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Abstract  
We give novel confluence criteria and examples that can be used by researchers in computer 

science and software engineering to better recognize situations where the local confluence 

property of non-terminating abstract rewriting systems is and is not equivalent to the 

confluence property. We also describe a formalization of the main results in Isabelle proof 

assistant software. 
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1. Introduction 

Newman’s lemma [1] is often considered as one of the cornerstones of the rewriting theory [2-6] – 

a part of foundations of automated reasoning and formal specification and verification of software. 

This lemma is usually included in computer science and software engineering curricula and can be 

found in various textbooks. In particular, it can be used in presentations of Knuth-Bendix completion 

algorithm [7] and Buchberger’s algorithm [8]. In modern reformulations, Newman’s lemma 

establishes the equivalence between the (global) confluence and local confluence properties for 

terminating (Noetherian or strongly normalizing in alternative terminology) abstract rewriting systems 

(ARS). Although other confluence criteria applicable to wider classes of ARS are available, e.g. the 

decreasing diagrams method [9] that is known to be complete for the class of ARS with cofinality 

property [10, 11], Newman’s lemma has its own advantages, e.g. abstract treatment of both elements 

and reductions and no use of auxiliary labelings of elements or reductions.  

Taking into account usefulness of Newman’s lemma, it is natural to question whether its 

termination assumption can be relaxed to make the lemma more widely applicable. A formal answer 

to this question is “yes”: the class of all ARS for which confluence and local confluence are 

equivalent (the union of classes of confluent and not locally confluent ARS) is wider than the class of 

all terminating ARS (the remaining question is how to make sure that a given, possibly non-

terminating system belongs to the former class). However, in the literature on rewriting systems that 

mention Newman’s lemma the termination assumption is quite often presented as a necessary 

condition for the validity of the lemma’s conclusion, e.g.: “The following examples illustrate that the 

requirement of noetherianity is necessary to prove confluence from local confluence. …’’ [5, 

paragraph 1.4.2], “… For the relations that are not noetherian, much stronger local hypotheses are 

necessary to yield confluence.” [2, paragraph 2.2]. In our opinion, such informal statements may 

unintentionally create an impression that the local confluence property cannot be used in place of the 

confluence property in any situation where a system under consideration is not terminating (or its 

termination cannot be established with certainty), although this is not the case.  

In this work we give novel results that can help one to better recognize situations where the  

local confluence property of abstract rewriting systems is and is not equivalent to the confluence 

property. We also describe formalizations of the main theorems (Theorems 1, 2, 3 from Section 4) in 

Isabelle proof assistant software [12, 13] using HOL logic (Higher-Order Logic). This work continues 

the previous works [14] and [15] about confluence proof methods for non-terminating ARS. To the 

best of our knowledge, proofs of the results given in Section 4 (Main results) below have not been 

published previously.  
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2. Terminology and notation 

In this work we will focus on abstract rewriting systems with single reduction relation (without 

auxiliary labelings of elements or reductions). 

 We will give novel confluence criteria based on local confluence for special classes of such 
systems. We will assume that the Axiom of Choice holds and will freely use its corollaries (e.g. 

Zorn’s lemma).  

We will use the following (mostly standard) definitions of basic notions that are consistent with 

the terminology used in many works on the rewriting theory [1-5]. 

An abstract rewriting system (ARS) is a pair (X, ) of a set (X) and a binary relation () on it 

called reduction. We will denote as * the reflexive transitive closure of  (on X), and as + the 

transitive closure of .   

An element x  X is called reducible (in (X, )), if there exists y  X such that x  y, and is 

called irreducible (in (X, )), if it is not reducible in (X, ).  

A normal form of an element x  X (in an ARS (X, )) is an element y  X such that x*y and y is 

irreducible in (X, ). 

An ARS (X, ) 

 has the diamond property, if for all a, b, c  X, if a  b and a  c, then there exists d  X 

such that b  d and c  d ; 

 is confluent, if for all a, b, c  X, if a*b and a*c, then there exists d  X such that b*d 

and c*d ; 

 is locally confluent, if for all a, b, c  X, if a  b and a  c, then there exists d  X such that 

b*d and c*d. 

Note that * is a preorder (a binary relation that is reflexive and transitive) and the pair (X,*) can 

be considered as a preordered set.  

If (P, ) is a preordered set, A  P and x  P, then  

 x is a least element of A (w.r.t. ), if x  A and x  a for all a  A ; 

 x is a greatest element of A (w.r.t. ), if x  A and a  x for all a  A ; 

 x is a minimal element of A (w.r.t. ) , if x  A and there is no element y  A such that y  x 

and  (x  y); 

 x is an upper bound of A (in (P, )), if a  x for all a  A ; 

 x is a least upper bound of A (in (P, )), if x is a least element of the set of all upper bounds of 

A in (P, ). 

In any preordered set (P, ) a subset A  X is 

 a chain, if every x, y  A, x  y or y  x ; 

 a directed set, if A   and for every x, y  A there exists u  A such that x  u and y  u ; 

 closed [14], if for every nonempty chain C in (P, ) and every x  P, if C  A and x is a least 

upper bound of C, then x in A ; 

 open [14], if the set P\A is closed. 

An ARS (X, )  

 is weakly normalizing, if each element x  X has a normal form ; 

 is countable, if the set X is at most countable, i.e. there exists a total injective function from X 

to the set of natural numbers ; 

 is terminating, if there is no infinite sequence x1x2x3… , where xi  X for all i=1, 2, …; 

 is acyclic, if there is no element x  X such that x + x ; 

 is inductive [2], if for every infinite sequence x1x2x3… there exists x  X such that 

xi
*x for all i=1, 2, 3, … (note that for such a sequence x1x2x3…, the set {x1, x2, x3, … } is 

a chain in the preordered set (X,*) and x is an upper bound of this chain in (X,*)) ; 

 is strictly inductive [14-16], if every nonempty chain in the preordered set (X,*) has a least 

upper bound (note that a strictly inductive ARS is inductive). 

3. Motivating example 

In accordance with Newman’s lemma, any terminating locally confluent ARS is confluent. Any 

terminating ARS is acyclic, however, generally, an acyclic locally confluent ARS need not be 
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confluent. An example due to Newman [2, Figure 6a] shown in Figure 1(a) below is often used to 
illustrate the latter fact.  

Another widely known example due to Hindley [2, Figure 6b] shows that a finite locally confluent 

ARS that is not required to be acyclic can be non-confluent. 

             
                                         (a)                                                                        (b) 

Figure 1: Left (a): Newman’s counterexample [2. Figure 6a]: inductive, but not strictly inductive. 
                Right (b): an example of a strictly inductive ARS. 
 

Newman’s counterexample shown in Figure 1(a) can be formalized as (XNC, NC), where 

XNC = {a, b, 0, 1, 2, …}, a = -1, b = -2, 

and the relation NC is defined as follows: 

NC = { (2n, a) | n = 0, 1, 2, … }  { (2n+1, b) | n = 0, 1, 2, … }  { (n, n+1) | n = 0, 1, 2, … }. 

The ARS (XNC, NC) is countable, acyclic, inductive, locally confluent, but is not confluent [2]. 

The reason of failure of the equivalence between local confluence and confluence conditions for  

(XNC, NC
 ) is intuitively quite clear: confluence implies that the set of upper bounds of any nonempty 

subset of XNC is directed in the preordered (actually, partially ordered) set (XNC,  (NC
 )* ), however, 

the local confluence condition is not sufficient to determine whether this is the case for the set of 

upper bounds of the infinite chain {0, 1, 2, … } in (XNC,  (NC
 )* ), in particular, the local confluence 

condition does not imply the existence of an element x such that { (a, x), (b, x) }  (NC
 )*. 

However, note that in the preordered set (XNC,  (NC
 )* ) the chain {1, 2, 3, … } has minimal upper 

bounds (a and b), but has no least upper bound. If the chain {1, 2, 3, … } had a least upper bound (or 

no upper bounds), the above mentioned explanation of the possibility of inequivalence of local 
confluence and confluence would not apply. For example, consider an ARS shown in Figure 1(b) that 

can be formalized as (XNC, NC  {(a, b)}). Unlike Newman’s counterexample, it is a strictly 

inductive ARS, i.e. all nonempty chains in the sense of the preorder generated by the reflexive 

transitive closure of the reduction relation have least upper bounds. Indeed, in the next section we will 

show rigorously that any acyclic strictly inductive ARS with at most countable set of irreducible 
elements is confluent if and only if it is locally confluent. We will also show that countability and 

acyclicity assumptions here are important and cannot be simply omitted from this proposition. 

Besides, Newman’s counterexample implies that strict inductivity cannot be weakened to inductivity 

in this proposition since (XNC, NC) is acyclic, inductive, has a finite set of irreducible elements, is 

locally confluent, but is not confluent. These results complement Newman’s lemma and clarify the 
limits of usefulness of the local confluence property as a condition in confluence criteria. 

4. Main results 

Below we give formulations and proofs of the main results. One can assume that a background 
theory for understanding them is ZFC.  

 

Theorem 1. Let (X, ) be an acyclic strictly inductive ARS such that the set of all its irreducible 

elements is at most countable.  

Then (X, ) is confluent if and only if (X, ) is locally confluent. 

Proof. 
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Any confluent ARS is locally confluent, so it is sufficient to show that if (X, ) is locally 

confluent, then (X, ) is confluent.  

Assume that the ARS (X, ) is locally confluent. Note that since the ARS (X, ) is acyclic, the 

relation * on X is antisymmetric: if x*y and y*x, then x = y (otherwise, x + x which contradicts 

acyclicity). Then (X, *) is not only a preordered set, but is a partially ordered set (poset).  

Let us introduce the following notation: 

 IR is the set of all irreducible elements of (X, ) ; 

 NF(x), where x  X, is set of all normal forms of x ; 

 ND is the set of all x  X such that the set NF(x) contains at least two distinct elements. 

Let us show that (X, ) is a weakly normalizing ARS. Let x  X and U = { y  X | x * y }. It is 

straightforward to show that since (X, ) is a strictly inductive acyclic ARS, the set U, considered as 

an induced subposet of (X, *), is a nonempty inductive poset [16] (i.e. a poset where every 

nonempty chain has an upper bound). Then by Zorn’s lemma, U has some maximal element ymax with 

respect to the order *  (UU). Such an ymax is also maximal in the poset (X, *), so ymax  IR 

(since (X, ) is acyclic) and x * ymax, so ymax  NF(x). Since x  X is arbitrary, the ARS (X, ) is 

weakly normalizing. 

Now let us show that for each xND and bIR there exists yND such that x*y and b  NF(y). 

Let us denote U = { y  X | x * y } and D ={ y  U | y * b }. Denote as  the relation *  (UU). 

Then (U,  ) is a (nonempty) induced subposet of (X, *).  

Let us fix xND and bIR and consider the following 2 cases. 

Case 1: x * b does not hold. Then for y = x we have yND, x*y and b  NF(y). 

Case 2: x * b holds. Since xND, the set NF(x)\{b} is nonempty. Let m be some element of 

NF(x)\{b}. Then x* m, so m  U.  Note that m  D since otherwise, m*b, and also mIR, whence 

m = b which contradicts the fact that m  NF(x)\{b}. Thus m  U\D. Let E = D  { y  X | y * m }. 

It is straightforward to check that E is a closed set in the poset (U, ) (in the sense of Section 2). 

Moreover, x  E (because x*b and x*m), so E  . Then it is straightforward to check that  

(E,   (EE)) is a nonempty inductive poset (i.e. a poset where every nonempty chain has an upper 

bound), so by Zorn’s lemma, E has a maximal element xmax with respect to the order   (EE). Then 

xmax  E, so xmax
* b and xmax 

* m. Then we have xmax  b and xmax  m, because otherwise, b*m or 

m*b holds, whence b = m since bIR and mIR, which contradicts the fact that  

m  NF(x)\{b}. Then xmax 
+ b and xmax 

+ m, so there exist e1, e2  X such that xmax 
 e1 

* b and 

xmax 
 e2 

* m. Since (X, ) is a locally confluent ARS, there exists dX such that e1 
* d and  

e2 
* d.  

Let us show that e2  ND. 

- Suppose that e2  ND. Note that e2 
* m and m  IR, so m  NF(e2). Since (X, ) is 

weakly normalizing (as we have shown above) and e2  ND, NF(e2) is a singleton set, so 

NF(e2) = {m}. Moreover, e2 
* d and NF(d)  , so m  NF(d). Then x * xmax 

 e1 
* 

b, and e1 
* d * m, so e1  E. Then xmax 

 e1 and e1  E. Since xmax is maximal in E with 

respect to   E  E, we have xmax = e1. Then xmax 
 xmax and we get a contradiction with 

the theorem’s assumption that (X, ) is an acyclic ARS. 

Thus e2  ND. Let us show that b  NF(e2). 

- Suppose that b  NF(e2). Then x * xmax  e2 
* b and e2 

* m, so e2  E. Then xmax 
 e2 

and e2  E. Since xmax is maximal in E with respect to   E  E, we have xmax = e2. Then 

xmax 
 xmax and we get a contradiction with the theorem’s assumption that (X, ) is an 

acyclic ARS. 

Note that x * xmax 
 e2, so there exists y = e2  ND such that x*y and b  NF(y). 

We conclude that indeed, for each xND and bIR there exists yND such that x*y and b  NF(y). 

Now let us show by contradiction that ND = . Suppose that ND  . Then IR is a nonempty, at 

most countable set (IR is at most countable by theorem’s assumption), so IR is an image of a total 

function on the set of all non-negative integers N0 = { 0, 1, 2, … }, so there exists an infinite sequence 

fn  X, n = 0, 1, 2, … such that IR = { fi | iN0 } (note that elements in the sequence fn , n = 0, 1, 2, … 

can repeat). As we have shown above, for each xND and bIR there exists yND such that x*y 

and b  NF(y). Then for each xND and iN0 there exists yND such that x*y and fi  NF(y). 

Then since ND  , by the principle of dependent choice there exists an infinite sequence gn  ND, 

n=0,1,2,… such that for each n=0,1,2,…, gn
*gn+1 and fn  NF(gn+1). Then the set { gn | nN0 } is a 
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non-empty chain in the poset (X, *), so it has a least upper bound in (X, *) since (X, ) is a 

strictly inductive ARS. Denote as u the least upper bound of { gn | nN0 } in the poset (X, *). As we 

have shown above, (X, ) is a weakly normalizing ARS, so NF(u)  . Let m be some element of 

NF(u).Then m  IR, so there exists kN0 such that m = fk . Note that gk+1 
* u (since u is an upper 

bound of the set { gn | nN0 }) and u*m, so gk+1
*m. Then m  NF(gk+1), since m  IR. On the 

other hand, m = fk  NF(gk+1) by the definition of the sequence gn , n = 0, 1, 2, …, so we have a 

contradiction: mNF(gk+1) and mNF(gk+1). Thus the assumption ND   is false and we conclude 

that ND = . 

Since ND = , each xX has at most one normal form in the ARS (X, ). As we have shown 

above, (X, ) is a weakly normalizing ARS, so each xX has exactly one normal form. This 

straightforwardly implies that the ARS (X, ) is confluent.     
Note that  

- the ARS shown in Figure 1(a) does not satisfy the assumptions of Theorem 1: although it 

is inductive, it is not strictly inductive ; 

- the ARS shown in Figure 1(b) satisfies the assumptions of Theorem 1. 
 

Corollary 1. Let (X, ) be an acyclic strictly inductive ARS where each element has at most 

countable set of normal forms. Then (X, ) is confluent if and only if (X, ) is locally confluent. 

Proof. 

Any confluent ARS is locally confluent, so it is sufficient to show that if (X, ) is locally 

confluent, then (X, ) is confluent. 

Assume that the ARS (X, ) is locally confluent. Let a, b, c  X, a*b, and a*c. Let  

U = { u  X | a * u }. It is straightforward to check that (U,   (UU)) is an acyclic strictly 

inductive locally confluent ARS, where each irreducible element is a normal form of a in (X, ). 

Since the set of normal forms of a in (X, ) is at most countable, the ARS (U,   (UU)) is 

confluent by Theorem 1. Note that a, b, c  U, so there exists d  U  X such that (b, d) and (c, d) 

belong to the reflexive transitive closure of   (UU), so b*d and c*d.  

Thus we conclude that (X, ) is confluent.          

 

Corollary 2. Let (X, ) be a countable acyclic ARS such that for every infinite reduction sequence 

x1  x2  x3  … the set {x1, x2, x3, … } has a least upper bound in the poset (X,*). 

Then (X, )  is confluent if and only if (X, ) is locally confluent. 
Proof.  

Note that since (X, ) is acyclic, (X,*) is indeed a poset (not just a preordered set).  

Let us check that (X, ) is a strictly inductive ARS. Let C be a nonempty chain in the poset 

(X,*). Let c0 be some element of C (it exists since C is nonempty). Let C be a binary relation on C 

such that for all x, y  C, x C y if and only if x*y (note that * is considered as a binary relation 

of X, but C is a binary relation on C  X). Note that the ARS (C, C) has the diamond property, 

because whenever a, b, c  C, a C b, and a C c, we have b*c or c*b (since C is a chain in the 

poset (X,*)), and in either case there exists d  {c, b}  C such that bC d and cC d . Also,  

(C, C) is a countable ARS, because (X, ) is a countable ARS. Since any ARS with diamond 
property is confluent [5, Remark 1.2.3] and any countable confluent ARS has the cofinality property 

[10], the ARS (C, C) has the cofinality property. This implies that for c0 there exists a finite or 

infinite reduction sequence c0 
* c1 

* c2 
* …, where ci  C for all i, such that for every cC, if  

c0 
* c, then c * ck for some index k. The latter actually implies that for every cC there exists k 

such that c * ck, because C is a chain (X,*). Denote A = { c1, c2, c3, …}. Then there exists a 

nonempty finite or infinite reduction sequence x1  x2  x3  …, where xi  X for all i, such that  

A  { x1, x2, x3, …} and for every x  { x1, x2, x3, …} there exists c  A such that x * c. Denote  

B = { x1, x2, x3, …}. Then for every cC there exists y  A  B such that c * y.  

Note that if the set B is finite, it is a nonempty finite chain in the poset (X,*), so it has a greatest 

element which is its least upper bound, and if B is an infinite set, then x1  x2  x3  … is an infinite 

reduction sequence, so B has a least upper bound in the poset (X,*) by assumption. Thus in any case 

there exists u  X such that u is a least upper bound of B in (X,*).  

Note that u is an upper bound of C in (X,*), because for each c  C there exists y  B such that c 

* y and y * u. Moreover, u is a least upper bound of C, because if x is an upper bound of C in 
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(X,*), then for each y  B there exists c  A  C such that such that y * c * x, so x is an upper 

bound of B in (X,*), whence u * x. Thus C has a least upper bound in (X,*). 

We conclude that (X, ) is a strictly inductive ARS. Moreover, it is acyclic by assumption. Since 

(X, ) is a countable ARS, the set X is (at most) countable, so the set of irreducible elements in  

(X, ) is (at most) countable. Then (X, ) is confluent if and only if (X, ) is locally confluent by 

Theorem 1.      

 
Hindley’s counterexample [2, Figure 6b] shows that the acyclicity assumption cannot be simply 

omitted from the statement of Theorem 1, e.g. the ARS  

({ 0, 1, 2, 3 }, { (1, 0), (2, 3), (1, 2), (2, 1) }) 

is strictly inductive, has a finite set of irreducible elements, is locally confluent, but is not confluent. 
The following result shows that the countability assumption also cannot be simply omitted from 

the statement of Theorem 1. The corresponding ARS is illustrated in Figure 2. We call it a 

strengthened Newman’s counterexample, because the usual Newman’s counterexample  
(Figure 1(a)) is inductive, but is not strictly inductive. 

 

Theorem 2 (Strengthened Newman’s counterexample).  

Let P = R  R  ( + 1), where R is the set of real numbers and  is the first infinite ordinal.  

Let  be a binary relation on P such that (x, y, n)  (x, y, m) if and only if one of the following two 

conditions holds: 

1. n <  and m = n + 1 and | x – x | < y/2m and 0 < y < y ; 

2. n <  and m =  and x = x and 0 = y < y . 

Then (P, ) is an acyclic, strictly inductive, locally confluent ARS that is not confluent. 

Proof. 

Since (x, y, n)  (x, y, m) implies that n < m, the relation (x, y, n) + (x, y, n) does not hold for 

any (x, y, n)  P, so the ARS (P, ) is acyclic. 

It is straightforward to show that (x, y, n) + (x, y, m) if and only if one of the following two 

conditions holds: 

(T1)   n <  and m <  and n < m and | x – x | < y/2n – y/2m-1 + y/2m and 0 < y < y ; 

(T2)   n <  and m =  and | x – x | < y/2n and 0 = y < y . 

Then the ARS (P, ) is not confluent, because if a = (0, 2, 0), b = (-1, 0, ), c = (1, 0, ), then 

a + b and a + c by (T2), however, by the definition of , the elements b and c are irreducible, and 

since they are distinct, the relations b*d and c*d cannot both hold for any d  P. 

Let us check that the ARS (P, ) is locally confluent.  

Let a = (x1, y1, n), b = (x2, y2, m), c = (x3, y3, k)  P be elements such that ab and a  c. Then the 

definition of  implies that n < . Let d = (x1, 0, ).  

Consider the following cases. 

- If m < , then | x2 – x1 | < y2/2
m and y2 > 0, because (x1, y1, n) = a  b = (x2, y2, m), whence  

b = (x2, y2, m) + (x1, 0, ) = d by (T2). 

- If m = , then x2 = x1 and y2 = 0, because (x1, y1, n) = a  b = (x2, y2, m), whence  

b = (x2, y2, m) = (x1, 0, ) = d. 

In both cases we have b*d. Similarly, consider the following cases. 

- If k < , then | x3 – x1 | < y3/2
k and y3 > 0, because (x1, y1, n) = a  c = (x3, y3, k), whence  

c = (x3, y3, k) + (x1, 0, ) = d by (T2). 

- If k = , then x3 = x1 and y3 = 0, because (x1, y1, n) = a  c = (x3, y3, k), whence  

c = (x3, y3, k) = (x1, 0, ) = d. 

In both cases we have c*d. Thus both b*d and c*d hold.  

Since a, b, c are arbitrary, we conclude that (P, ) is a locally confluent ARS. 

Finally, let us check that the ARS (P, ) is strictly inductive.  

Let C be a nonempty chain in the poset (P, *) and let  

N = { n <  |  x  y (x, y, n)  C } . 

Consider the following three cases. 
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Case 1: there exist x1, y1  R such that (x1, y1, )  C. Then using (T1), (T2) is straightforward to 

check that (x1, y1, ) is a greatest element in C with respect to *, so it is a least upper bound of C in 

(P, *). 

Case 2: the set N is finite and (x, y, )  C for all x, y  R. Then the set N is nonempty (since C is 

nonempty). Let km be the greatest element of N and x1, y1  R be elements such that (x1, y1, km)  C. 

Then using (T1), (T2) it is straightforward to check that (x1, y1, km) is a greatest element in C with 

respect to *, so it is a least upper bound of C in (P, *). 

Case 3: the set N is infinite and (x, y, )  C for all x, y  R. Let  

Y = { y  R |  x  n <  (x, y, n)  C } . 

Note that if k0 is the least element of N and x0, y0 are such that (x0, y0, k0)  C, then y  y0 for all y  Y. 

This implies that the set Y is empty or bounded from above. Then let ym be a positive real number 

such that y  ym for all y  Y. This implies that whenever n < , m < , (x, y, n)  C, and  

(x, y, n) + (x, y, m), the following holds: 

| x – x | < y/2n – y/2m-1 + y/2m  y/2n – y/2m = y (1/2n – 1/2m)  ym (1/2n – 1/2m). 

Then since C is a chain in (P, *), the following inequality holds all (x, y, n), (x, y, m)  C such that 

n <  and m < : 

| x – x |  ym | 1/2n – 1/2m |. 

Let us fix some bijection f : N0  N, where N0  = {0, 1, 2, …} is the set of non-negative integers 

(such a bijection exists since N is infinite and at most countable). Note that the definition of N implies 

that for each i  N0 the set { xR |  yR (x, y, f(i))  C } is nonempty. Then let us fix some function 

g: N0  R such that for each i  N0 there exists yR such that (g(i), y, f(i))  C. 

Let us check that g(0), g(1), g(2), … is a Cauchy sequence of real numbers. Let  be a positive real 

number, i.e.  > 0. Note that the set { i  N0 | f(i)  2ym/ } is finite, so there is some natural number 

M such that for all i  N0, f(i)  2ym/ implies i < M. Moreover, whenever i, j  N0 and i > M, j > M, 

there exist y, y R such that  

(g(i), y, f(i))  C and (g(j), y, f(j))  C, 

where f(i) <  and f(j) < , so 

| g(j) – g(i) |  ym | 1/2f(i) – 1/2f(j) |  ym max{1/2f(i), 1/2f(j)}  ym /(2ym) < . 

Since  > 0 is arbitrary, we conclude that g(0), g(1), g(2), … is a Cauchy sequence of real numbers. 

Then the sequence g(0), g(1), g(2), … is convergent in R and has a limit that we will denote as xs. 

Let us check that (xs, 0, ) is a least upper bound of C. 

Firstly, let us check that (xs, 0, ) is an upper bound of C in (P, *). 

Let (x, y, n)  C. The assumption of the Case 3 implies that n < . Then n  N. Since N is infinite, 

there is some m  N such that m > n. Let x, y  R be elements such that (x, y, m)  C. Since C is a 

chain in (P, *) and m > n, we have (x, y, n) + (x, y, m). Then 0 < y < y. Note that the set  

{ i  N0  | f(i)  m } is finite, so there is some natural number M such that for all i  N0, if f(i)  m 

holds, then i < M.  

Let us check that for all i  N0, if i  M, then | g(i) – x |  y/2m. Let i  N0 and i  M. Then  

f(i) > m. Since f(i)  N, there exist y0  R such that (g(i), y0, f(i))  C. Since C is a chain in (P, *) 

and f(i) > m, we have (x, y, m) + (g(i), y0, f(i)). Then (T1) implies that  f(i)  1, 0  y0  y, and 

| g(i) – x | < y/2m – y/2f(i)-1 + y0/2
f(i). 

Note that  

y0/2
f(i)  2y/2f(i) = y/2f(i)-1, 

so | g(i) – x |  y/2m. Thus whenever i  M, the inequality | g(i) – x |  y/2m holds. Then  

x – y/2m  g(i)  x + y/2m, 

holds for all integer i  M, so the limit xs of the sequence g(0), g(1), g(2), … satisfies the inequality 

x – y/2m  xs  x + y/2m . 

Moreover, because (x, y, n) + (x, y, m), from (T1) we have: 

| x – x | < y/2n – y/2m-1 + y/2m 

Then since y < y we have 

| xs – x |  | xs – x | + | x – x | < y/2m + y/2n – y/2m-1 + y/2m  y/2n. 

Then | x – x | < y/2n, and also y > 0, so from (T2) we have (x, y, n) + (xs, 0, ). 



21 

 

Since (x, y, n)  C is arbitrary, we conclude that (xs, 0, ) is an upper bound of C. 

Now let us check that (xs, 0, ) is least among upper bounds of C in (P, *). 

Let (x1, y1, l)  P be an upper bound of C in (P, *). Then n  l for all n  N, and since N is 

infinite, it is not bounded from above by any natural number, so l = . Then since C is nonempty, 

from (T2) it follows that y1 = 0 and for all (x, y, n)  C, | x1 – x | < y/2n. 

Let us check that x1 is a limit of the sequence g(0), g(1), g(2), … Let  be a positive real number, 

i.e.  > 0. Since the set { i  N0 | f(i)  2ym/ } is finite, there is some natural number M such that for 

all i  N0, f(i)  2ym/ implies i < M. Moreover, whenever i  N0 and i  M, there exists yR such 

that (g(i), y, f(i))  C, where f(i) < , so y  Y and | x1 – g(i) | < y/2f(i)  ym /(2ym) < . 

Since  > 0 is arbitrary, x1 is a limit of the sequence g(0), g(1), g(2), …, and since this sequence 

converges to xs, we have x1 = xs and (x1, y1, l) = (xs, 0, ). Since (x1, y1, l) is arbitrary, we conclude that 

(xs, 0, ) is a least upper bound of C in (P, *).  

 

 
Figure 2: Illustration of the Strengthened Newman’s counterexample (Theorem 2) – an example 

of an acyclic, strictly inductive, locally confluent ARS that is not confluent. Note that only some 
example elements and reductions are shown. Unlike the case of the usual Newman’s 
counterexample (Figure 1(a)), the set of elements of the Strengthened Newman’s counterexample is 
uncountable, and it is essential that it is uncountable, because Theorem 1 implies that every 
countable acyclic strictly inductive locally confluent ARS is confluent. 

 

Since C is arbitrary, the ARS (P, ) is strictly inductive.             

 

Note that in the ARS (P, ) given in the statement of Theorem 2, reducible elements have the 

form (x, y, n), where y > 0 and n < , and the items (T1), (T2) in the proof of Theorem 2 imply that 

for any such a reducible element (x, y, n) the set of its normal forms is { (x, 0, ) | |x – x| < y/2n }, 

and the latter is isomorphic to a real interval that is a connected subset of R in the sense of the 

standard topology on R (see an illustration in Figure 3). This observation motivates the result 

described below (Theorem 3 illustrated in Figure 4). 

For any preordered set (P, ) and a set A  P , the downward closure of A in (P, ) is the set  

{ y  P |  a  A y  a }. 

Given an ARS (X, ), we will say that a topology T on the set of all irreducible elements  

of (X, ) is downward-compatible with (X, ), if for any closed set A in the sense of T,  

the downward closure of A in the preordered set (X, *) is closed in the sense of Section 2. 

Theorem 3. Let (X, ) be an acyclic strictly inductive locally confluent ARS and T be a topology 

on the set of all irreducible elements of (X, ) that is downward-compatible with (X, ). 

Then for each x  X, the set of all normal forms of x in (X, ) is a connected subset of the 

topological space ({x  X | x is irreducible in (X, ) }, T). 

Proof. 
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Let us denote as IR the set of all irreducible elements of (X, ). For each x  X denote: 

- U(x) = { y  X | x*y } ; 

- U*(x) is the poset ( U(x), *  (U(x)U(x)) ) ; 

- NF(x) is the set of all normal forms of x in (X, ). 

Since (X, ) is an acyclic strictly inductive ARS, one can show that (X, ) is weakly normalizing 

using the same argument as in the proof of Theorem 1 (i.e. using Zorn’s lemma). 

Let us fix x  X. Note that NF(x)  . Suppose that NF(x) is not a connected subset of the 

topological space (IR, T). Then there exist sets O1, O2  IR that are open in the sense of T and such 

that NF(x)  O1  O2, O1  O2  NF(x) = , O1  NF(x)  , and O2  NF(x)  .  

Let A = NF(x)\O1 and B = NF(x)\O2. Then A  B = NF(x), A  B = , A  , and B  . 

;;  

Figure 3: Illustration of the set of normal forms of a reducible element in the Strengthened 
Newman’s counterexample (Theorem 2). 

 

 
 

Figure 4: Illustration for the statement of Theorem 3. If an ARS (X, ) is acyclic, strictly inductive, 
and locally confluent (but is not necessarily countable or confluent), then for any topology T on the 

set of irreducible elements of (X, ) that is downward-compatible with (X, ) and any  

x  X, set of normal forms of x, illustrated as a red curve, is a connected subset in the sense of T. 
 

Note that NF(x)  U(x), so A, B  U(x). Let D1 be the downward closure of A in U*(x) and D2 be 

the downward closure of B in U*(x). 

Since T is downward-compatible with (X, ), the downward closures of the sets IR\O1, IR\O2 in 

(X, *) are closed in (X, *) (in the sense of Section 2). Then it is straightforward to check that D1 

and D2 are closed in U*(x) (in the sense of Section 2). 

Since x  U(x), A, B  NF(x), and A, B  , we have x  D1 and x  D2, so D1  D2  .  

However, note that D1  D2  NF(x) = , because for each y  D1  D2   NF(x) we have NF(y) = 

{y}, NF(y)  A  , and NF(y)  B  , whence y  A  B = . 

As we have mentioned above, (X, ) is weakly normalizing, so for each y  U(x) we have  

NF(y)  , and also NF(y)  NF(x) = A  B, so NF(y)  A   or NF(y)  B  , whence  

y  D1  D2. Thus U(x)  D1  D2, and also D1, D2  U(x), so D1  D2 = U(x). 
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Note that A  D2 = , because whenever y  D2, there exists b  B such that y*b, so if y is 

irreducible in (X, ), then y = b  A (because A  B = ), and if y is reducible in (X, ), then y  A. 

Similarly, we have B  D1 = . 

Let us define a binary relation  on U(x) such that for all y1, y2  U(x): 

y1  y2   (y1 
* y2 or (y1  D1 and y2  A) or (y1  D2 and y2  B) ) 

Using the facts that D1, D2 are closed, A  D2 =  and B  D1 =  and strict inductivity of the 

ARS (X, ), it is straightforward to show that  is a preorder on U(x), and, moreover, every 

nonempty chain in the preordered set (U(x), ) has a least upper bound. 

Let us fix some elements a0  A, b0  B (they exist, because A, B  ). It is straightforward to 

check that for all y  U(x), y  a0 or y  b0. 

Let D = { y  U(x) | y  a0 and y  b0 }. Then D is closed in (U(x), ) in the sense of Section 2 

and D   since x  D. Then since (U(x), ) has a least upper bound for every nonempty chain, using 

Zorn’s lemma (like in Theorem 1) we conclude that D has some maximal element with respect to . 

Let us denote it as d. Then d  U(x), d  a0 and d  b0. Since the relation  is defined as a 

disjunction of 3 conditions (y1 
* y2 or (y1  D1 and y2  A) or (y1  D2 and y2  B) ), the conjunction 

“d  a0 and d  b0” can be reduced to a disjunction of 9 conditions: “d * a0 and  

d * b0”, “(d  D1 and a0  A) and d * b0 “, and so on. It is straightforward to check that each of 

these cases leads to a contradiction (e.g. if d * a0 and d * b0, then using local confluence of (X, ) 

we can obtain a contradiction with maximality of d in D with respect to  like in a similar situation in 

the proof of Theorem 1). Then the assumption that NF(x) is not a connected subset of (IR, T) is false. 

We conclude that the set of all normal forms of x in (X, ) is a connected subset of (IR, T).       

5. Formalization in proof assistant software 

We formalized Theorems 1-3 from Section 4 in Isabelle proof assistant [12, 13] using HOL logic 

(Higher-Order Logic). The corresponding formal theory entitled NLNT extends (and depends on) the 

previously published theory GNL.thy that can be found in the supplementary material for the paper 
[14]. 

The statement of a formalized version of Theorem 1 in NLNT has the following form (here the 

symbol  denotes a reduction relation): 

 

theorem thm_1: 

fixes X  

assumes "X, is ACYCLIC ARS" and "X, is S.I.ARS" 

   and "{xX. x is IRREDUCIBLE in X,} is AT MOST COUNTABLE" 

shows "(X, is CONFLUENT ARS) = (X, is L.CONFLUENT ARS)" 

 

The formal notions ACYCLIC ARS, S.I.ARS (i.e. a strictly inductive ARS), IRREDUCIBLE, 
CONFLUENT ARS, L.CONFLUENT ARS (i.e. a locally confluent ARS) are defined in the theory 

GNL.thy. 

The statement of a formalized version of Theorem 2 in NLNT has the following form: 

 
theorem thm_2: 

fixes P :: "(real  real  enat) set"  

 and  :: "(real  real  enat)  (real  real  enat)  bool" 

assumes "P = {x::real. True}  {y::real. True}  {n::enat. True}" 

       and " (x::real) (y::real) (n::enat) (x'::real) (y'::real) (m::enat).  

             (x, y, n) (x', y', m) = 

                     (       ( n <   m = n + 1  | x' – x | < y' / 2^(the_enat m)  0 < y'  y' < y ) 

                      ( n <   m =   x' = x  0 = y'  y' < y )  )" 

shows "(P, is ACYCLIC ARS)  (P, is S.I.ARS)  (P, is L.CONFLUENT ARS)   

                     ( (P, is CONFLUENT ARS))" 

 

The statement of a formalized version of Theorem 3 in NLNT has the following form: 
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definition is_dw_compatible :: "(('n::topological_space)  'a)  'a set  ('a  'a  bool)   

                                                       bool" ("_ is DW-COMPATIBLE with _,_") 

where 

  "(f is DW-COMPATIBLE with X,)   

      (  bij_betw f { n::'n. True } { xX. x is IRREDUCIBLE in X, }  

      (A::('n set). closed A --> ({ y  X.  aA. ^** y (f a) } is c-CLOSED in X,(^**))) )" 

 

theorem thm_3: 

fixes X :: "'a set" and  :: "'a  'a  bool" and f :: "'n::topological_space  'a" 

assumes "X, is ACYCLIC ARS" and "X, is S.I.ARS" and "X, is L.CONFLUENT ARS"  

             and "f is DW-COMPATIBLE with X," 

shows " x  X. connected { n::'n. (f n) is N.F. of x in X, }" 

 

The formal notions c-CLOSED (a closed subset of a preordered set) and N.F. (normal form) are 
defined in the theory GNL.thy. 

6. Conclusions 

We have proposed novel results (Theorems 1-3 in Section 4) that can help one to better recognize 
situations where the local confluence property of abstract rewriting systems is and is not equivalent to 
the confluence property. We have formalized Theorems 1-3 in Isabelle proof assistant software using 
HOL logic. Note that Theorems 1 and 3 can be generalized to ARS that do not satisfy the acyclicity 
condition using the notion of quasi-local confluence proposed in [14]. Study of other generalizations 
of the given results is a subject of further work. 
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