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Abstract  
This work aims to show queueing modelling as an extremely useful tool for investigating, 

analyzing and designing real-life systems, especially for the systems that cannot be observed 

during long time. Given the main properties and characteristics of system operation, queueing 

modelling and appropriate system simulation provide possibilities to control and operate 

system performance measures. It allows to determine the optimal number of beds, resources, 

and personnel, and also to evaluate the quality of patient care. Maintenance system cost 

optimization problems can be formulated and solved to find the optimal balance between 

average workload and loss probability. In the modern medical environment, queueing models 

should be used to analyze and plan the work of hospitals, clinics, and other medical institutions. 

They would help establish optimal modes of operation, distribute workload, ensure minimum 

waiting time for patients and maximum efficiency of resource using. 

Data from Kyiv hospitals are used to demonstrate possibilities of managing an intensive care 

unit. Simulation results provide us evaluation of crucial operational characteristics, which are 

probability of failure of a patient and workload of a ward, of such a unit for different values 

of the system parameters. 
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1. Introduction 

Health care systems are something that everyone deals with, and their effective functioning 

is extremely important. In any medical process, there is a demand side (patients) and a supply 

side (hospital resources such as surgeons, nurses, operating rooms, waiting rooms, laboratories, 

etc.). Both supply and demand are inherently stochastic, so, the need for resources is largely 

unplanned. As a result, there is a constant mismatch between treatment demand and available 

capacity. However, timely care is very important. In hospital systems, the waiting time (if there 

is a queue) to receive attention or the probability of failure (without a queue) are key elements 

of measuring the quality of service. Thus, the reduction of these elements is an essential factor 

in the management of these systems. The main objective of this work is to identify the factors 

that influence patient waiting time or the probability of patient rejection, to point out levers for 

improvement and to analyze trade-offs. 

Analytical tools derived from queueing theory can be used to obtain the above-mentioned 

properties. Appropriate queueing models allow us to understand the existing relationships 

between each of the elements of the system. Different health care units can be represented as a 

queueing system or a queueing network. Analyzing queuing and failure rates can significantly 

improve medical outcomes, patient satisfaction, and cost-effectiveness of health care. Such 

modelling is particularly useful to simulate and investigate various scenarios such as mass 
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epidemics, emergencies, and medical crises. This helps to understand the possible 

consequences and to develop effective management strategies in case of emergencies. In 

addition to its relevance during the COVID-19 pandemic and martial law, queueing theory is 

proving useful in dealing with other emergencies that require quick and efficient problem 

solving. This theory helps to improve production processes and optimize the distribution of 

goods during such crises. The first steps in the use of queueing models in medicine can be 

attributed to the middle of the 20th century, when the theory of queues and methods of 

mathematical modeling began to develop. During this period, the first mathematical models 

were created for the analysis and optimization of on-call systems in hospitals and medical 

institutions ([1], [2], etc.). Later, a number of works appeared that consider various models in 

healthcare: models with bulking ([1-3], etc.), variable arrival rate ([4], etc.), priority queueing 

discipline ([5], etc.), blocking ([5], [6], etc.), etc. Simulation ([7], [8], etc.) is one more 

successful approach for solving healthcare systems management problems. Such simulations 

helps manage optimal bed capacities, given the data from certain hospitals. A number of 

modern works are devoted to the construction of models of medical units based on the data of 

hospitals in different countries ([8-11], etc.). 

In general, queueing modelling and appropriate simulation play an important role in 

healthcare operations, helping to improve efficiency, manage patient flow, and address critical 

situations by providing analytical tools and information for decision making. However, it 

should be noted that the use of queueing models in healthcare is not widespread. This work 

examines the intensive care unit, that is available in most hospitals. It provides intensive care 

(treatment and observation) for people who are seriously ill or who are in an unstable condition. 

People in intensive care need constant medical support. There are several problems associated 

with the intensive care unit: shortage of beds, lack of trained personnel of the intensive care 

unit, costs. Emergency care is more expensive than other types of health care because of higher 

needs for personnel, specialized equipment, and therapeutic interventions. The approach based 

on mathematical queueing modeling and simulation is used. First, we consider how certain 

health care configuration affect patient care delays and the use of health care resources. When 

modeling the intensive care unit, we focus on one of the key factors of the system's operation 

that is the probability of blocking. Second, analyzing system parameters based on data from 

the intensive care unit of Oleksandrivsky hospital in Kyiv, we can determine the loss 

probability for the Oleksandrivsky hospital and for all together hospitals in Kyiv in 2021, that 

was the COVID year.  

This paper is organized as follows. In Section 2, we give some ideas of queueing modelling 

as an analytical tool for systems research and describe a critical care unit in a hospital as an 

Erlang-Loss system. Information of performance measures for the queueing system are 

provided in Section 3. In Section 4, we evaluate main performance measures for the model, 

such as loss probability, optimal number of beds, mean loading of the unit. We show effects of 

the system parameters on its performance measures. In Section 5, data from Kyiv hospitals are 

described. In Section 6, simulation of queueing model for Kyiv hospitals is provided, based on 

data about correspondent patients flows and number of occupied beds. Analyzing system 

parameters based on the data and the simulation results, we can determine the probability of 

loss for the Oleksandrivsky hospital and for all together hospitals in Kyiv. Finally, conclusions 

are given in Section 7.  

2. Queueing modelling. A critical care unit as an Erlang-loss system 

Society encounters queueing systems every day. In many fields of production, household 

services, economy and finance, special systems that realize repeated execution of the same type 

of tasks play an important role. Such systems are called queueing systems. Examples of such 
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systems are banks, various communication systems, loading and unloading complexes (ports, 

cargo stations), shops, ticket offices, hospitals, anti-aircraft, or anti-missile defense systems, 

etc.  

The founder of queueing theory is the famous Danish scientist A.K. Erlang [12], an 

employee of the Copenhagen Telephone Company, who was the first to propose using Markov 

processes with a discrete set of states to describe the processes occurring in queueing systems. 

Nowadays there are many works devoted to various queueing models in various fields ([13-

20], etc.)  

To describe the characteristics of a queueing system, it is necessary to determine the 

probabilistic properties of the incoming flow of customers, service times and service discipline, 

in particular, the availability of waiting places. The arrival flow of the customers can be 

characterized by the distribution of the inter-arrival times, and usually the times are assumed 

to be independent and identically distributed random variables. Let the rate of the input flow is 

λ. The service times at each server of the system are supposed to be independent random 

variables, often exponentially distributed (with parameter μ). In the system can be a queue with 

a finite or infinite waiting places. As for the service discipline, FIFO (first in - first out) is used 

most often. 

For the performance measures of a queueing system, the rate of traffic (traffic intensity) for 

a server is a crucial characteristic. It is defined as follows: 

𝜌 = mean service time/mean inter-arrival time = 𝜆/𝜇 

One of the main goals of modeling is to determine the performance characteristics of the 

system which are the probabilistic properties of such random variables as queue length, waiting 

time, number of customers in the system, loading of capacities (utilization rate of the facilities), 

etc. For the healthcare unit, it means that we can evaluate the average number of occupied beds, 

the distribution of the number of occupied beds, the cost of the medical service, the probability 

of a patient being turned away in case if all beds are occupied, etc. Explicit formulas for 

stationary probabilities and other performance measures for the most basic types of queueing 

systems were obtained earlier and are well-known (see, for example, [13-15]). Having an 

appropriate model, correspondent performance measures for a healthcare unit can be evaluated. 

So, we will consider an intensive care unit as a queueing system. It means that beds are 

servers, patients are customers. There are a finite number of servers. Let us their number be 

n = 30 in a block. Since the waiting time of patients in a queue should be eliminated when 

providing care of the type in intensive care units, a system without a queue is considered. The 

flow of patients is supposed to be a Poisson one, because the appropriate conditions of the 

Poisson process usually fulfilled for it. Since we are considering the flow of emergency 

patients, then the intensity of patient arrivals is assumed to be constant, because the change in 

the intensity of arrivals is little monitored depending on, for example, the day of the week or 

the time of day, in contrast to planned patients who are affected by these factors. Service, that 

is duration of stay in the intensive care unit, is supposed to be determined by an exponential 

distribution. The service discipline is FIFO. 

So, considering the above assumptions, we get the [M|M|n|n]- queueing system. It is the 

oldest system described by Erlang, and it is called Erlang-loss system. Formulas for the 

performance measures for this type of system are well-known. We will use them to explain 

operating characteristics of a critical care unit in a hospital (loss probability, facilities 

utilization). Note, that if the real distribution of service times is a bit less or greater than 

exponential, the [M|M|n|n]- system will still good estimate loss probabilities. However, if it is 

substantially different, the [M|M|n|n]model may significantly underestimate or overestimate 

actual loss probabilities. It depends on variance of the distribution. If the variance is lower, the 

model will overestimate actual loss probabilities, while the converse is true if variance is 
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greater. If the variance of service time is known, the loss probabilities can be calculated for a 

model with generally distributed service times. 

3. Performance measures of the system 
3.1. Stationary distribution for the number of customers in the system 

Let N(t), t ≥ 0, be the number of customers in the [M|M|n|n]-system. It is a birth-death 

process with the following infinitesimal rates: 

 

 

Stationary distribution for the number of customers can be calculated by the following 

formula 

 
The most important quantity out of obtained values Pk  is Pn. This is the blocking probability 

of the system. The blocking probability is the probability that all n servers are busy, so it is the 

proportion of time that no new customers can enter the system, namely, they are blocked (or 

lost). It is therefore called time congestion. 

 
is known as Erlang’s loss Formula, or Erlang B-formula, published first by A.K.Erlang ([12]). 

Due to the special properties of the Poisson process, in addition of being the proportion of time 

during which the calls are blocked, B(n, ρ) also gives the proportion of calls blocked due to 

congestion; namely, it is the call congestion as well. 

3.2. Heavy traffic regime 

A system where the offered traffic load ρ is greater or equal to the system capacity is called 

a critically loaded system (a system operating in heavy traffic regime). Accordingly, in a 

critically loaded Erlang's system we have n ≤ ρ. It is interesting that if we maintain n = ρ and 

we increase them both, the blocking probability decreases, the utilization increases, and the 

product B(n, ρ)√ρ approaches a constant , that does not depend on ρ or n. This implies that 

in the limit, the blocking probability decays at the rate of   . That is, for a critically loaded 

Erlang's system, we obtain 

 

The low blocking probability in critically loaded large system can be explained. In such a 

case, the standard deviation of the traffic is very small relative to the mean, so the traffic 

behaves close to deterministic. 

3.3. Performance measures for the system 

Here some well-known useful formulas for calculating performance measures for the 

[M|M|n|n] -system are given.  
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The average number of customers in the system (the average number of occupied beds) 

 

and utilization (utilization rate) of a server 

 
The mean idle period of a server 

 

Average working time of the system (busy period) 

 

4. Effect of system characteristics on the operation of a critical care unit 

The work of the intensive care unit can be affected by various factors, in particular, a change 

of the intensity of the arrival of patients, which can be associated with an increase or decrease 

in the population in the area where the hospital is located, with natural disasters, unpredictable 

outbreaks of diseases (for example, like COVID-19), by war, etc. The duration of stay of a 

patient in the unit is also affected, for example, if the rate of the input flow is very high, this 

period can be reduced to the minimum possible for individual patients, or if the workload of 

the unit is low, the duration of treatment can be extended in order to properly care for the 

patient in order to prevent relapses. And, of course, the functioning of the intensive care unit 

is affected by the number of beds that can be used by patients and the number of medical staff. 

Here we show, how different values of system parameters affect the operation of the 

system. 

4.1. The probability that k beds are occupied 

First, let us consider how the different number of available beds will affect the workload of 

the unit, while the rate of input flow and rate of service remain the same. 

 
Figure 1: The probability that k beds are occupied for units with 20, 30 and 40 beds, λ = 3, 
μ = 1/7. 

Figure 1 shows the graph of the probability of occupied $k$ beds, when their maximum 

number is 40, 30 and 20 beds. We can see that the smaller the number of beds, the more the 

graph is shifted to the right, which means that the probability of the maximum number of 

occupied beds increases, and therefore the load on the system increases. 
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4.2. Effect of the number of beds on the loss probability 

The number of beds in the intensive care unit is closely related to the probability of patient 

rejection, if all beds are occupied. Let us analyze this dependence by constructing the plot 

shown in Figure 2, where the number of beds varies from 20 to 40, and the rate of arrivals and 

rate of service are the same as in the initial version of the unit simulation. It is obvious that 

increasing the number of beds will reduce the probability of failure, but it should be 

remembered that the utilization of the ward will also decrease to too low a value, so the task of 

the head of the unit is to find a compromise that will be beneficial for their situation. 

 

Figure 2: Effect of the number of beds on the loss probability, λ = 3, μ = 1/7. 

So, with 30 beds in the ward, the probability of failure is equal to 0.014, Figure 2 shows that 

in order to this probability to be less than 0.001, the number of beds should be equal to 35, that 

is, it is necessary to expand the modelled unit by 5 beds. With the available 38 places the loss 

probability is almost zero, which means accepting for treatment all patients who arrive in the 

intensive care unit. If for some reason the hospital is forced to reduce the number of beds in 

the intensive care unit. This will lead to an increase in the probability of failure, which will 

have a bad effect on the quality of service. For example, if the number of beds is reduced to 

24, the rate of failure will be about 0.09, which is unacceptable, because a large percentage of 

patients will not be able to receive the immediate necessary care, which will lead to a 

deterioration in their health or even death. 

4.3. Effect of the rate of arrivals and rate of service on the unit occupancy 

We see a similar situation as when changing the number of beds: the greater the rate of 

arrivals, the more the dynamics of the probability that k patients are in the unit is shifted to the 

right. When one person per day is admitted to the intensive care unit, its workload will be much 

lower than when the intensity of admission is equal to 5. 

At different values of 𝜆 and 𝜇, the occupancy of the unit changes. To analyze this situation, 

let us build a 3D plot (Figure 5), and write the digital data into Table 1. We can observe a 

natural dynamic: when the rate of arrivals increases, the workload of the unit increases, 

similarly, when the length of stay in the unit of patients increases. It should be noted that the 
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increase in the load factor with an increase in the arrival rate occurs faster than with an increase 

in the length of stay. 

 
Figure 3: Effect of the patient flow rate on the probability of k patients in the unit (n=30, λ =
1; 3; 5, μ = 1/7, ρ = 7;  21;  35) 
 

 
Figure 4: Effect of the service rate on the probability of k patients in the unit (n=30, 𝜆 = 3, 
𝜇 = 1/5; 1/7;  1/11;  1/14, 𝜌 = 15;  21;  33;  42)  

Table 1 shows the occupancy rate of the unit in the initial version of the simulation, i.e. with 

the arrival rate equal to 3 people per day and an average length of stay of 7 days. We can see 

that if the arrival rate increases by one person, and the average length of stay in the unit 

increases by one day, then the workload of the ward will increase by about 18%. And if  𝜆 =
5, 𝜇 = 1/9, (the average length of stay in the ward is 9 days), then the occupancy rate is about 

95%, which means the constant work of the intensive care unit almost at the peak of its 

capabilities, and there is a high probability of patient rejection. We can also see that when 𝜆 =
1 and 𝜇 = 1/5, the occupancy is 16.6% which is a bad value, because most of the beds in the 

unit are not used at all, and therefore the funds allocated for their maintenance are wasted. 
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Figure 5: Effect of the rate of arrivals and service on unit occupancy 

Table 1 
Effect of the rate of arrivals and service on a bed utilization 

𝜇 | 𝜆  1 2 3 4 5 

1/5 0.167 0.333 0.5 0.661 0.789 
1/6 0.201 0.402 0.601 0.77 0.869 
1/7 0.233 0.466 0.69 0.841 0.91 
1/8 0.267 0.533 0.768 0.888 0.934 
1/9 0.3 0.599 0.827 0.916 0.949 

1/10 0.333 0.661 0.868 0.934 0.959 
1/11 0.37 0.724 0.899 0.948 0.966 

4.4. Effect of the rate of arrivals and rate of service on loss probability 

Similar dynamics we observe (Fig. 6, Table 2) when watch dependence of loss probability 

on the rate of arrivals and rate of service. 

Table 2 
Effect of the rate of arrivals and service on a bed utilization 

𝜇 | 𝜆  1 2 3 4 5 

1/5 0 0 0 0.00846 0.0526 
1/6 0  0 0.00275 0.0413 0.135 
1/7 0  0 0.0135 0.0977 0.219 
1/8 0 0  0.0401 0.168 0.299 
1/9 0 0.00265 0.0823 0.237 0.368 

1/10 0 0.00846 0.132 0.299 0.425 
1/11 0 0.0223 0.191 0.36 0.478 
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Figure 6: Effect of the rate of arrivals and service on loss probability 

5. Data from hospitals in Kyiv 

The comparison of the efficiency of intensive care units is performed on the basis of data 

about COVID emergency units taken from the report of Kyiv City Information analytical center 

of medical statistics ([21]) and from the Official portal of Kyiv (Kyiv City State 

Administration), Hospitals and medicine ([22]). The specified data provide characteristics of 

the work of Kyiv hospitals in 2021. Namely, in average for Kyiv hospitals, we have the 

following parameter values: the average number of patients per day 𝜆 = 548 and the average 

number of days a patient stays in the intensive care unit is 1/𝜇 = 11. For the Oleksandrivsky 

Hospital in Kyiv, the characteristics are as follows: the average number of patients per day is 

𝜆 = 90, and the average number of days a patient stays in the intensive care unit is 1/𝜇 = 7. In 

Table 3  we include an additional row with approximate rate of arrivals in case if the units are 

not connected. Such a situation can be observed if the general input flow is divided, for 

instance, in many small cities. For Kyiv this situation, obviously, is not appropriate. But we 

show this rate for demonstration of real input flow that can be observed in a city with one 

intensive care unit. 

Table 3 
Data from hospitals in Kyiv 

 All Hospitals of Kyiv Oleksandrivsky Hospital 

Average number of days a patient 
stays in the intensive care unit 

11 7 

Average number of patients per 
day 

548 90 

Number of beds in the intensive 
care units 

5721 650 

System utilization (according to 
the model) 

0.997 0.955 

Loss Probability (according to the 
model) 

0.0628 0.014 

Approx. rate for a block with 30 
beds (NOT for a big unit) 

2.87 4.15 
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6. Simulation results 

The R simmer package is used to simulate the operation of the intensive care unit, which 

allows to create trajectories and simulate the operation of the system during a certain period. 

After performing the simulation for 365 days, the obtained results are presented in Table 4. 

The data from the table can be used for further analysis and comparison of the performance of 

the Oleksandrivsky Hospital with the average Kyiv indicators. This allows to provide detailed 

analysis and comparison of the effectiveness of intensive care units in different medical 

institutions, which is important for improving medical care, ensuring patient satisfaction, and 

optimizing the use of resources. 

In Table 4, the probability of patient failure and system load are shown. The probability of 

refusal for Kyiv hospitals is four times greater than the value of Oleksandrivsky hospital. Given 

that patients entering the intensive care unit require immediate and vital care, this figure is 

quite high. In further research, this indicator will be brought closer to the corresponding value 

in the Oleksandrivsky Hospital. 

Table 4 
Data from the simulation for 365 days 

 All Hospitals of Kyiv Oleksandrivsky Hospital 

General number of patients 184147 31847 

Number of patients served 174071 31429 

Loss probability (estimated) 0.0518 0.0131 

Average number of 
occupied beds 

5563 606 

Average duration of stay in 
the unit 

10.9 6.7 

System utilization 0.9492 0.9351 

6.1. Resource usage 

We build the evolution of the average number of patients in a unit during one year. Fig. 7 

shows the system load during this time. 

 
Figure 7: Resource usage in all Kyiv hospitals (on the left) and in Oleksandrivsky Hospital (on 
the right) 

Initially, there were no occupied beds in the ICU model. If we take into account the first 20-

40 days of work, then this period does not give a reliable idea of the functioning of the system 

as a whole. However, after this period, the work stabilizes, and it can be observed that the 
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number of patients in the unit approaches the average value. This means that the system starts 

working in a stable (stationary) regime. 

Let us consider how changing the basic parameters will affect the system load and the 

probability of failure, bringing the value of the probability of failure in Kyiv hospitals closer 

to the corresponding value in Oleksandrivsky hospital. 

6.2. Effect of changing the number of beds 

One of the factors affecting the change in the number of beds may be technological or 

medical changes. The introduction of new diagnostic or treatment methods may require 

specialized beds or equipment, which may change the total number of beds in the unit. In 

addition, changing medical standards or protocols may also lead to a revision of the number of 

beds in order to take into account new requirements and recommendations. 

The relationship between the number of beds in the intensive care unit and the probability 

of patient failure can be analyzed using the graph shown in Figure 8. The range of the number 

of beds in the graph is from 5721 to 6000. 

 
Figure 8: Effects of changing the number of beds 

Naturally, with the increase in the number of beds, the probability of patient refusal will 

decrease. However, this also reduces the occupancy of the ward to a very low level, which 

leads to idle beds, which increases the hospital's costs for their maintenance. Maybe, the 

number of beds 5954 is close to the optimal level. It is 233 more than the initial value. In this 

case, the loss probability is 0.013. Only 1.3% of patients admitted to the intensive care unit are 

denied the necessary medical care. The low level of the probability of refusal indicates the 

efficient functioning of the unit and the ability to meet the needs of patients at the desired level 

of Oleksandrivsky Hospital. The number of patients who received adequate care increased by 

6,294 patients, and the average number of occupied beds is 96% of the total number. The 

corresponding results and their comparison are shown in Table 5. 

Table 5 
Effects of changing the number of beds 

Number of 
beds 

Number of 
patients 

Number of 
treated 
patients 

Loss 
probability 

Average 
number of 
occupied 

beds 

Unit 
utilization 

5721 184147 174071 0.0518 5563 0.9492 
5954 190942 190609 0.0135 5747 0.9086 
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System load decreased to 90% from 94%. The solution to the optimal situation is to find a 

compromise between workload and the probability of patient rejection. Ward occupancy that 

is too low can lead to significant bed idleness, leading to suboptimal use of resources and 

excessive costs. On the other hand, too high a load leads to an increase in the probability of 

patient refusal, which has negative consequences. 

6.3. Changes of the patient arrivals rate 

The rate of patients input flow can vary due to various factors that affect the need for 

emergency medical care. One of the factors that can affect the intensity of the arrival of patients 

is the epidemiological situation or a war. In the event of an outbreak of an infectious disease 

epidemic, for example, there may be a significant increase in patients requiring emergency 

medical care. This may create a temporary peak in the patient admissions to the ICU, requiring 

adequate response and resources to meet the increased demand. 

To reduce the probability of patient rejection, it is important to reduce the number of patients 

arriving the intensive care unit during the day. However, in some situations, this may not be a 

realistic option due to the presence of epidemiological outbreaks, military conflicts, or other 

crisis situations, when the number of patients increases dramatically. The dependence of the 

probability of refusal on the number of patients per day is shown in Figure 9, where the number 

of patients varies from 498 to 548 with a step of 10. 

 
Figure 9: Effect of changes of the patient arrivals rate on the loss probability 

The good number of patients is 518 people per day, then the loss probability is 0.008. The 

number of patients served increased by 7,752 patients. 

 

Table 6 
Effect of changes of the patient arrivals rate 

Number of 
patients per 

day 

General 
number of 

patients 

Number of 
treated 
patients 

Loss 
probability 

Average 
number of 
occupied 

beds 

Unit 
utilization 

548 184147 174071 0.0518 5563 0.9492 
510 183277 181823 0.0080 5487 0.9077 
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As we saw before, the duration of treatment has a smaller effect on the probability of failure 

compared to the intensity of patient arrival. It may be necessary to consider measures to reduce 

the number of patients, for example by improving the processes of transfer or treatment of 

patients. 

6.4. Changes of the service time of one patient 

Table 7 shows that after changing the service time of one patient from 11 days to 10, the 

loss probability became 0.0023. 

Table 7 
Effect of changes of the patient arrivals rate 

Duration of 
bed 

occupancy 

General 
number of 

patients 

Number of 
treated 
patients 

Loss 
probability 

Average 
number of 
occupied 

beds 

Unit 
utilization 

11 184147 174071 0.0518 5563 0.9492 
10 194179 193734 0.0023 5299 0.8477 

6.5. Dependence of loss probability on 𝝀 and 𝝁 

In the Table 8 we can see joint effect of λ and μ on the loss probability. 

Table 8 
Dependence of loss probability on 𝝀 and 𝝁 

𝜇 | 𝜆  508 518 528 538 548 

1/11 0.0006 0.0079 0.0197 0.0365 0.0518 
1/12 0.0633 0.0771 0.0952 0.1087 0.1306 
1/13 0.1279 0.1424 0.1622 0.1778 0.1889 
1/14 0.1934 0.2065 0.2212 0.2384 0.2537 
1/15 0.2470 0.2569 0.2688 0.2873 0.2973 

7. Conclusions 

In this work, we show the advantages of the tools of queueing theory for real-life systems 

modeling, which allows us to evaluate model parameters and to see how changes of some 

characteristics will affect others. This mathematical method is important for evaluating of 

intensive care unit parameters, because in real life any mistake can rise additional risks for 

patients in hospital. Therefore, the main task to be solved by the heads of hospitals and units is 

the distribution of resources in such a way as to find a balance between the average workload 

and the probability of failure.  

In order to understand the capabilities of the intensive care unit, we assumed different 

situations and options for system parameters and looked at how they would affect the whole 

system. One of the most important characteristics is the probability of patient refusal. We 

investigate how it can be reduced, or under what circumstances this probability will increase. 

The most obvious way to reduce the probability of failure is to increase the number of beds. It 

is also obvious that the probability of refusal is influenced by the intensity of patients' arrival 
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and their average length of stay in the intensive care unit. But it should be noted that the loss 

probability grows faster with an increase in the intensity of arrival than with an increase in the 

average length of stay. It works similarly with a decrease in these indicators. 

An equally important characteristic of the considered system is the average occupancy of 

the unit. We saw that the change in the intensity of admission and the average length of stay in 

the unit have almost the same effect on the system load as on the loss probability. Increasing 

the number of beds can lead to both positive and negative consequences, because under high 

load, a small number of additional beds can relieve the system. But if the average load is not 

at a high enough level, and the number of beds is increased, for example, to reduce the 

probability of failure, the load is very small, resulting in most beds being idle, which is not 

cost-effective. 

The obtained results make it possible to formulate and solve a number of optimization 

problems of minimizing the costs of ensuring the current service of the wards, including 

personnel, and minimizing the risks associated with the refusal of service to patients, possibly 

due to a certain logistical structure of transfers of urgent patients to other structural units.  

We have demonstrated that the intensity of patient arrivals and the length of their stay in the 

unit are important factors that affect system load. With the increase in the intensity of the arrival 

of patients and the duration of their stay in the unit, the load on the system increases. This 

means that more patients arrive and stay in the unit at the same time. A particularly noticeable 

increase in workload is observed with an increase in the intensity of patient arrivals. The 

increase in the load factor occurs faster with an increase in the arrival rate than with an increase 

in the length of their stay. 

Data from Kyiv hospitals are used to demonstrate possibilities of managing an intensive 

care unit. Simulation results provide us evaluation of crucial operational characteristics of such 

a unit for different values of the system parameters. 

So, when designing and managing an intensive care unit, it is necessary to take into account 

the intensity of patient arrivals and the length of their stay in order to ensure optimal use of 

resources and provide adequate medical care to patients. It is important to find a balance 

between these two factors to ensure efficient operation of the unit and minimize the probability 

of patient rejection. Queueing modelling and simulation are very efficient tools for this. 
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