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Abstract	
Recent	research	highlights	the	significance	of	active	aging,	emphasizing	its	role	in	enhancing	the	well-
being	of	the	elderly	population.	To	effectively	promote	active	aging	and	address	the	evolving	needs	of	
our	 growing	 global	 aging	 demographic,	 a	 fusion	 of	 technological	 innovation	 and	 progressive	 policy	
strategies	is	imperative.	
In	 response	 to	 this	 challenge,	we	 introduce	 the	D3A	 (Digital	 Assistant	 for	Active	Aging)	 system	–	 a	
pioneering	platform	aimed	at	elevating	 the	quality	of	 life	 for	 the	elderly.	D3A	 focuses	on	optimizing	
interconnected	 facets	 of	 physical	 and	 cognitive	 performance.	 Within	 this	 framework,	 healthcare	
professionals	 can	 tailor	 individualized	 training	 regimens	 encompassing	 both	 physical	 and	 cognitive	
exercises,	which	can	be	experienced	in	both	traditional	and	virtual	reality	settings.	
D3A	 leverages	 artificial	 intelligence	 algorithms	 to	 assess	 the	 efficacy	 of	 these	 exercises,	 providing	
valuable	 support	 to	 healthcare	 providers.	Moreover,	 the	 platform	 incorporates	wearable	 devices	 to	
monitor	users’	physiological	parameters,	serving	as	crucial	indicators	of	their	overall	health.	Also,	D3A	
employs	 blockchain	 technology	 to	 ensure	 robust	 security	 and	 data	 immutability	 for	 access	 control,	
activity	logs,	and	health	records	within	the	application.	This	holistic	approach	to	active	aging	promises	
a	brighter	future	for	our	aging	population,	driven	by	innovation	and	evidence-based	care.	
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Introduction	

According	to	a	UN	report	[1],	aging	can	be	seen	as	a	remarkable	success	story,	celebrating	the	
triumph	 of	 public	 health,	 medical	 advancements,	 and	 social	 and	 economic	 policies.	 It	 is	
considered	 one	 of	 the	 four	 global	 demographic	 “megatrends”,	 alongside	 population	 growth,	
international	 immigration,	 and	 urbanization.	 This	 trend,	 spanning	 the	 globe,	 has	 been	 a	
longstanding	phenomenon	 in	developed	nations	 since	 the	20th	 century,	while	 less	developed	
countries	are	experiencing	it	more	recently.	
Traditionally,	we	have	defined	the	elderly	based	on	a	straightforward	criterion:	chronological	

age,	 typically	 set	 at	 65	 or	 older.	 The	 UN	 report	 estimates	 that	 by	 2050,	 one	 in	 six	 people	
worldwide	will	be	over	65,	a	significant	increase	from	2019	when	this	ratio	was	one	in	eleven.	
For	instance,	the	likelihood	of	reaching	the	age	of	65	has	risen	from	less	than	50%	in	places	like	
Sweden	 at	 the	 end	 of	 the	 19th	 century	 to	 well	 over	 90%	 in	 countries	 with	 the	 highest	 life	
expectancy	today.	
Many	societies	across	 the	world	are	 reassessing	 their	 social	policies	 to	better	 support	and	

engage	with	 the	 elderly	 population.	 Some	 are	 in	 the	 early	 stages	 of	managing	 this	 important	
demographic	shift,	while	others	are	more	advanced.	The	United	Nations	has	established	17	global	
goals	[2],	known	as	Sustainable	Development	Goals	(SDGs),	to	be	achieved	by	2030,	outlined	in	

	
AIxAS:	Fourth	Italian	Workshop	on	Artificial	Intelligence	for	an	Ageing	Society,	November	09,	2023,	Rome,	Italy	
	antonella.cascitelli@atlantica.it	(A.	Cascitelli);	patrizia.gabrieli@atlantica.it	(P.	Gabrieli);	rocco.oliveto@unimol.it	

(R.	Oliveto);	daniela.scognamiglio@atlantica.it	(D.	Scognamiglio);	jonathan.simeone@datasound.it	(J.	Simeone)	
	0000-0002-7995-8582	(R.	Oliveto)	

	
©	2023	Copyright	for	this	paper	by	its	authors.		
The	use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).	

	 CEUR	Workshop	Proceedings	(CEUR-WS.org)	
	
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



the	“2030	Agenda”.	Aging-related	themes	are	prominent	within	this	agenda,	including	eradicating	
poverty	 (SDG	1),	 ensuring	well-being	at	 all	 ages	 (SDG	3),	promoting	gender	equality	 (SDG	5),	
fostering	decent	work	for	all	(SDG	8),	reducing	inequalities	between	and	within	countries	(SDG	
10),	and	building	inclusive,	safe,	resilient,	and	sustainable	cities	(SDG	11).	
This	 is	where	 the	concept	of	active	aging	 becomes	crucial,	 as	defined	by	 the	World	Health	

Organization	in	the	late	1990s.	It	entails	optimizing	opportunities	for	health,	participation,	and	
safety	to	enhance	the	quality	of	life	as	people	age	–	a	topic	that	remains	highly	relevant	[3].	With	
the	global	elderly	population	set	to	grow,	strategies	must	be	devised	to	maintain	elders’	physical	
and	cognitive	health,	thus	reducing	the	burden	on	national	healthcare	systems.	
To	meet	 such	 a	 challenge,	 we	 present	 the	 D3A	 project,	 which	 aims	 to	 introduce	 a	 digital	

platform	for	the	elderly	population,	enhancing	their	quality	of	life	through	specialized	physical	
and	 cognitive	 exercises	 designed	 by	 a	 team	 of	 experts.	 Especially,	 the	 D3A	 project	 aims	 at	
implementing	a	virtual	assistant	that	provides	support	to	both	caregivers	and	operators	in	the	
daily	 physical	 and	 cognitive	 training	 activities	 of	 the	 elderly.	 Obviously,	 D3A	 do	 not	 replace	
caregivers	but	offers	valuable	support	to	them,	aiding	the	team	in	decision-making	and	evaluating	
each	caregiver’s	training	plan.	
The	remainder	of	this	paper	is	structured	as	follows:	Section	2	delves	into	related	work	on	

digital	systems	in	the	active	aging	field.	Section	3	presents	an	overview	of	D3A,	while	Section	4	
discusses	on	the	innovative	methodologies	applied	in	D3A.	Finally,	Section	5	concludes	the	paper.	

Related	work	

Preserving	both	physical	and	mental	functions	in	the	elderly	is	crucial	for	promoting	healthy	
aging.	As	individuals	age,	there	is	typically	a	decline	in	both	physical	and	cognitive	functions,	and	
research	has	demonstrated	a	correlation	between	these	two	domains	[5],	underscoring	the	need	
to	explore	strategies	that	can	simultaneously	enhance	both	aspects.	Such	strategies	are	needed	
because	 the	 decline	 in	 physical	 and	 mental	 functions	 can	 significantly	 increase	 the	 risk	 of	
impairing	elders’	ability	to	perform	daily	activities	[4].	
In	terms	of	physical	training,	older	individuals	often	experience	a	decline	in	their	motor	skills.	

This	can	lead	to	a	loss	of	independence	and	challenges	in	performing	even	basic	daily	activities.	
Implementing	tailored	exercise	programs	can	offer	a	valuable	solution	to	help	these	individuals	
overcome	these	physical	limitations.	However,	research	has	shown	that	only	31%	of	the	elderly	
population	regularly	engage	in	recommended	exercise	routines	[6].	
This	recalls	the	need	of	having	specialized	guidance	and	motivation	for	patients	to	correctly	

execute	exercises,	ultimately	improving	their	physical	condition,	and	enabling	remote	exercise	
from	the	comfort	of	their	homes.	Recent	years	have	witnessed	the	development	of	various	motion	
tracking	 systems	 designed	 to	 support	 healthcare	 professionals	 in	 monitoring	 movement,	
engaging	patients,	and	guiding	them	through	exercise	routines.	Technological	advancements	in	
this	field	have	substantially	reduced	the	costs	of	motion	tracking	systems,	giving	rise	to	Vision-
Based	 Interaction	 (VBI)	 systems	 [7],	which	have	become	 central	 to	motor	 training	programs.	
Notably,	promising	results	have	emerged	from	various	studies	regarding	the	use	of	affordable	
equipment	 commonly	 associated	 with	 entertainment,	 such	 as	 the	 Nintendo	 Wii	 Remote	
Controller	[8]	and	different	hardware	versions	of	the	Microsoft	Kinect	[9].	
For	instance,	Rodrigues	et	al.	[10]	examined	the	effectiveness	of	Kinect	V2	in	tracking	walking	

at	various	speeds	(very	slow,	slow,	normal,	and	fast)	over	a	cycle	of	12	repetitions.	They	analyzed	
multiple	parameters,	 including	walking	 time,	 speed,	 and	ankle	 angle.	The	 study	 revealed	 that	
under	normal	and	fast	walking	conditions,	the	Kinect	V2	sensor	exhibited	minimal	and	mostly	
negligible	errors.	However,	as	walking	speed	decreased,	errors	increased	due	to	self-occlusion	
and	error	compensation,	particularly	during	the	“stance”	phase	of	the	foot,	causing	a	latency	in	
recognition	 of	 nearly	 1	 second.	 These	 errors	 resulted	 from	 the	 Time-of-Flight	 sensor,	
necessitating	preprocessing	of	 images	 to	enhance	accuracy	 through	mathematical	models	and	
image	filtering	and	fusion	algorithms	[11].	Finally,	Ren	et	al.	[25]	have	demonstrated	that	with	



specialized	pre-processing	and	post-processing	algorithms,	 coupled	with	artificial	 intelligence	
techniques	and	DTW	[25],	it	is	possible	to	enhance	the	precision	of	Kinect	sensors.	
Su	et	al.	[24]	argue	that	clinicians	typically	assess	the	trajectory	and	speed	of	rehabilitation	

exercise	mainly	based	on	their	experience	and	subjective	criteria,	instead	of	using	more	precise	
and	 measurable	 values.	 For	 this	 reason,	 numerous	 studies	 in	 the	 literature	 have	 explored	
machine	learning	and	deep	learning	methodologies	to	automatically	evaluate	the	performance	of	
patients	 during	 the	 execution	 of	 exercises.	 Osgouei	 et	 al.	 [22]	 compared	 the	 performance	 of	
Hidden	 Markov	 Model	 (HMM)	 and	 Dynamic	 Time	 Warping	 (DTW)	 and	 concluded	 that	 both	
algorithms	showed	a	similar	trend	in	the	evaluation	of	participants’	performance.	Although	the	
DTW	 was	 more	 sensitive	 to	 small	 changes,	 the	 HMM	 captured	 an	 overall	 evaluation	 of	
performance.	DTW	was	also	used	by	Yu	et	al.	[23]	to	develop	and	validate	an	approach	for	the	
evaluation	 of	 physical	 exercises	 to	 support	 self-coaching	 in	 a	 virtual	 game	 environment.	 This	
algorithm	was	applied	to	calculate	the	similarity	of	movement	between	two	time	series	of	a	single	
user	and	a	virtual	coach.	In	aid	of	DTW,	fuzzy	logic	was	applied	to	emulate	the	effect	of	doctors’	
subjectivity	in	evaluations	and	obtain	a	truth	value	ranging	from	0	to	1	[23].		
In	the	context	of	cognitive	training,	state-of-the-art	research	primarily	focuses	on	affectivity,	

encompassing	 a	 complex	 array	 of	 mental	 states	 including	 emotions,	 moods,	 attitudes,	 and	
interpersonal	 relationships	 [12].	 These	 states	 exert	 a	 significant	 influence	 on	 behavior,	 well-
being,	 social	 interaction,	 and	human	cognition.	Affective	 cognition,	 specifically,	 deals	with	 the	
processing	of	stimuli	carrying	emotional	valence	[13].	
The	 scientific	 community	 has	 devoted	 effort	 also	 in	 developing	 therapies	 for	 emotional	

function	disorders,	seeking	effective	 interventions	to	enhance	affective	 functions	and	alleviate	
negative	 symptoms.	 A	 primary	 goal	 is	 to	 increase	 the	 experience	 of	 positive	 emotions	while	
reducing	 negative	 ones,	 significantly	 contributing	 to	 the	 health	 and	well-being	 of	 the	 elderly	
population	within	the	context	of	active	aging.	Especially,	numerous	multimedia	stimuli,	including	
images,	sounds,	and	videos,	have	been	identified	in	the	literature	for	their	positive	effects	on	the	
emotional	well-being	of	those	receiving	assistance.	Images,	for	instance,	are	widely	used	due	to	
their	low	cognitive	load	nature,	making	them	suitable	for	a	broad	range	of	individuals,	including	
children,	the	elderly,	and	individuals	with	illnesses.	The	International	Affective	Picture	System	
(IAPS)	[14]	offers	a	library	of	such	images	used	in	experimental	studies	to	influence	emotional	
states.	
So	 far,	 several	 studies	 have	 utilized	 IAPS	 images,	 establishing	 IAPS	 as	 one	 of	 the	 most	

employed	 stimuli	 sets	 in	 contemporary	 behavioral	 research.	 The	 significance	 of	 its	 role	 in	
advancing	research	cannot	be	overlooked.	Anyway,	a	more	recent	image	database	was	proposed	
by	Kurdi	et	al.	[32].	They	collected	900	pictures	depicting	a	wide	range	of	categories,	including	
humans,	animals,	scenes,	and	objects,	from	open-access	online	sources	and	recruited	a	diverse	
sample	of	participants	for	a	norming	study	to	assess	their	affective	responses	to	the	images	in	
terms	of	valence	and	arousal.	
A	 further	widely	 used	 database	 is	 the	 Geneva	 Affective	 Picture	 Database	 (GAPED)	 [33].	 It	

consists	 of	 760	pictures	divided	 into	 six	 categories:	 spiders,	 snakes,	 human	 concern	pictures,	
animal	mistreatment,	neutral,	and	positive	pictures.	The	images	were	assessed	for	arousal	and	
valence	by	60	volunteers	recruited	from	a	second-year	psychology	class.	
Besides	images,	also	music	has	demonstrated	its	impact	on	emotions	and	mood	at	the	brain	

level,	but	investigations	extend	beyond	music	to	include	all	acoustic	stimuli,	such	as	speech,	noise,	
and	environmental	sounds	[15],	[16].		
Kolestra	et	al.	[17]	introduced	DEAP,	a	database	containing	120	pieces	of	music	ranked	based	

on	emotional	 response	along	 two	dimensions:	activation	and	valence.	 In	 the	context	of	 sound	
databases,	Schuller	et	al.	[34]	present	a	selection	of	390	sound	files	categorized	into	eight	distinct	
groups:	Animals,	Musical	instruments,	Nature,	Noisemakers,	People,	Sports,	Tools,	and	Vehicles.	
These	audio	samples	make	up	the	Emotional	Sound	Database,	which	underwent	evaluation	by	
four	 postgraduate	 students	 specializing	 in	 audio	 processing.	 Their	 task	 involved	 rating	 each	
sound	 file	 on	 two	 emotional	 dimensions:	 Arousal	 and	 Valence,	 using	 a	 five-point	 scale	 for	
precision.	



In	 contrast,	 the	 Oxford	 Vocal	 Sounds	 database,	 referred	 to	 as	 “OxVoc,”	 comprises	 173	
unscripted,	spontaneous	non-verbal	vocalizations	from	infants,	adults,	and	domestic	animals.	To	
gauge	 the	 emotional	 impact	 of	 these	 sounds,	 two	 separate	 studies	were	 conducted,	 engaging	
more	 than	 100	 volunteers	 split	 into	 distinct	 groups.	 The	 goal	 was	 to	 assess	 the	 arousal	 and	
valence	associated	with	each	sound	[35].	
It	 is	worth	noting	 that	videos	possess	 the	potential	 to	elicit	a	stronger	emotional	 response	

compared	to	single	images	or	audio	stimuli	[36].	However,	they	are	a	more	intricate	stimulus,	
demanding	 increased	 attention	 and	 cognitive	processing	 [37].	 For	 video	 stimuli,	 Li	et	 al.	 [38]	
conducted	a	 study	 involving	60	students,	who	assessed	emotions	based	on	 three	dimensions:	
valence,	arousal,	and	dominance.	The	dataset	consisted	of	299	brief	videos,	each	lasting	3	seconds	
and	categorized	into	four	groups:	people,	animals,	objects,	and	scenes.	
An	exceptional	example	in	this	domain	is	the	Aff-Wild2	dataset,	employed	in	the	4th	Workshop	

and	Competition	on	Affective	Behavior	Analysis	in-the-wild	(ABAW)	[39].	This	dataset	represents	
a	ground-breaking	creation,	constituting	a	large-scale	“in-the-wild”	database	encompassing	over	
550	videos	that	capture	the	reactions	of	458	subjects.	These	videos	encompass	a	broad	spectrum	
of	subjects,	including	various	age	groups	(from	babies	to	the	elderly),	diverse	ethnic	backgrounds	
(Caucasian,	 Hispanic	 or	 Latino,	 Asian,	 black,	 or	 African	 American),	 and	 a	 wide	 range	 of	
professions	(e.g.,	actors,	athletes,	politicians,	 journalists).	The	dataset	 is	 further	enriched	with	
data	 on	 head	 pose,	 illumination	 conditions,	 occlusion,	 and	 emotions,	 making	 it	 a	 valuable	
resource	for	research	in	the	field.	
Furthermore,	Rincon	et	al.	[18]	introduced	the	EMERALD	system,	designed	to	improve	elderly	

well-being	through	a	platform	capable	of	generating	and	adapting	personalized	exercises	while	
recognizing	 the	 emotional	 state	 of	 individuals	 through	 biosensors	 like	 ECG	
(electrocardiography),	 EDA	 (electrodermal	 activity),	 and	 PPG	 (photoplethysmography).	 In	
another	 study,	 Chanel	et	 al.	 [40]	 delved	 into	 the	potential	 of	 utilizing	physiological	 signals	 to	
gauge	emotions	and	adapt	game	difficulty	accordingly.	The	paper	outlines	a	concept	aimed	at	
enhancing	player	engagement	by	dynamically	adjusting	in-game	challenges	based	on	the	player’s	
emotional	state,	as	inferred	from	physiological	signals.	To	validate	this	innovative	approach,	the	
researchers	 conducted	 a	 comprehensive	 assessment	 involving	 questionnaire	 responses,	
electroencephalogram	 (EEG)	 readings,	 and	 peripheral	 signals	 from	 participants	 engaged	 in	 a	
Tetris	game,	spanning	three	distinct	difficulty	levels.	
For	the	D3A	project,	multimedia	stimuli	will	be	sourced	from	the	aforementioned	reputable	

and	well-established	databases,	given	their	reliability	and	accessibility.	Nevertheless,	the	door	is	
open	 to	 exploring	 additional	 databases.	 For	 instance,	 there	 is	 an	 intriguing	 hypothesis	 of	
incorporating	 personalized	 stimuli	 contributed	 by	 users	 themselves.	 This	 approach	 holds	 the	
potential	to	elicit	heightened	levels	of	valence	and	arousal,	offering	a	unique	avenue	for	research	
and	experimentation.	

D3A	in	a	Nutshell	

D3A	is	a	comprehensive	system	comprising	both	hardware	and	software	components	to	create	
a	cognitive	and	physical	assistant	that	fosters	Active	Aging.	This	assistant	recommends	activities	
to	 support	 a	 healthy	 lifestyle	 regimen,	 including	 daily	 short	 physical	 and	 cognitive	 training	
sessions	within	 the	 comfort	 of	 one’s	 home.	 The	D3A	virtual	 assistant	 functions	 as	 a	 personal	
coach,	guiding	users	 through	adaptive	physical	exercises	 tailored	 to	 their	 individual	needs,	as	
designed	by	a	team	of	experts,	including	physiatrists,	geriatricians,	and	physiotherapists.	It	also	
facilitates	cognitive	games	for	entertainment	and	mental	stimulation.	
The	system	caters	to	three	distinct	user	roles:	

1. Administrators:	Responsible	for	content	and	user	management.	
2. Specialists:	 Oversee	 designing,	 assigning,	 monitoring,	 and	 evaluating	 cognitive	 and	

motor	training	plans.	
3. Patients:	 Individuals	 engaging	 in	 training	plans	 to	 enhance	 their	mental	 and	physical	

well-being.	



	
Figure	1	–	Functional	architecture	of	D3A	system	

The	D3A	platform	offers	several	key	functionalities,	summarized	in	Figure	1:	

o Administrative	Functions:	Manage	user	personal	data	and	exercise	records.	
o Health	and	Care	Functions:	Utilize	virtual	assistants	via	a	Decision	Support	System	to	

define	exercise	plans	and	aid	users	in	their	execution.	
o Monitoring	Functions:	Collect	and	store	motion	tracking	and	physiological	data	through	

wearable	devices.	
o Security	 Management:	 Employ	 Blockchain	 technology	 for	 access	 control	 and	 data	

protection,	ensuring	compliance	with	Italian	Privacy	Law	and	GDPR	regulations.	

The	 architecture	 of	 D3A	 follows	 a	 three-tier	 design	 model	 commonly	 used	 in	 software	
development	and	deployment,	offering	benefits	such	as	separation	of	concerns,	scalability,	and	
ease	of	maintenance.	The	system	is	divided	into	two	subsystems:	Cognitive	and	Physical.	Both	are	
web-based	applications	accessible	via	web	browsers,	making	them	available	through	intranets	or	
the	Internet.	The	D3A	Physical	subsystem	focuses	on	physical	training	with	sessions	monitored	
by	 a	 motion	 tracking	 system	 using	 sensors	 like	 Microsoft	 Kinect.	 While	 the	 D3A	 Cognitive	
subsystem	targets	users’	affective	aspects	through	the	delivery	of	multimedia	sequences	capable	
of	 stimulating	 particular	 sensations/emotions.	 Such	 a	 delivery	 can	 be	 performed	 in	 standard	
mode	or	virtual	reality.	Both	subsystems	share	components	for	reading	physiological	data	from	
wearable	 devices	 and	 incorporate	 Artificial	 Intelligence	 (AI)	 components	 to	 extract	 valuable	
insights	 from	 collected	 data,	 providing	 decision	 support	 to	 therapists.	 Gamification	 elements	
make	training	therapies	engaging	for	users,	whether	they	are	physical	or	cognitive.	

Innovations	Points	of	D3A	

When	 designing	 D3A,	 we	 have	 placed	 significant	 emphasis	 on	 providing	 comprehensive	
psychophysical	support	for	the	elderly	population.	Leveraging	technological	innovations	as	the	
cornerstone	 of	 our	 approach,	 we	 tried	 to	 amalgamate	 various	 cutting-edge	 technologies,	
including	artificial	intelligence,	blockchain,	and	virtual	reality.	This	section	aims	to	introduce	and	
substantiate	 our	 hypothesis	 that	 the	 synergistic	 application	 of	 these	 technologies	 can	 bring	
substantial	added	value	to	the	project’s	development	and	tangible	benefits	to	end	users.	
Artificial	intelligence	plays	a	pivotal	role	in	the	D3A	project.	We	are	developing	algorithms	that	
empower	operators	to	assess	the	effectiveness	of	exercises	performed	by	elderly	individuals	and	
trigger	alerts	based	on	vital	data	gathered	from	wearable	devices.	Especially,	in	D3A,	wearable	
devices	serve	as	data	collection	tools,	with	artificial	intelligence	algorithms	interpreting	this	data	
to	offer	decision	support	to	operators,	enabling	health	predictions	and	continuous	monitoring	of	
the	 assisted	 population.	We	 employ	 physiological	 signals	 such	 as	 heart	 rate,	 blood	 pressure,	
respiratory	rate,	and	skin	conductance	to	objectively	assess	the	well-being	of	the	elderly,	aligning	
with	prior	studies	in	this	domain	[19,	20,	21].	



Our	 research	 strategy	 incorporates	 the	 use	 of	 several	machine	 learning	models,	 including	
Support	Vector	Machine	(SVM),	Random	Forest	(RF),	k-Nearest	Neighbors	(KNN),	and	Artificial	
Neural	Networks.	The	choice	of	these	models	is	contingent	upon	the	specific	task	at	hand	and	the	
unique	characteristics	of	the	dataset	 in	question.	This	approach	ensures	a	comprehensive	and	
adaptable	methodology	that	leverages	the	strengths	of	each	model	to	address	specific	challenges	
and	nuances	inherent	in	the	data.	
One	of	our	key	objectives	is	to	harness	machine	learning	algorithms	to	compare	movements	

captured	 by	 a	 motion	 tracking	 system	 [41].	 This	 entails	 evaluating	 two	 sets	 of	 data:	 one	
representing	the	optimal	movements	recorded	by	a	physiotherapist	and	the	other	reflecting	the	
actual	 movements	 performed	 by	 the	 elderlies.	 The	 primary	 aim	 here	 is	 to	 automatically	
distinguish	sessions	that	meet	the	physiotherapist’s	criteria	for	well-executed	movements	from	
those	containing	significant	errors.	However,	for	precise	evaluation,	it	is	imperative	to	employ	
distinct	models	for	different	exercises.	We	anticipate	that	variations	in	performance	outcomes	
will	be	substantial	for	each	exercise	type	and	the	specific	limbs	monitored	during	the	exercises.	
Hence,	 our	 approach	 necessitates	 the	 development	 of	 individual	 predictive	 models	 for	 each	
exercise,	rather	than	applying	a	global	model	across	all	exercises.	
In	 addition,	 our	 research	 endeavors	 include	 the	 implementation	 of	 Convolutional	 Neural	

Networks	(CNN)	for	the	interpretation	of	vital	signs	obtained	from	wearable	devices,	particularly	
in	 the	context	of	elderly	 individuals.	Given	 the	substantial	volume	of	data	with	high	sampling	
rates,	CNNs	emerge	as	the	most	fitting	choice.	We	aim	to	tap	into	existing	datasets,	such	as	WESAD	
[42]	and	Non-EEG	[43],	and	leverage	pre-trained	models	to	tackle	new	tasks	or	diverse	types	of	
data.	 This	 approach	 enables	 us	 to	 apply	 transfer	 learning	 techniques,	 capitalizing	 on	 the	
knowledge	accrued	by	the	pre-trained	models	to	enhance	generalization	and	adaptability	in	novel	
scenarios.	
Turning	to	the	blockchain,	we	have	observed	its	increasing	relevance	in	the	healthcare	sector.	

Previous	efforts,	such	as	[26],	primarily	focused	on	incorporating	blockchain	into	Active	Aging	
services,	albeit	limited	to	access	management.	More	recently,	Velmovitsky	et	al.	[27]	addressed	
the	 issue	 of	 consent	 for	 personal	 data	 processing,	 proposing	 a	 blockchain-based	 solution.	
Blockchain,	renowned	for	its	immutability	and	decentralization,	enhances	transparency	through	
consent	 mechanisms.	 In	 D3A	 we	 massively	 employ	 blockchain	 technology	 to	 ensure	 robust	
security	 and	data	 immutability	 for	 access	 control,	 activity	 logs,	 and	health	 records	within	 the	
application.	
As	 for	 virtual	 reality,	 its	 unique	 appeal	 lies	 in	 its	 unparalleled	 immersiveness,	 surpassing	

traditional	stimulus	presentation	methods	[28].	For	this	reason,	in	D3A	the	delivery	of	cognitive	
stimuli	can	be	performed	also	in	a	virtual	environment.	Indeed,	some	researchers	have	leveraged	
natural	 environments	within	 virtual	 reality	 to	 activate	 the	 parasympathetic	 system,	 reducing	
fear,	anger,	and	stress,	in	line	with	the	Stress	Reduction	Theory	[31].	In	D3A	we	followed	such	a	
line	of	research	to	offer	different	stimuli	and	improve	the	cognitive	ability	and	the	celebrating	
health	 of	 the	 elderly.	 It	 is	 worth	 noting	 that	 in	 D3A	 the	 delivery	 of	 cognitive	 stimuli	 can	 be	
performed	also	in	standard	mode,	without	the	use	of	virtual	reality.	The	possibility	of	offering	
stimuli	in	standard	mode	and	virtual	mode	is	suggested	by	the	need	to	deal	with	side	effects	of	
virtual	 reality,	 such	 as	motion-induced	discomfort	 like	 dizziness	 and	nausea	 [29],	which	may	
affect	emotional	responses	and	research	outcomes	[30].		
In	summary,	the	design	of	D3A	revolves	around	leveraging	cutting-edge	technologies,	such	as	

artificial	intelligence,	blockchain,	and	virtual	reality,	to	provide	comprehensive	psychophysical	
support	to	the	elderly	population.	These	technologies	offer	the	promise	of	enhanced	healthcare	
outcomes	and	improved	quality	of	life	for	our	target	users.	

Conclusion	and	Future	Work	

This	paper	introduces	the	D3A	system,	a	software	solution	designed	to	enhance	the	overall	
well-being	of	the	elderly	population	by	promoting	an	active	lifestyle.	The	D3A	system	leverages	a	



virtual	assistant	and	motion	tracking	technology,	enabling	daily	cognitive	and	physical	training	
sessions	from	the	comfort	of	one’s	home,	eliminating	the	need	for	a	therapist’s	presence.	
The	 realization	 of	 this	 project	 involves	 addressing	 three	 key	 technical	 and	 scientific	

challenges:	

o Comprehensive	 Psychophysical	 Support:	 To	 ensure	 end-users	 receive	 adequate	
psychophysical	 support,	 the	 system	 offers	 continuous	 monitoring	 of	 physiological	
parameters	 through	 synchronized	 wearable	 devices	 integrated	 within	 the	 system.	
Simultaneously,	 AI	 algorithms	 are	 employed	 by	 a	 team	 of	 specialists	 to	 automatically	
analyze	the	collected	data	and	provide	valuable	insights	into	the	progress	of	the	training	
plan.	

o Enhanced	 Security	 with	 Blockchain:	 The	 Blockchain	 module	 is	 implemented	 to	
safeguard	the	activities	and	sensitive	data	of	connected	users	while	fortifying	the	system’s	
resilience	against	cyber	threats.	

o Engagement	 through	 Gamification:	 To	 boost	 user	 engagement,	 the	 D3A	 system	
incorporates	 various	 gamification	 strategies,	 including	 step-by-step	 challenges	 and	
collective	routes	with	rankings	and	scores.	

In	conclusion,	the	D3A	system	represents	a	significant	step	towards	improving	the	lives	of	the	
elderly	by	promoting	an	active	 lifestyle	and	harnessing	 technology	 to	provide	comprehensive	
support	 and	 security,	 with	 the	 potential	 for	 far-reaching	 positive	 impacts	 on	 healthcare	 and	
quality	of	 life.	Looking	ahead,	 there	are	exciting	possibilities	 for	 system	extensions	 that	could	
introduce	new	functionalities.	One	such	extension	could	involve	the	creation	of	a	true	Ambient	
Assisted	Living	(AAL)	environment.	This	would	incorporate	home	automation	solutions	featuring	
environmental	sensors	to	enhance	the	living	comfort	of	elderly	individuals,	promoting	autonomy	
and	overall	satisfaction	in	their	living	spaces.	
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