceur-ws.org/Vol-2026/paper2.pdf

Workshop Proceedings, CEUR-WS.org, 2019, pp. 61–
65. URL: https://ceur-ws.org/Vol-2550/paper8.pdf.

[10] F. Allilaire, ATL Transformations | The Eclipse
Foundation, 2023. URL: https://www.eclipse.org/
atl/atlTransformations/, modified: April 6, 2023 at
13:23:55 GMT+2.

[11] T. Le Calvar, F. Jouault, F. Chhel, F. Saubion,
M. Clavreul, Intensional view definition with
constrained incremental transformation rules, in:
2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), 2019, pp. 395–402.
doi:10.1109/MODELS-C.2019.00061.

[12] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin,
H. Ko, R. Eramo, G. Hinkel, L. Samimi-Dehkordi,
A. Zündorf, Benchmarking bidirectional trans-
formations: theory, implementation, applica-
tion, and assessment, Software and Sys-
tems Modeling 19 (2020) 647–691. doi:10.1007/
s10270-019-00752-x.

[13] G. Hinkel, The TTC 2018 social media case, in:
A. García-Domínguez, G. Hinkel, F. Krikava (Eds.),
Proceedings of the 11th Transformation Tool Con-
test, co-located with co-located with the 2018 Soft-
ware Technologies: Applications and Foundations
(STAF 2018) 2018, Toulouse, France, July 29, 2018,
volume 2310 of CEUR Workshop Proceedings, CEUR-
WS.org, 2018, pp. 39–43. URL: https://ceur-ws.org/
Vol-2310/paper5.pdf.

https://ceur-ws.org/Vol-2550/paper8.pdf
https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
http://dx.doi.org/10.1109/MODELS-C.2019.00061
http://dx.doi.org/10.1007/s10270-019-00752-x
http://dx.doi.org/10.1007/s10270-019-00752-x
https://ceur-ws.org/Vol-2310/paper5.pdf
https://ceur-ws.org/Vol-2310/paper5.pdf

1 public class Class2RelationalIncremental {
2 // Setup 8
3 private static final RelationalFactory RELATIONALFACTORY = RelationalFactory.eINSTANCE;
4 ...
5 // Helper 4
6 private static Type objectIdType() {
7 ...
8 // Helper 2
9 return objectIdType;

10 }
11 ...
12 // Setup 8
13 public static Resource start(String inPath, String outPath) {
14 ...
15 // Incrementality 5
16 Adapter adapterIn = new AdapterImpl() {
17 // Incrementality 5
18 public void notifyChanged(Notification notification)
19 ...
20 }
21 }
22 // Traversal 8
23 public static List<Named> transform(List<EObject> input) {
24 // Traversal 5
25 for (EObject namedElt : input) {
26 ...
27 }
28 }
29 ...
30 // Tracing 6
31 public static void Class2TablePre(Class c) {
32 // Tracing 5
33 TRACER.addTrace(c, RELATIONALFACTORY.createTable());
34 ...
35 }
36 // Transformation 6
37 public static void Class2Table(Class c) {
38 // Tracing 8
39 var out = TRACER.resolve(c, RELATIONALFACTORY.createTable());
40 ...
41 // Transformation 12
42 // Tracing 16
43 out.getCol().addAll(
44 c.getAttr().stream()
45 .filter(e -> !e.isMultiValued())
46 .map($ -> TRACER.resolve($, RELATIONALFACTORY.createColumn()))
47 .filter($ -> $!= null)
48 .collect(Collectors.toList()));
49 }
50 ...
51 }

Figure 3: Example labeling for Java

	1 Introduction
	2 Transformation case
	2.1 Metamodels
	2.2 Transformation Behavior

	3 Task
	3.1 Correctness: Commutativity
	3.2 Completeness: Incremental Behavior
	3.3 Syntactic Complexity: Labeling of Transformations
	3.4 Additional Features: Performance and Quality

	4 Benchmark
	4.1 Evaluation Criteria
	4.2 Benchmark Framework
	4.2.1 Correctness evaluation
	4.2.2 Completeness evaluation
	4.2.3 Expected submission bundle

	5 Evaluation

