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Abstract 
Continuous advancements in sensor technology and the miniaturization of electronic chips have 
encouraged the exploration and development of wearable device applications. The objective estimation 
of human fatigue is among the problems that have been recently researched. Existing technological 
solutions have in the past mainly performed in laboratory settings and using sensors and/or stationary 
diagnostic equipment requiring the involvement of medical personnel. Consequently, this makes such 
solutions unfeasible difficult to deploy within application scenarios such as work and home 
environments and consequently of limited dissemination due to costs. This paper presents a 
hardware/software platform based on a commercial and low-cost wearable device that combines heart 
rate monitoring and real-time posture/walking speed classification, the latter obtained through the 
application of supervised machine learning methodologies. According to the literature, the implemented 
algorithmic pipeline distinguishes different fatigue levels through pre-established decision rules, 
usually used as a simple expert system in artificial intelligence, whose output is a score (between 0 and 
10) computed from discrete heart rate values and classified activity level. The findings of the 
preliminary experiments show promising results in the estimation and classification of the intermediate 
multimodal data used to obtain the score, with a low average error expressed in terms of Mean Absolute 
Error (4.6 bpm) and Root-Mean-Square Error (6.8 bpm) for heartbeat estimation and high accuracy 
regarding posture/walking speed classification (about 97.3%). 
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1. Introduction 

Fatigue is a subjective feeling of tiredness with gradual onset, which usually leads to a slow 
reaction of the human body and its thoughts. It is a common issue reported by older adults (40-
60 % of the elderly population), very frequently encountered in general medical practice [1]. It 
often serves as a symptom of underlying psychiatric or medical conditions, including cancer, 
heart disease, depression, chronic lung disease, hypothyroidism, multiple sclerosis, and 
rheumatoid arthritis. Additionally, medical treatments such as radiation or chemotherapy can 
lead to fatigue, which is often a major cause of disability in patients with significant illnesses.  

However, in many cases involving older individuals, it is difficult to identify a specific 
physiological or psychological cause for fatigue. In such instances, fatigue becomes a syndrome 
that elderly must manage in their daily activities. Despite efforts, there is no known specific 
biological marker or definite cause for fatigue in elderly making it a complex and not fully 
understood complaint [2]. 

Despite its prevalence and impact on people's health, the term 'fatigue' lacks a universally 
accepted definition. For example, one reference describes fatigue as a fluctuating state between 
alertness and sleepiness [3], while another defines it as a state of the muscles and central nervous 
system in which prolonged physical or mental activity without adequate rest results in an  
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inability to maintain the initial level of activity or processing [4]. Furthermore, another source 
defines fatigue as a reduced ability or motivation to work accompanied by feelings of tiredness 
and sleepiness [5]. However, they all concur that fatigue is linked to a lack of activity and 
motivation. Researchers commonly differentiate between acute and chronic fatigue. Acute fatigue 
results from a single cause, occurs in healthy individuals, is considered normal, sets in quickly, 
and is of short duration. In contrast, chronic fatigue is associated with multiple, cumulative, or 
unknown causes, occurs independently of activity or exertion, and is typically resistant to 
common treatments [6,7]. Fatigue can be also categorized into two main types: physical fatigue, 
which involves muscular exhaustion and a decrease in physical performance, and mental fatigue, 
characterized by cognitive weariness, reduced attention, concentration, or motivation. The 
relationship between these two types of fatigue is complex and varies across different clinical and 
non-clinical populations [8]. Fatigue also causes a significant reduction in workers' productivity, 
leading to an increase in errors, and even serious accidents becoming precursor to many illnesses 
and injuries.  

For all the reasons outlined above, there is clear interest from the scientific community in 
automated monitoring systems that can provide automatic feedback on the level of fatigue an 
end-user is subjected to. Existing technological solutions for this purpose are generally based on 
the use of wearable sensors/devices. 

For example, an accurate and widely developed methodology for fatigue estimation, which can 
detect the onset of fatigue at an early stage, is the use of electroencephalograms (EEGs). EEGs 
signals are employed to monitor different brain waves that can be linked to fatigue, using several 
frequency bands such as alpha (8–13Hz), beta (13–35Hz), theta (4–7Hz), and delta (0.5–4Hz) 
waves. The disadvantage of using EEGs is the hardware itself, which is quite a complex and 
expensive device that often requires special assistance to operate, usually impractical for many 
field scenarios [9]. Other techniques used to estimate fatigue include the analysis of muscle 
signals through electromyograph (EMG) signal analysis and the evaluation of vital signs such as 
heartbeat/heart rate (HR), blood pressure (BP) and blood oxygen saturation (SpO2). It is well 
known for example that typical signs of physical load and fatigue increase HR and decrease SpO2 
[10]. Also, the widespread use of wearable sensors in sports, everyday life or field work has 
enabled the collection of large amounts of physiological information. According to recent studies, 
the collected biomarkers related to sleep, physical activity or HR have been shown to be 
correlated with fatigue, making them a natural fit for the application of automated data analysis 
using Machine Learning (ML). In this research area, fatigue estimation models were designed and 
implemented, based on motion, EEG, EMG, photoplethysmogram (PPG), electrocardiogram (ECG), 
galvanic skin response (GSR), skin temperature, eye movement and respiration data collected by 
wearable devices available on the market. Supervised ML models, and more specifically binary 
classification models, predominate among the proposed approaches for fatigue quantification. 
Although these models are considered to perform very well in detecting fatigue, little effort has 
been made to ensure the use of high-quality data during model development [11].  For example, 
the authors of [12] present a human fatigue assessment system that can detect different types of 
fatigue (physical and mental) using different devices, including a headband, chest strap, 
smartphone, and video camera. These devices can be used individually or in combination 
depending on the type of fatigue to be detected. A multimodal evaluation system is used to 
process the different biological signals (EEG, R-R intervals, EMG, EEG) from the different devices, 
and an expert system is used to evaluate the level of mental and physical fatigue. On the other 
hand, a novel ML-based approach is proposed in [9]. Here, the fatigue level is estimated with 
biomarkers collected by popular wearable fitness trackers. The developed method can 
successfully predict fatigue symptoms in end-users based on the hypothesis that human fatigue 
can be correlated with some common biomarkers such as sleep activity and HR. The work 
compared several ML algorithms for the identification of these hidden patterns, with fully 
connected neural networks that reached the best results.  

According to the literature, HR is the most used physiological parameter for assessing a 
subject's level of fatigue. It was used also as an effective means of determining the physiological 
stress of workers in applied field situations, as described in [13] where an automatic stress 



detection platform designed to be effective in a real work context was proposed. The platform 
signals in an automatic way if the worker was stressed trough the combined analyses of HR, GSR 
and RGB images, using the information provided by ambient and wearable commercial sensors.  
HR has also been evaluated to assess fatigue in other fields, since previous studies have shown 
that there is a relationship between physical fatigue and several HR metrics such as heart rate 
variability (HRV) and heart rate reserve (HRR) [14].  

In addition to HR, the use of physical activity level to estimate fatigue is widely investigated in 
scientific research. Accelerometric signals integrated on board different types of wearable 
sensors are generally used for this purpose. In [15], the review of the wide range of accelerometer 
sensor positioning, activities identified using accelerometers and the methods used show 
promise in the efficacy of these methods for detecting and preventing fatigue. The authors of [16] 
examined whether the associations between physical activity levels and fatigue vary by body 
mass index and physical performance, and whether substituting sedentary time with low light, 
high light, and moderate to vigorous physical activity was associated with better mean fatigue 
scores. For this purpose, the physical activity level was estimated using a hip worn GT3X 
accelerometer. 

Because the literature shows that it is possible to estimate fatigue using physical activity level 
and HR, the idea is to combine the two previous high-level information achieved using the 
commercial wearable device introduced in [13] and extracting useful information for fatigue level 
score (FLS) estimation. The proposed solution aims to address the limitations of previous 
methods by developing a hardware/software platform which implements ML for an automatic 
classification of human postures and walking activity at different speeds, in addition to the 
implementation of an algorithmic pipeline for HR estimation. These high-level information are 
combined in an expert system based on decision rules that return a fatigue score. The main 
advantages of the proposed solution are: 1) its usability in different environments (even in a 
typical living environment such as the home), 2) its low cost which allows it to be widely 
disseminated and 3) its non-invasive nature facilitating the natural performance of activities of 
daily living. This makes it easily acceptable to users, especially the elderly. This study represents 
a promising step towards a more accessible, convenient, and comfortable method for fatigue 
estimation.  

The structure of the paper is as follows. Section 2 reports the hardware description and the 
algorithmic details of the designed and implemented pipeline. Section 3 presents preliminary 
results obtained during an experimental session performed under controlled laboratory 
conditions, while conclusions and further developments are summarized in Section 4. 

2. Materials and Methods 

This section begins with a description of the commercial wearable device used for the 
development of our proposed hardware/software platform. Following this, a detailed description 
of the algorithmic steps designed and implemented for estimating FLS from the sensor used is 
given. 

2.1. Hardware description 

The commercial wearable sensor employed for the acquisition of the raw data is the portable 
ShimmerGSR+ sensor [17], attested on a back band as shown in Figure 1. The device is well suited 
for long-term monitoring, as exhibits a low degree of invasiveness since it is lightweight (about 
30gr) and very small (65×32×12 mm). It is also equipped with a low-power wireless (Bluetooth) 
connection for data transmission and with an EEPROM memory for data storage, whereas the 
battery life in streaming mode is about 8 h. It is important to underline that the sensor has been 
validated for use in biomedically oriented research applications. It permits to acquire the 
following signals: acceleration along x, y, and z axes, GSR, orientation and height estimation, PPG 
and angular rate. For the classification of the user’s posture/walking speed only the integrated 



tri-axial accelerometer was considered. It measures the acceleration referred as Earth’s gravity 
“g” force (9.81 m/s2) and it is DC coupled. Thus, it is possible to evaluate both accelerations under 
static and dynamic conditions along the three axes. HR, on the other hand, was assessed using the 
optical pulse-detection probe that is supplied with the Shimmer device and connected to the 
wearable sensor via a 3.5-mm jack. 

The wearable system introduced in this work was designed with the aim of having a low 
degree of interference with the daily life of the monitored end-user. For this purpose, its 
positioning on the body was designed to favor an accurate reading of the raw signals used for 
fatigue estimation. A careful analysis of the state of the art has shown that the positioning of an 
accelerometer sensor on the human body heavily influences the correct classification of postures 
or activities such as walking [18]. For example, placing an accelerometer on the thigh can help 
distinguishing sitting and standing, but the discrimination between sitting and lying down is a 
problem. On the other hand, an accelerometer on the chest can distinguish sitting and lying down 
posture but has problems with standing and sitting. As a result, the focus for the present work is 
the positioning on the shoulder, as it allows for less cumbersome monitoring and is less prone to 
disturbance due to the movement of specific body parts. The correct placement of the device for 
acquiring the PPG signal was also assessed. Following the analysis of the relevant scientific 
literature and considering the most suitable locations for monitoring this signal, the one closest 
to the shoulder was chosen to allow the HR to be assessed with a single device. In view of these 
considerations, it was decided to perform the measurements on the earlobe, which has been 
shown to produce good PPG waveforms.  
 

 
Figure 1: Placement of electronic device on the shoulder band (image on the left) and correct 
positioning of wearable sensor for acquisition of acceleration values and PPG signal (image on 
the right) 

2.2. Proposed pipeline 

The input of our proposed pipeline is represented by raw PPG signal and raw acceleration data 
along x, y, and z axes. The first signal is acquired with a sampling frequency of 50Hz, while the 
acceleration values are acquired with a full scale in the range of 2g and a sampling frequency 
always equal to 50Hz, which is sufficient to identify four main human postures (Sitting, Standing, 
Bending and Lying down) and to distinguish three different walking speed (low, medium, and 
high speed). These values are sent in real time to a processing unit on which the software is 
installed. The latter, through a block of data pre-processing, feature extraction and classification, 
returns high-level processed information (discrete HR values and labels related to posture or 
classified walking speed). Finally, the software implements decision rules based on different 
combinations of the previously processed data. Figure 2 illustrates the proposed algorithmic 
pipeline. 



 

 
Figure 2: Proposed pipeline for fatigue estimation, through a logical block representation. 

 
The following two subsections describe in detail the algorithmic steps implemented for HR 

estimation through analysis of raw PPG signal, and activity level classification combining raw 
accelerometers data. Finally, the last subsection explains the decision rules adopted by the 
software module in the pipeline designed to return the FLS. 

2.2.1. HR estimation 

The estimation of the discrete HR value from the raw PPG signal was carried out with the help of 
Neurokit2 [19], a Python toolbox for neurophysiological signal processing, widely used by the 
scientific community for this purpose. The algorithmic steps implemented to obtain the discrete 
heartbeat value are described below. Before pre-processing, to achieve realistic values of HR, it is 
necessary to filter out the acquired raw PPG signal to remove frequencies that are unrealistic for 
human heartbeat. Consequently, a 3rd order Butterworth bandpass filter was applied. It removes 
components which exist outside the following frequency band [0.75Hz – 3.5Hz] corresponding to 
[45bpm – 210bpm]. Next, an additional second-order zero-phase Butterworth filter with a 
bandwidth of 0.5-8 Hz is applied to the obtained signal [20]. This procedure cleans the raw PPG 
signal removing the high frequencies that do not contribute to the systolic peaks. The HR 
estimation is finally obtained from the extraction of the systolic peaks detected in the cleaned 
signal, applying the following formula: 
 

HR = 60 ∗
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑝𝑒𝑎𝑘(𝑖 + 1) − 𝑝𝑒𝑎𝑘 (𝑖)
 

(1) 

 
In the proposed pipeline, to minimize disturbances in the detection of peaks due to respiration, 
the algorithm described in [21] was implemented. The methodology is based on frequency 
analysis for signal conditioning, and on the computation of an adaptive threshold method for peak 
point detection, the latter able to detect both bottom and top of the PPG waveform. 

A normalization procedure was also provided to manage the data correctly and reduce errors 
in detection due to psychophysical variations in different users. The purpose is to measure HR 
while the user is in a resting condition. For this purpose, the baseline of PPG signals was 
calculated as the average of data acquired for 30 s, during the first phase of each data collection 
trial, in which the user is not subjected to any external stimulus. The baseline value was then used 
to normalize the preprocessed acquired signals. 

2.2.2. Activity classification 

After the acquisition of raw acceleration data, the first implemented algorithmic step involves a 
signal pre-processing phase with the primary objective of reducing electrical/environmental 



noise to obtain data in a format suitable for the subsequent data processing steps. To this end, 
firstly, acceleration data on three axes (Accelx, Accely and Accelz) are read from the device worn 
by the user during data collection and converted into gravitational units to represent acceleration 
data in the range ±2g. This allows the angle 𝛼 of the chest inclination to be extracted and avoids 
having too different orders of magnitude during the subsequent processing steps. Next, a low-
pass filter of order 8 and cut-off frequency of 10 Hz is applied to the raw signals to eliminate noise. 
 The pre-processing phase of the accelerometric data also includes a calibration procedure, to 
check the correct positioning of the wearable sensor and to store the starting setting downstream 
of the device placement, all with the aim of correctly manipulating the pre-processed data. The 
check consists of verifying that the values measured on the two acceleration axes are orthogonal 
to g, i.e., they have a value close to zero, less than established tolerance interval. Following this 
procedure, three acceleration values are stored and used in the subsequent processing steps to 
derive the initial sensor positioning conditions. The data thus pre-processed are used for the 
feature extraction phase. The purpose of this phase is to obtain relevant information from the 
accelerometric signals useful for posture and walking speed assessment. Several time domain 
and time–frequency domain features utilized in biomedical applications for monitoring the 
human posture and walking activity were investigated for this study [22-24]. In our proposed 
framework, features extracted in the time domain are mainly evaluated to reduce the 
computational cost and execution time. These features are calculated for each acceleration axis 
within a sliding window of 300ms, with an incremental window of 50ms. To reduce the 
complexity of signal processing and improve system performance, the Lasso feature selection 
method, suitable for supervised systems, is applied [25]. Through this technique, the following 
features are selected and computed: mean absolute value, variance, dynamic acceleration change, 
static acceleration change, kurtosis, and skewness. Table 1 shows the calculation formulas 
applied for each considered feature. 
 
Table 1 
Features selected by Lasso method for subsequent classification step 

Feature Formula 

Mean absolute value ∑ |𝐴𝑐𝑐𝑒𝑙𝑖|𝑁
𝑖=1

𝑁
 

Dynamic acceleration change 𝑀𝑎𝑥(𝐴𝑐𝑐𝑒𝑙𝑖) − 𝑀𝑖𝑛(𝐴𝑐𝑐𝑒𝑙𝑖) 
 

Static acceleration change 𝑀𝑎𝑥(𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝐴𝑐𝑐𝑒𝑙𝑖) − 𝑀𝑖𝑛(𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝐴𝑐𝑐𝑒𝑙𝑖) 

  

Kurtosis ∑ (𝐴𝑐𝑐𝑒𝑙𝑖 − 𝜇𝑁
𝑖=1 )4

𝑁 ∗  𝜎
 

 
Skewness ∑ (𝐴𝑐𝑐𝑒𝑙𝑖 − 𝜇𝑁

𝑖=1 )3

𝑁 ∗ 𝜎
 

  
 For the classification of the human postures and three different walking speed, the extracted 
features are used to train and compare various ML algorithms, widely used in the relevant 
scientific literature for the classification topic considered in this paper. The ML classifiers 
compared include the Support Vector Machine (SVM), Naive Bayes (NB), Logistic Regression (LR), 
K-Nearest Neighbors (KNN), and Random Forests (RF). Following a series of experiments 
performed in laboratory settings (specifically, the protocols described in detail in the 'Result' 
section), the highest classification accuracy results are obtained with the RF classifier. 
 RF classifier [26] is a supervised classifier based on an ensemble of decision trees. The 
ensemble of trees is training by the bagging method. Merging the classification of the ensemble 
of the decision trees improves the overall classification performance. Different hyper-parameters 
associated with the RF classifier can be optimized to maximize the classification accuracy. These 
parameters are the number of decision trees, the maximum number of features to split the node, 



and the minimum number of leaves to split the node. In our proposed approach, the well-known 
technique “grid search” [27] was applied to obtain the optimal value of the following parameters: 
the number of decision trees (fixed to 29), the maximum and minimum number of features to 
split the node (set to 8 and 26, respectively). The last algorithmic step simply involves defining 
three activity levels (low, medium, high) according to the following association with the classified 
postures and walking speed levels: 
 

• Low Activity Level: Sitting, Standing, Bending, Lying down, Walking low speed 
• Medium Activity Level: Walking medium speed 
• High Activity Level: Walking high speed 

 
 For the definition of the three different levels of walking speed, analyzing the scientific 
literature relating to the measurement of the user's Energy Expenditure (and related Metabolic 
Equivalent Task - MET) with respect to activities of daily living performed [28], it was agreed to 
define them by measuring the following speed values: 
 

• Walking low speed, < 1.5 km/h 
• Walking medium speed, 1.5 km/h – 3.0 km/h 
• Walking high speed, > 3.0 km/h 

2.2.3. Fatigue estimation module 

The last algorithmic block of our proposed pipeline implements pre-established production rules 
(usually used as a simple expert system in artificial intelligence) to compute of FLS. Specifically, 
HR values and classified activity levels are combined for fatigue estimation. A production rule 
generally consists of two parts: IF part and THEN part. The structure can be of three different 
types since it depends on the number of the input variables in the conditions and the number of 
output variables in the conclusions: 1) SISO (a structure with Single Input – Single Output); 2) 
MISO (a structure with Multi Inputs – Single Outputs); 3) MIMO (a structure with Multi Inputs – 
Multi Outputs). In the present work, MISO structure is adopted, with the following generic 
definition of production rule: 
 

𝑅(i) = 𝐼𝐹 X 𝑇𝐻𝐸𝑁 Y (2) 
 
where R(i) represents the rule i, X is the antecedent of the rule i, and Y is the consequent. Since 
we have adopted MISO, the input X is composed of two components (xa and xb), where xa is the 
classified activity level whereas xb is a percentage value calculated from the ratio of the estimated 
HR value to the end-user's maximum heart rate (FCmax). For the calculation of the latter quantity, 
the well-known Tanaka formula was used [29], in which the value of FCmax is obtained using the 
following formula which only considers the age of the end-user: 
 

𝐹𝐶𝑚𝑎𝑥 = 208 − 0.7 ∗ 𝑎𝑔𝑒 (3) 
 

Table 2 reports all the implemented rules. The first column details the activity level while the 
second column shows a percentage value obtained from the ratio of the estimated HR value to 
the end-user's maximum heart rate value. The third column reports the FLS that the rule assigns, 
and finally the fourth column provides a definition of the fatigue level according to Borg CR10 
scale, a Category-Ratio (CR) scale anchored at number 10, representing an extreme intensity of 
activity. It is a general intensity scale with special anchors to measure exertion and pain [30]. The 
choice of such a scale for the explication of rules is motivated by the fact that it has a high 
correlation with the end-user's HR, and it could be also easily used as ground-truth for future 
developments of the implemented platform.   
 



Table 2 
Product rules implemented for FLS estimation 

Activity level % (HR/FCmax) FLS Definition 

Low <=30 0 No fatigue 
Medium <=30 1 Really low fatigue 

High > 30 and <= 40 2 Very low fatigue 
Low > 30 and <= 40 3 Low fatigue 

Medium > 30 and <= 40 4 Quite moderate fatigue 
High > 40 and <=50 5 Somewhat moderate fatigue 
Low > 40 and <=50 6 Moderate fatigue 

Medium > 50 and <=60 7 High fatigue 
High > 60 and <=70 8 Very high fatigue 

Medium > 70 and <= 80 9 Extreme high fatigue  
High > 80 10 Maximum fatigue 

3. Results 

For the validation of the proposed hardware/software platform for fatigue estimation, a series of 
experiments were conducted in the “Smart Living Technologies Laboratory” located in the 
Institute of Microelectronics and Microsystems (IMM) in Lecce. Specifically, 11 end-users were 
involved in the trial. Some characteristics of them are specified below: average age of 68.6 years 
(standard deviation equal to 2.4 years), average weight of 66.7 kg (standard deviation equal to 
11.3 kg) and average BMI of 24.6 (standard deviation equal to 3.8). 

Each end-user was asked to participate in three data collection sessions (referred to as 
Session1, Session2, Session3 from now, see Table 3 for details) with different durations and 
posture/activity sequences, after wearing the shoulder band as shown in Figure 1. Each 
acquisition session lasted between 6 and 7 minutes and involved the following postures and 
walking activity in different sequences and durations: Standing (ST), Sitting (SI), Bending (BE), 
Lying down (LY), Walking low speed (W_LS), Walking medium speed (W_MS), Walking high 
speed (W_HS). To reduce overfitting, 3 trials of each session were performed. 
 
Table 3 
Details of the experimental sessions  

Session1  Session2  Session3  

Posture/Action Dur (s) Posture/Action Dur (s) Posture/Action Dur (s) 

W_LS 30 W_LS 60 SI 30 

ST 60 LY 30 ST 30 
W_MS 30 ST 30 W_MS 30 

SI 90 BE 30 LY 60 
W_MS 30 W_MS 30 ST 30 

ST 30 LY 60 BE 30 
W_HS 30 W_MS 30 W_LS 30 

BE 30 ST 60 SI 60 
W_LS 60 W_HS 60 ST 30 

SI 30 SI 30 W_LS 30 

Total dur (m) 7  7  6 

 
The raw data acquired by the wearable device were transmitted via Bluetooth protocol to an 

embedded PC with Intel core i5 and 8 GB of RAM, on which it was installed the software 



implemented for fatigue estimation.  Figure 3 shows the user interface implemented in the Python 
programming language. 
 

 
 
Figure 3: End user software interface. The right-hand side shows the data processed by the 
algorithmic pipeline (heart rate, activity level and fatigue score) while the central part plots the 
raw signals acquired from the wearable device used 
 

It is important to emphasise that the output of the implemented software is based on decision 
rules whose levels have been defined through a specific scale of values derived from the 
literature. The same hw/sw platform, however, also guarantees its operation with different 
decision rules that may have been defined by medical specialists, and which express, for example, 
a more limited number of fatigue levels. Since it was not possible to have a ground truth of the 
fatigue level in the preliminary phase of the present validation, in this section the results obtained 
with respect to the quantities involved in the decision rules are presented. 

To evaluate the performance of HR estimation from raw PPG, Mean Absolute Error (MAE) and 
Root-Mean-Square Error (RMSE) were calculated for each subject recording, considering a 
commercial pulse oximeter as ground truth. Table 4 reports the results obtained for each 
acquisition session performed, averaged out for the whole cohort: 
 
Table 4 
HR estimation performance at varying of acquisition session 

 MAE (bpm) RMSE (bpm) 

Session1 5.4 (±0.5) 7.3 (±0.6) 
Session2 4.1 (±0.3) 6.4 (±0.5) 
Session3 4.4 (±0.3) 6.8 (±0.5) 

 
The MAE and RMSE values shown in the table provide confirmation of the effectiveness in HR 

measurement of the implemented pipeline. Higher values of the metrics used can be seen at 
Session1, in which more walking activities were included. Furthermore, the variance values 
reported in brackets show that this solution is robust with respect to age and physical size of the 
observed subject. 

To evaluate the performance of the algorithmic pipeline designed and implemented to 
estimate the end-user's posture and walking speed level, accuracy (ACC) and  Cohen’s Kappa (K) 
were calculated. These metrics are the most widely used by the scientific community in the case 
of a multi-class classification problem. Accuracy measures the proportion of correctly classified 
cases from the total number of objects in the dataset. To compute the metric, the number of 
correct predictions has to be divided by the total number of predictions made by the model. On 
the other hand, Cohen’s Kappa is a statistical measure of inter-rater agreement for categorical 
data. It takes into account both the number of agreements and the number of disagreements 



between the raters, and it can be used to calculate both overall agreement and agreement after 
chance has been taken into account. 

To reduce classification bias, a 10-cross-validation was applied. It involves dividing the 
available data into 10 folds or subsets, using one of these folds as a validation set (10% of data), 
and training the model on the remaining folds (90% of data). This process is repeated each time 
using a different fold as the validation set. Finally, the results from each validation step are 
averaged to produce a more robust estimate of the model’s performance. Table 5 shows the 
obtained performance in terms of ACC and K in accordance with the three previously introduced 
data collection sessions. Reported values were obtained by calculating the average of the metrics 
considered on all users involved in the experimentation stage. 

 
Table 5 
Classification performance for posture and three different levels of walking speed at varying of 
three different acquisition session. 

 ACC (%) K 

Session1 96.9 0.953 
Session2 97.3 0.968 
Session3 97.7 0.971 

 
Excellent classification accuracy through RF was obtained in all three experimental sessions, 

with lower results obtained in Session 1 in which there were more walking phases. Also, the K 
values obtained (always higher than 0.81) correspond to a perfect agreement between the 
instance’s true label and the one predicted by the selected classifier. 

Generally, the only metrics presented in Table 4 could not be exhaustive when it is intended 
to assess classification performance for more than two classes. To overcome this limitation, in 
Figure 4, the confusion matrices of the average accuracies obtaining at varying of acquisition 
session are reported. 

 

 
(a) 

 



 
(b) 

 

 
(c) 

Figure 4: Confusion matrices for seven classes of posture and walking activities for each 
considered acquisition session 
 

The confusion matrices reported for each session show that the most accurately classified 
postures are BE and LY, while the most confused are SI and ST. Finally, it is evident that the lowest 
accuracy is in classifying the different walking speeds, but this may also be due to an incorrect 
measurement of speed as it is not constant over time 

Conclusion 

In this paper, a preliminary study was proposed based on the development of a hardware-
software platform capable of estimating the fatigue level. A fatigue level score was obtained with 
the help of a wearable sensor that is readily available on the market, which allows the realization 
of an integrated system that can be used directly at home. The high-level information extracted 
through the algorithmic pipeline allows for real-time monitoring of both the heartbeat and 
activity level of the end-user. In addition, the combination of this information, through the 
implementation of decision rules, makes it possible to provide medical personnel with an 
automatic fatigue monitoring system, which is useful, for example, in preventing the onset of 
disorders or problems, whether they occur within a working environment or within a living 
environment (i.e., the home). A very important result achieved relates to a high accuracy 



obtained, through ML methodology, with respect to the recognition of human postures and 
walking speed, a topic still open in the scientific literature in this field. 

A possible future development of this work may concern, for example, the extraction of other 
vital parameters (i.e., SpO2) from the same wearable device, with the aim of having a more 
extensive input data set that can lead to the definition of a more precise fatigue level. In addition, 
a further future development may be to apply artificial intelligence, through the application of ML 
or deep learning (DL), directly to the set of high-level data extracted from the sensor, avoiding in 
this case the implementation of decision-making rules. 
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