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Abstract  
In this study, we dive deep into the Pure Lambda Calculus' evaluation process, specifically 

zooming in on term reduction steps. Commonly, these steps are seen as the same, but our 

research suggests otherwise - some steps are more complex than others. We investigated how 

specific term features play a role in computing efficiency, aiming to shed light on how different 

reduction strategies perform. Through testing, our Linear Regression and ANN regression 

models showed potential in predicting the time taken for a reduction step based on term details. 

Yet, when we used richer datasets to pin down complexity, our predictions didn't sharpen as 

much as hoped. This leads us to believe that term details, while useful, might not be the full 

puzzle pieces we need for spot-on strategy predictions. This research opens the door for further 

exploration into refining our models and unearthing other crucial factors that could shape term 

reduction time. Ultimately, our findings could help optimize programming tools like compilers 

and interpreters, steering them toward swifter operations. 
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1. Introduction 

In Pure Lambda Calculus exists one of the fundamental problems of the evaluating program 
execution process [1]. The existing approach only analyzes term reduction steps as equal processes [1, 

2]. The problem is that they are different, so we are trying to find a way to estimate that inequality. 

This study aims to research the factors influencing time complexity in term reduction within the 

Pure Calculus environment. We focus on measuring different term features and their impact on 
computational efficiency. That approach must show that some reduction strategies are less effective in 

terms of computational resources but, at the same time, have smaller amounts of reduction steps. 

Potentially, it may have an impact on improving programming language compilers and interpreters 
in a way to analyze programming code for choosing a faster execution strategy. 

2. Background and related work 

The idea that the impracticality of estimating term reduction strategy effectiveness by counting 

reduction steps as cost-equal processes has been known since early works in this area of math [1]. Also, 
many studies have explored various reduction strategies in functional programming but haven't focused 

on how time spent in term reduction varies with the topology of terms and choice of reduction strategy 

[1, 2]. But we must admit that there are works where authors tried to investigate methods for measuring 
computational reduction complexity by analyzing some reduction strategy and its memory consumption 

[3, 4] or measuring complexity via cost models [5]. In the work [6], the author tried to define some 

classes of terms by computational cost and define a type of reduction strategy. Also, other researchers 

proposed a weak invariant cost model for the lambda calculus, the model based on theoretical 
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assumptions [7]. In previous articles [8, 9], we showed our Pure Lambda Calculus environment, which 
we developed using the Python programming language, in order to find an average optimal strategy for 

reducing lambda terms. The lambda environment is built on the idea of term tree representation, which 

was shown in many articles [2, 3, 5, 10], and we reduce all operations with terms to the idea of tree 

operations. So, simple operations like finding redexes, finding vertices, and finding height and width 
are the tree traversal operations, and operation reduction is actually a combination of the node removing 

and copying operations, which was shown in the paper [5]. Obviously, tree topology and  its volume 

affect processing tree operations, but the lambda term in the tree representation is a more complicated 
construction, which may have many insert operations for one reduction. 

We must admit that this task is practically impossible to solve due to the infinite amount of possible 

lambda terms [1], but it is possible to find a solution that will work in many practical applications. 

3. Problem Statement 

In our Pure Lambda Calculus environment we tried to find the best average strategy for reducing 

Lambda terms, and during experiments, we noticed that the time spent by the program on a one-step 

reduction of different terms differs and depends on the term topology and the selected redex. Thus, the 
necessity of a metric for defining the complexity of term reduction arose both before and after reduction. 

After analyzing a certain amount of literature we can conclude that there is no good metric that could 

precisely measure the computational complexity of the term reduction strategy. There are no studies 

where authors tried to combine the lambda calculus environment for investigating computational 
measures based on the environment's computational costs.  So, we need to find a way of defining this 

metric using knowledge about a term and redex. The metric can be used as a smart way to define the 

term reduction complexity and a way to define new computationally effective reduction strategies. 

4. Hypothesis 

We suggested that some combination of the parameters of the number of vertices, the number of 

redexes, the height and width of the term, as well as the depth of the redex can determine the time spent 

on one step of the reduction and, therefore, determine the complexity of the reduction process. In other 
words, we hypothesize that parameters for describing term topology can be used for accurate prediction 

time spent on reducing a specific redex, which shows the computational complexity of a term with 

specific redexes. Thereby, we can suggest two assumptions: 
1. The term parameters before the reduction process with the redex data can define the 

computational complexity of the reduction process before performing one, or in other words, 

complexity prediction; 

2. The second assumption requires term data before and after the reduction process with the redex 
data, which can define the computational complexity of the reduction process afterward, in other words, 

complexity determination. 

5. Methodology 

The central idea of Machine Learning methods is to automatically construct a complex function that 
best (according to the selected ML method) can approximate the real function describing the data. 
Because we assume time spent on one reduction step is a measure of computational complexity, we can 
use some method of Machine Learning for the prediction of time spent on one reduction step or solving 
a regression problem, in other words.  

For regression analysis, we have to highlight the main regression methods: 

 Linear Regression: one of the most important and widely used statistical techniques [11] for 
modeling the relationship between some feature data and target value, which is based on the equation 
𝑦 = 𝑋𝛽 + 𝜀. 
Advantages: it is relatively easy to train and get the final dependency expression, and this method could 
be relatively easily extended for use on non-linear convolution of input data. 
Disadvantages: the assumption that input and output data have a linear dependency, and sensitivity on 
outliers, especially on small datasets. 
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 Decision Tree Regression: the main idea of this method [12]  is to split the data into subsets based 
on features and make predictions dependent on the average value of the sample in the leaf node. 
Advantage: interpretable, handling nonlinear and complex dependencies. 
Disadvantage: prone to overfitting, hard to configure optimal effectiveness, sensitive to noises in data. 

 Support Vector Regression is an extension of the Support Vector Machine method for regression 
analysis. The method constructs a hyperplane in a high-dimensional input data space, which tends to 
get the largest distance to the nearest training data point for better generalization [13]. 
Advantages: versatility due to different kernel functions, effective in capturing complex relationships 
in high-dimensional data.  
Disadvantage: sensitive to the choice of kernel. 

 K-Nearest Neighbors Regression: uses a weighted average of the k nearest neighbors for 
estimating continuous variables [14]. 
Advantages: do not make strong assumptions about data distribution, can handle nonlinear 
relationships. 
Disadvantages: it is difficult to obtain the objective function, sensitive to the choice of K and distance 
metric. 

 ANN Regression: for an artificial neural network, we can set the output layer without activation 
function and it makes ANN a continuous value predictor. This is a widely used approach for obtaining 
continuous data without constraining the ANN model [15]. 
Advantages: ability to capture complex data relationships, high level of generalization, simple set of 
approaches to modify the effectiveness of the ANN. 
Disadvantages: prone to overfitting, hard to tune many hyperparameters, sensitive to loss function 
choice. 

As a metric for the estimating effectiveness of the regression model we are supposed to use default 
measures like [16]: 

 Mean Absolute Error (MAE): measures the average absolute difference between the expected 
values and predicted. 
Advantages: easy to interpret, resistant to outliers because of equal weights to all errors. 
Disadvantages: can’t define if it overestimates or underestimates, doesn’t provide information about 
the error distribution. 

 Mean Squared Error (MSE): squares the difference between the expected and predicted values 
and takes the average of its sum. 
Advantage: gives higher penalties for larger errors, which is important for use as a loss function. 
Disadvantage: sensitive to outliers and large errors can have a significant impact on the results. The 
squared units make interpretation less intuitive. 

 Root Mean Squared Error (RMSE): which is the square root of MSE. 
Advantages: provide a more interpretable measure compared to MSE, weighted penalties for larger 
error value. 
Disadvantage: sensitive to outliers like MSE. 

 Mean Absolute Percentage Error (MAPE): measures the percentage of the difference between 
the expected and predicted values, averaged over all observation values. 
Advantages: it is easy to interpret and compare across different datasets, a percentage-based measure 
of accuracy. 
Disadvantage: undefined when actual values are zero or close to zero, can be sensitive to outliers. 

Over a list of the main regression analysis methods and metrics for measuring regression accuracy, 
we can use Linear Regression with complex data preprocessing and ANN Regression as methods that 
can help us to formulate dependencies between term characteristics and time spent on reduction steps. 
Other methods could be indicators of the best accuracy. Also, for ANN Regression, we use the MSE 
measure as a loss function and RMSE and MAE as more interpretable metrics for the cross-comparing 
model effectiveness. 

6. Experiments and data collection 
6.1. Data generation 

In the Pure Lambda Calculus environment, we have a possibility to artificially generate terms. For 
the generating procedure, we can set min, and max counts vertices and redexes, after generating we 
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have a filtering procedure that filters out terms with too long reduction trace with the selected strategy 
(by default, it is the leftmost outermost strategy) or with too big memory consumptions. The term 

generating procedure was inspired by the article [10]. For experiments, we generated 220 terms, which 

we normalized with the leftmost outermost and the rightmost innermost strategies, which gave us 3931 

records with time in nanoseconds spent on each reduction. We also must admit that in this scenario time 
spent on reduction consists of time spent on searching for appropriate redex by selected strategy plus 

time spent on doing reduction. We use a Unix-based operating system for collecting time data because 

it gives a more clear representation of time spent on processes than other operating systems. That 
approach should give as accurate computational resource consumption as possible. 

6.2. Data points and metrics 

In Fig. 1, we can see that the term could be easily represented as a tree, so features that we collect 

about the term are actually parameters that describe a tree: 
1. Height – the longest sequence from the tree root to the term tree (for the term in Fig. 1 the height 

value equals 4). 

2. Width – count leaves of the term tree (for the example equals 4). 
3. Redexes – count redexes in a term (in Fig. 1, you can find 2 redexes, marked as red Apps in the 

tree representation, and underlined in the formula representation). 

4. Vertices – count vertices in the term tree, in terms of lambda calculus, are count all applications, 

abstractions, and atom variables (in  Fig. 1, it equals 12). 
5. Redex depth – length of sequence from the tree root to the selected redex application node (for 

the first redex, which is the root node in the tree, it equals 1, and for the second redex it equals 3). 

6. Step time – time spent on finding appropriate redex by selected strategy plus time spent on 
reduction step by selected redex in nanoseconds.  

 
b Figure 1: 𝛺(2, 2) term with marked redexes and its tree representation 

Also, we collect parameters that describe the term after the reduction procedure, which are the same 

except for redex depth, which isn’t required now. We also got differences between parameter values 

before and after the reduction procedure. 

7. Data analysis 
7.1. Correlation matrices  

In the domain of regression analysis, the quest for precision and accuracy demands a meticulous 
understanding of the relationship between variables in input data and the relationship between inputs 

and outputs, which will help us decide if further research makes sense. In the broadest sense, correlation 

may indicate any association type, but in statistical analysis, it usually refers to linear relationships, and 
this is an important drawback to be aware of. 

Therefore, it became necessary to analyze the obtained data for correlations. Therefore, correlation 

matrices were obtained, you can find them in Fig, 2, it was shown that the term features data and the 
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redex data have the highest correlation with the reduction time (0.56 - 0.77, shown in Fig. 2.a), the term 
features data after reduction have a slightly smaller correlation with reduction time (0.48 – 0.68, shown 

in Fig. 2.b) and given features difference before and after reduction have the smallest correlation (-

0.033 – 0.13, shown in Fig. 2.c).  

 
Figure 2: Correlation matrices for term parameters before and after reduction, and its differences: (a) 
correlation term features before reduction, (b) correlation term features after reduction, (c) 
correlation term differences features before and after reduction  

We must admit that parameters like vertices, redexes, heights, widths, their post-reduction variant, 

and the difference variant have high correlation values, close to 1, which simply indicates that these 

parameters are related due to the term tree topology. Also, we should emphasize that the selected 

reduction strategy doesn’t have correlation to the reduction step time and other term parameters. 
According to the results of the correlation analysis, we decided that solving the regression problem for 

these data and the target value made sense. 

7.2. Assumptions 

We previously defined two assumptions. Based on these assumptions, we can now define three 
datasets for training and testing: 

1. For the complexity prediction, we can use the term data before the reduction process and the 

redex data. Input data: widths, heights, vertices, redexes, and redex_depths. Target data: steps_time. 



152 

 

2. For the complexity determination, we can use the term data before and after the reduction process 
and the redex data. Input data: widths, heights, vertices, redexes, widths_post, heights_post, 

vertices_post, redexes_post, and redex_depths. Target data: steps_time. 

3. For the complexity determination, we can use the term data before and after the reduction process, 

the step difference term data,  and the redex data.  Input data: widths, heights, vertices, redexes, 
widths_post, heights_post, vertices_post, redexes_post, widths_diff, heights_diff, vertices_diff, 

redexes_diff, and redex_depths. Target data: steps_time. 

7.3. Data preprocessing 

The typical problem for any Machine Learning method is data distribution inputs and outputs: many 
methods require close distributions like (0; 1), (-1; 1), etc., which guarantee as fast method convergence 
as possible. Hence, we decided to analyze the term features distributions and the target data distribution. 
The results of the data distribution analysis are shown in Fig. 3, and we can see two problems: the first  
problem with collected data is too wide distributions (unscaled in other words) and the second problem 
for some features is non-normal data distribution, which might impair the learning process. A non-
normal distribution of data is characteristic of width (Fig. 3.a and Fig. 3.e), vertices (Fig. 3.c and Fig. 
3.g), redexes (Fig. 3.d and Fig. 3.h) before and after the reduction step. All parameters, which are 
detailed in Figure 3, are presented in their unscaled form. 

To increase model regression performance we decided to take a logarithm of target value (step time). 
For all input fields, we apply Yeo-Jonson power transformation [17], because it can take zero values in 
data, process data logarithmically, normalize data distribution, and automatically scale data. After 
applying the Yeo-Jonson power transformation for input data and taking the logarithm of the target 
value, we got new data distributions which are shown in Fig. 4. It’s easy to see that new data 
distributions for widths (Fig. 4.a and Fig. 4.e), vertices (Fig. 4.c and Fig. 4.g), and redexes (Fig. 4.d and 
Fig. 4.h) before and after reduction step, also, the target variable step time (Fig. 4.n) became close to 
normal distribution. Other features: heights  (Fig. 4.b and Fig. 4.f), and all differences (Fig. 4.i, Fig. 4.j, 
Fig. 4.k, and Fig. 4.l) did not change their distribution law. The transformation ensures setting compact 
value distribution for all features and the target variable. In total, all these changes will improve model 
quality and speed up regression model convergence. 

Before testing regression methods, we should consider that usual practice in Machine Learning is 
dividing a dataset into tree sets for training, validation and testing. These sets are required for model 
training episodes, tuning model hyperparameters, and final model testing in accordance, which allows 
us to reveal the real quality of learning on previously unseen data. Due to relatively small amounts of 
data and small models, we decided to use the test set as the validation. So, we divided our term records 
in all datasets into two subsets namely training and testing ones in proportion to 70% / 30% in 
accordance, so we got 2782 samples in the train set and 1149 samples in the test set. Also, we should 
highlight that terms data in three datasets are identical, and train-test splitting happens in the same order. 
So, model performance depends not on the random data splitting but mostly on itself. 

8. Regression models 
8.1. Standard approaches 

Further, standard approaches for solving regression problems were tested on the 1-st dataset 
(complexity prediction problem). Results are represented in Table 1, where you can find results for the 
following methods: 1. Linear Regression, 2. Decision Tree Regression, 3. Support Vector Regression, 
4. K-Nearest Neighbors Regression and 5. ANN Regression. Methods 2 and 4 showed the lowest error 
values (RMSE = 0.0497 – 0.2105) on the train data, but the error value on the test data was relatively 
high (RMSE = 0.30 – 0.4), indicating the inability of these models to generalize the data. Methods 1, 3, 
and 5 showed a higher error rate during training (RMSE = 0.27 – 0.29), but on test data, the error was 
identical (RMSE = 0.28), which indicates the sufficient ability of the algorithms to generalize the data. 
We decided to continue testing methods 1 and 5 due to the high generalizability. Linear Regression was 
also practically proven that the linear model is quite sufficient for estimating the reduction time, and 
it’s easy to get the final complexity estimation equation. ANNs are effective in terms of modifiability 
and their ability to approximate complex functions within data. 
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Figure 3: Data distributions for all collected term features: (a) widths, (b) heights, (c) vertices, and (d) 
redexes  before reduction; (e) widths, (f) heights, (g) vertices, and (h) redexes after reduction; (i) 
widths, (j) heights, (k) vertices, and (l) redexes after and before reduction features difference; (m) 
redexes depth as redexes feature; and target variable (n) steps time 

8.2. Model performance 

As you can see in Table 1, the Linear Regression and the ANN Regression models showed high 
generalizability with RMSE of 0.28-0.29 on the test set with the 1st dataset. So we decided to test the 

second assumption about complexity definition (on the 2nd and the 3rd datasets), where we achieved 

RMSE of 0.27-0.29, which didn’t seem as much improvement withholding more data as expected. 
Also, for the 1st dataset, you can see in Fig. 5, drawings for ANN predictions and expected values. 

These plots are achieved by plotting a dot in the space of predicted and expected values, where closer 
values to the diagonal (marked as a gray line) mean a better model approximation. Here, dots over the 
diagonal indicate overestimation, and dots under the diagonal indicate underestimation. Also, these 
plots for the 2nd and the 3rd datasets are approximately the same as for ANN Regression and for Linear 
Regression, which means that even more complex models cannot get better results. In Table 2 we can 
find other metrics like MSE, MAE, and MAPE for estimating efficiency of Linear Regression and ANN 
Regression models on the 1st, 2nd, and 3rd datasets. We conclude that using other metrics did not give 
many benefits in distinguishing the quality of models, but some metrics like MAE give an average error 
value, and MAPE gives an average percent of error, which might help in understanding plots in Fig. 5. 
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Figure 4: Data distributions after applying Yeo-Jonson normalization for all collected term features: 
(a) widths, (b) heights, (c) vertices, and (d) redexes  before reduction; (e) widths, (f) heights, (g) 
vertices, and (h) redexes after reduction; (i) widths, (j) heights, (k) vertices, and (l) redexes after and 
before reduction difference; (m) redexes depth as redexes feature; and taking logarithm of target 
variable: (n) steps time 

Table 1 
Best values of Root Mean Squared Errors, achieved for different models, studied on three formulated 
datasets 

Regression Method 1st dataset 2nd dataset 3rd dataset 

train test train test train test 

1. Linear Regression 0.2953 0.2818 0.2989 0.2938 0.2968 0.2873 
2. Decision Tree Regression 0.0497 0.4052 - - - - 

3. Support Vector Regression 0.2744 0.2892 - - - - 
4. K-Nearest Neighbors 

Regression 
0.2105 0.3217 - - - - 

5. ANN Regression 0.2905 0.2845 0.2805 0.2858 0.2788 0.2759 
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Figure 5: Dots plot real values and prediction for estimating ANN model efficiency on the 1st dataset: 
(a) achieved for the train set, (b) achieved for the test set 

Table 2 
MSE, MAE and MAPE for Linear Regression models and ANN Regression models for the 1st, 2nd, and 
3rd datasets separated by train and test sets 

Regression Method 1st dataset 2nd dataset 3rd dataset 

train test train test train test 

1. Lin. Regr. (MSE) 0.0871 0.0788 0.0879 0.0895 0.0837 0.0923 
5. ANN Regr. (MSE) 0.0858 0.0766 0.0788 0.0814 0.0766 0.0786 
1. Lin. Regr. (MAE) 0.2276 0.2196 0.2284 0.2326 0.2244 0.2370 
5. ANN Regr. (MAE) 0.22 0.2116 0.2158 0.2206 0.2141 0.2146 
1. Lin. Regr. (MAPE) 1.958 1.894 1.9641 2.013 1.93 2.047 

5. ANN Regr. (MAPE) 1.898 1.827 1.872 1.925 1.846 1.856 

9. Discussion 

Performance testing of our model indicates that both the Linear Regression and ANN regression 
models effectively predict the time spent on a reduction step based on term parameters. So we can 
conclude that the first assumption about complexity prediction is relevant. However, the second 
assumption about complexity determination with more detailed datasets didn’t show much effectiveness 
improvements despite available data about the term state after the reduction procedure and differences 
in these states. In particular, we can admit that the effect on the ANN model on which we can increase 
model volume, but without much impact on MSE. So, we can conclude that term parameters have 
relations to term reduction complexity, but these parameters aren’t sufficient, which is a weak sign, that 
might help with estimating the best reduction strategy but without prominent accuracy. 

10. Conclusion 

We hypothesized that parameters that describe term topology can be used for accurate prediction 
time spent on reducing a specific redex, which shows the computational complexity of a term with 
specific redexes. For this, we have proposed two assumptions: complexity prediction and complexity 
determination, and we formulated three datasets on data obtained by normalizing artificially generated 
terms. The first conclusion: we showed on two datasets for complexity determination, we didn’t achieve 
much improvement in RMSE value even with increasing model capacity, which indicates that state 
term after the reduction process and difference data don’t offer much information about the reduction 
process. The second conclusion: we achieved a stable level of RMSE on train and test data for the 1-st 
dataset for complexity prediction, which means that with the Linear Regression model or with the ANN 
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Regression model we can get a weak term reduction estimator, which doesn’t require big computational 
resources, but doesn’t provide quite accurate estimation. 

For further research, we could focus on enhancing the regression models or investigating new 
parameters that might affect term reduction time. For investigating new parameters, we could use 
parameters that describe redex in more detail, like count bound variables in the object body (which 
indicates count inserts in the term tree), parameters for redex subject, etc. We should also consider 
improving the accuracy of our time measurements. Our experiments were conducted on a Unix-based 
operating system using the Python interpreter, which does not guarantee precise time accuracy. 
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