
Little Learning Machines: Real-Time Deep Reinforcement
Learning as a Casual Creativity Game

Dante Camarena∗,†, Nick Counter†, Daniil Markelov, Pietro Gagliano, Don Nguyen,
Rhys Becker, Fiona Firby, Zina Rahman, Richard Rosenbaum, Liam A. Clarke and
Maria Skibinski

Transitional Forms Inc., Toronto ON, Canada

Abstract
In this paper, we present Little Learning Machines, a groundbreaking game that enables players to take on the role of a
reinforcement learning (RL) trainer. Utilizing reward and environment modeling, players train miniature robots to perform
tasks, creating an open-ended space for exploring and crafting behavior. Notably, the game introduces innovative methods
for executing RL in near real-time, a significant stride in the field. We delve into the technical challenges and solutions
encountered in implementing a robust and dynamic simulation for this RL platform. This paper focuses on a system description,
while pointing to potential avenues for enhancements and expansions to further enrich the player experience, as well as
opportunities for additional research from player feedback. This pioneering game not only demystifies RL but also serves as a
versatile tool for learning, research, and creativity in the realm of artificial intelligence.

Keywords
Deep Reinforcement Learning, Educational Games, Video Game, Interactive Learning, Artificial Intelligence, Neural Networks,
Game Development, Unity Game Engine, Casual Creativity

1. Introduction
Is it possible for a video game to make the intricate field
of Deep Reinforcement Learning (Deep RL) accessible to
all? From outperforming humans in intensive tasks [1] to
managing complex systems [2, 3] and refining extensive
language models[4], RL has definitely demonstrated its
adaptability and potential.

Despite these advancements, RL continues to be a com-
plex topic that is often taught with a strong emphasis on
theory.[5]. On the other end of the spectrum, popular
science approaches show an overly simplified description
of the RL procedure that provides a powerful intuition,
but struggles in communicating the iterative process and
pitfalls of experiments in the field. [6]. This is further
complicated by the technical complexity of setting up an
environment, and may be overwhelming for someone
new to the field, creating an entry barrier that is hard to
overcome. Interestingly, when a typical person is asked
to describe RL, they often liken it to the process of train-
ing a dog, a concept most people are familiar with as
it is centered around a the strong central metaphor of
Reward.[7]

In this paper, we introduce Little LearningMachines.
A game that streamlines the process of training Deep RL
agents. In this game, players are introduced to a voxelized

AIIDE Workshop on Experimental Artificial Intelligence in Games,
October 08, 2023, University of Utah, Utah, USA
∗Corresponding author.
†
These authors contributed equally.

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: An Animo petting a dog.

world in which they produce and train Animo: robots
that behave autonomously. The player’s primary mode
of interaction with this world is through the behaviour
of their Animo.

The game is primarily intended to provide players with
a casual creativity experience. [8] This is to say, players of
Animo are given a rich environment with a variety of in-
teractions to allow them to train agents and gain autotelic
enjoyment from creating and fostering new behaviours.
The game is further developed to allow measured explo-
ration of the full capabilities of the space, providing a
gradual unlock and reveal system similar to that found
in games like Minecraft [9] and Wobbledogs[10]. Finally,
the game tells a story about the difficulty of raising little

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Figure 2: The Two main parts of gameplay

creatures, an interesting parable that allows lighthearted
analysis of stochastic (random and unpredictable) agents.

Through this experience, we intend on making RL ac-
cessible and engaging for everyone, regardless of their
technical background. Initial Playtesting has shown
mastery and engagement in users ranging from Middle
School to Post-Secondary. By providing players with a
practical set of tools for training their agents, they can
gain first-hand knowledge about the impact of their deci-
sions on the agent’s behavior. This leads to an intuitive
understanding of RL concepts such as reward functions,
state and action spaces, and exploration vs exploitation
trade-offs. However, these results were collected in the
middle of iterative and intensive game development and
are not the focus of this paper. We expect to conduct
additional research on player testing and feedback in fu-
ture work. What follows is is a system description of the
project as well as analysis of its construction.

2. Background
Our studio first ran into Reinforcement Learning while
developing Agence[11], a co-production with the Cana-
dian National Film Board, in which we trained reinforce-
ment learning agents that were the main characters of
our film. Instead of directly programming them, we de-
fined a set of objectives and used RL to allow them to
develop behaviours on their own. It took us a lot of ex-
perimenting to understand the effects of rewards and
environment on our agents. However, as our team be-
came familiar with the nuances of training agents, our
agents’ behaviour began to feel more engaging, and we
began to enjoy the experience.

Throughout production of that film, we became at-
tached to each iteration of our little agents. We were
delighted to watch them overcome small obstacles, and
develop curious behaviours. They would often find cre-
ative and unique ways to approach the challenges we
gave them. Everyone in our team, including illustrators,
producers and marketing were beginning to develop hy-
potheses and curiosities about training agents. Their

ideas, including specific reward structures or environ-
ment curricula, often led to breakthroughs in behaviour
that outpaced the work of our engineers alone. As a re-
sult, we built tooling to help them become more involved
in the training process.

After years of work, this tooling evolved into a game
which is the subject of this paper, Little Learning Ma-
chines.

2.1. Prior work
It is important to acknowledge the previous applications
of training reinforcement learning models to evolve char-
acters in games. Notable work released includes clas-
sic life-sim game Creatures (1996)[12] as well as god-
game Black and White(2001) [13]. Creatures provides
the player with a variation of characters to play with,
but often the mechanisms underlying their behaviour are
not immediately obvious to novice players. Conversely,
Black & White provides a single creature to train, but the
simplicity of the feedback mechanism may limit player
expresivity. More recent work includes projects such
as ArtBot[14] that focuses on teaching fundamental AI
concept, and familiarizing the player with the process of
training.

Little Learning Machines attempts to bridge the gaps
across these games. It does so by focusing its gameplay
on an explicit training/testing loop, providing the player a
rich environment where they may attempt to train many
different behaviours and a variety of agents to compare
and contrast, all the time guiding the player through each
step.

3. Gameplay
The gameplay of Little Learning Machines is designed to
replicate the process of solving a Reinforcement Learning
problem. As such it’s divided into two steps, Training
in a Simulation (”The Cloud”) and Performing in the
Real World (”The Islands”). The player assumes the role
of an RL trainer, and their primary task is to train their



Figure 3: A screenshot of Little Learning machines during training

Animo. Players may set up environments with multiple
Animo. While this slows down training and places more
strain on the user’s computer, it can create fun experi-
ments where agents develop competitive behaviour.

As the Animo perform a variety of tasks in the Real
World, the player gains access to new items and more
Islands. This loop was instrumental in helping motivate
players to explore new potential for their Animo, grad-
ually introduce new mechanics, techniques and items,
as well as provide them with a helpful balance between
novelty and focus.

3.1. Training Process
3.1.1. Building an Environment

To train an agent, the player must visit a special place
called ”The Cloud” in which agents train. In here, the
player may construct small environments to train specific
behaviours. The player may modify the environment
terrain by adding or removing blocks. They can also
place items on a 2.5d grid, (items may have a vertical
position on the map, but tunnels, bridges and overhangs
are not allowed). The environment influences how the
Animo learns, adapts, and behaves, adding an additional
layer of strategy and personalization to the gameplay.

3.1.2. Setting Rewards

After constructing an environment and placing their An-
imo, the player is then required to set a reward. The
reward-setting interface is described in detail below. In
short, the player can set up rules to automatically pro-
vide positive or negative rewards for any events that can

occur in the simulation. This allows the player to incen-
tivize or dis-incentivize any action the Animo may take.
Examples include: Collecting a Crystal, Standing still,
Lighting a tree on fire, Hugging another Animo, etc.

Positive rewards that the player provides are referred
to as Love and Negative rewards that the player provides
are referred to as Fear. Once the player starts training,
each step the Animo takes results in particles floating
out of the Animo’s head to indicate receiving a specific
reward. In the case of receiving a negative reward, a
slight shock animation makes a subtle nod to Skinner’s
Operant Conditioning Mechanism [15].

3.1.3. Configuring Resets

As the last step before starting training, the user can
configure the environment reset. Here the player can
indicate how often the training resets. The player can
indicate a number of steps or a condition such as: all crys-
tals collected or all flowers watered. The player can also
apply a slight amount of randomization to their training
environment, preventing the network from over-fitting
[16, 17] to specific configurations of items in a level.

3.1.4. Observing training

Once the rewards are set, the player can begin training.
While the neural network is trained in a background pro-
cess, the player can observe an example of their ”training
cloud” simulated in front of them. As the network up-
dates, the behaviour of the character in front of the player
improves. The player is able to stop and continue train-
ing at any time. This allows players to reflect on their
Animo’s performance in real time and adjust the rewards



Figure 4: A quest may have more than one solution. In this diagram, the Animo may decide to use a shovel to dig blocks and
lower the goal, while another approach may involve placing blocks to climb onto the goal.

accordingly. If the players aren’t satisfied with their An-
imo’s learning, they can tweak the rewards and observe
how these changes affect the Animo’s behavior.

This iterative process imitates the real-world applica-
tion of RL, where iterative experimentation and incre-
mental adjustments are key to successful learning. As a
result, the player performs the role of a training curricu-
lum, requiring them to set a goal that is just advanced
enough for the robot to be able to learn. Players are
free to continue training their existing model with dif-
ferent rewards and parameters. Continual training [18]
is a way of exploring Animo’s skill transferability and
adaptability.

3.1.5. Resetting Animo

Due to a number of reasons such as: Catastrophic for-
getting[19], Reaching Local Minumum[16, 17], Network
Collapse[20] or Neuron Deactivation[21], the network
may be unable to recover and continue learning. A player
is faced with a difficult choice of having to reset the net-
work of their Animo. This results in a freshly initialized
network. This feature ensures that players always have
a way to re-calibrate their strategies and try different
approaches to training their Animo.

3.2. Exploration
3.2.1. Tutorial

To begin, players start out with a single Animo, on an
empty island with just sand and crystals. The player is
greeted by an enthusiastic teacher named Imogen who
guides the player through the process of training agents.
The first agent the player trains has to navigate a simple
grid world and collect crystals. Due to the unorthodoxy
of the training process, having Imogen explain some of
the concepts was essential to providing players the right
mindset to approach training.

3.2.2. Quest Islands

After the tutorial, The player encounters a set of islands,
each thematically different. In each island, the player
may find a new set of items, new Animo and Quests to
complete. Quests help provide objectives for players who
may need a bit more direction. In order to complete a
quest, An Animo is required to perform a specific set of
actions without User interaction.

Examples of Quests include: Chop 5 trees, throw the
ball at the dog 3 times, collect all these crystals without
stepping on any flowers, etc.

The player may not make direct modifications to Quest
Islands (although they could train behaviours to do so),
resulting in some items being out of reach until certain
conditions are met on the island. Once items are within
reach of an Animo, they may be clicked to be added to the



user’s inventory. Any item they have encountered may
now be used in their training, allowing them to create
infinite copies of the item on the cloud.

3.2.3. Home Island

As the player explores each island, they may bring home
Items, NPCs and Costumes from other islands. This al-
lows players to create spaces for their Animo to play and
interact with one-another. The player is also able to train
their Animo to complete large projects and permanently
change the look of their main island.

4. Environment
Animo is set in a voxel grid environment reminiscent
of popular games like Into the Breach[22] and Crypt of
Necrodancer[23]. This choice serves to simplify the envi-
ronment dynamics, enabling real-time training of agents.
Players are able to construct their training environments
by changing grid size, cell heights, and placing unlocked
objects on the grid before starting the training in the
”Cloud”, however they are currently unable to interact
with the environment during training.

The Environment described here was primarily de-
signed to be extremely easy to discretize and perceive,
while providing the most richness and extensibility. Our
objective was to create a baseline of generic interactions
that could support variety of dynamics for agent interac-
tions.

4.1. Terrain
The game world is a heightmap-based grid, with no tun-
nels or bridges that would complicate the navigation.
Each grid cell has a height, with cells beneath the wa-
ter line being classified as either shallow or deep water,
based on depth below the water line. This straightfor-
ward layout allows players to focus on the core gameplay
mechanics, particularly training the RL agent to interact
with objects that exist on grid cells. Each grid cell can
contain objects of different types that can be broadly cat-
egorized into Actors, Mediums, and Items (holdable
and non-holdable).

4.2. Objects
4.2.1. Items

Holdable items can be grabbed, dropped and often used
by actors. Examples of such items are shovels, which
decrease the height of the block in front of Animo upon
use, or an axe that can be used to destroy various objects.

Non-holdable items are entities that can be interacted
with in different ways. For example Tree Fruits can be

Figure 5: Despite items having different effects, their inter-
face is the same: Grab and use.

planted and turned into a tree sprout, which then can
be watered to produce a Tree or Fruit Tree, that in turn
produces Tree fruits, completing the loop. Only a single
holdable or non-holdable object can occupy a cell at a
time.

4.2.2. Actors

Actors include: Animo, Autonimo, Dogs, Snowpals, etc.
All actors outside of Animo use traditional Hierarchical
State Machine based AI to perform their behaviours. This
provides a sharp contrast to neural network behaviour
as during the first few parts of the game, they appear
smarter than Animo. However, as the game progresses,
it becomes obvious that their programmed behaviours
are deterministic, and unable to adapt. A single actor
can exist on a given cell and can hold a single item at
the time. Actors can use objects to manipulate the world
or to create new objects. Animo and Autonimo have 7
actions that they can attempt to perform: wait, move
forward, turn left, turn right, turn back, grab, and use.
Animo can not move to a block higher than 1 above
height, but can move to any height below their current
cell’s. Upon stepping on the cell with deep water they
become helpless and do not take actions until they get
out of it. The grab action allows Animo to pick up or
exchange a held object with an object on the same cell.
Use action can either use the held item or an object on
the cell in front of Animo.



4.2.3. Mediums

Mediums are objects that do not prevent other objects
from being placed on the cell that they occupy. Fire or
paint are examples of such objects. Mediums are primar-
ily used as modes of interaction between items.

4.3. Intents
Each simulation step, objects generate Intents. Intents
are chains of actions that are evaluated simultaneously
and deterministically. As intents are executed, each in-
tent modifies a local range of grid cells. This allows
the simulation to be executed in parallel using spacial
partitioning. Intents that get executed in order of their
priority, potentially producing new intents. Intents with
similar priorities that affect overlapping regions produce
conflicts. Possible intent conflicts get resolved accord-
ing to predefined rules (e.g. none of the move intents
attempting to move onto the same cell will get executed).
Simulation step completes when there are no intents that
need to be executed. This results in a turn-based simu-
lation, where the chain of causation of intents remains
preserved, allowing players to set up rewards for events
that were caused only by specific Animo’s actions. This
is important for reward attribution in environments that
feature multiple Animo training simultaneously.

5. Reward UI
Finding a way to give players control over rewards was
particularly difficult. Original drafts of the game design
had Animo requiring resources such as food or batteries,
and had training rewards be derived from these systems.
However, we found that such a system would limit the
kinds of behaviours that the players could create.

We initially provided players with a menu with every
interaction in the game, but navigating that menu quickly
became overwhelming. We found an elegant solution
that shows specific interactions by limiting the options
on screen to the set of items available. Furthermore,
the introduction of Iconography allowed easier access
for younger players, non-English speakers and reading-
impaired play testers.

6. Animo observations
Animo’s ability to interact with its environment andmake
decisions is largely dependent on what it can observe and
how it observes it. One of the main challenges of crafting
sensors is to find a balance between providing enough
information for the agent to make meaningful decisions,
and not overwhelming it with too much information.
Taking advantage of representing the environment in a

Figure 6: Players use iconography to set their Animo rewards

way that is complementary to Animo’s network architec-
ture is important for efficient training. Animo’s percep-
tion is designed to be pluggable, meaning that they can
have any number of sensors, describing different parts
of the environments independently of each other. The
game comes with 9 unlockable Animo, each with their
own unique way of perceiving the world around them.

6.1. Vector Sensors
Vector sensors are one-dimensional and do not preserve
any data structure. They perceive every observed value
independently, which makes them quick learners. How-
ever, they suffer from the curse of dimensionality and
quickly lose performance as the number of observations
grows. Compass sensors are an example of Vector sensors
that are designed to inform the agent about the direction
to the nearest item of player’s choice. This sensor allows
the agent to be aware of objects that are out of range of
other sensors.

6.2. Convolutional Sensors
Convolutional sensors [24] are designed to perceive
image-like data and use convolutions to exploit patterns
in the observations. They might be slightly slower to run,
but they learn kernels that extract specific information



from the observation. They perceive a patch of the grid
around the agent, rotated towards the direction that the
agent is facing. Each perceived cell is parsed into rele-
vant information that usually consists of terrain (height,
ground type, occupancy), actor at cell, item held by an
actor at cell, medium, and object on ground.

6.3. Attention Sensors
Attention sensors [25] perceive groups of values, called
entities. This enables them to perceive a variable number
of observations and, while they are significantly slower
to run, their ability to learn is impressive, albeit fragile.
Attention sensors perceive a number of objects that are
closest to Animo. This perception system has the advan-
tage of only focusing on objects instead of cells, which
allows for a more compact representation compared to
the Animo Grid Sensor.

6.4. Object Encodings
The inputs to each sensor are required to encode the
type of objects in their perception as a part of state ob-
servation. One-hot encoding is a common method of
approaching this task, that scales poorly as the number
of object types increases. Our sensor system allows to
easily switch between one-hot encoding, hand-crafted
object properties, binary, and ternary object type Id en-
codings, allowing players to use the perception system
suitable for the task at hand.

6.5. Sensor Conclusions
After conducting numerous experiments, we found that
our initial hypotheses for each sensor were somewhat
misguided. Just including more information was insuf-
ficient for better Animo performance. While we would
often see improvement in performance relative to total
training steps, this would come at a cost of increased
inference time or slower model updates. This resulted
in similar wall clock time for training of all three sen-
sor types. That said, there are nuanced differences in
the performance of each sensor type. Animo behaviour
is qualitatively different from one another. The ease of
swapping between these configurations has allowed for
better analysis. Enthusiast players of the gamemay them-
selves make tweaks to sensor configurations and perhaps
be able to create further conclusions.

7. Technical Architecture
Animo is one of the first games to allow players to train
Deep RL agents within a game. However, the process
of training DRL Agents can takes hours, Resulting in it
being slow and un-engaging. In order for training itself

Figure 7: A diagram of the architecture of Little Learning
Machines

to be engaging, it was essential to show improvement in
the agents as fast as possible. However, fast techniques
such as Q-Learning or Tabular learning were unable to
perform at the same level as Proximal Policy Optimiza-
tion.

That said, implementation of such algorithms within
engine would be a significant undertaking, and one that
we would have a hard time adapting into a game. As a
result, we had to perform significant engineering to lever-
age existing RL infrastructure. Our application makes
use of an embedded python engine to access PyTorch
to train agents during gameplay. All training is local to
the player’s computer and has shown good performance
even on hardware as dated as a Surface Pro 3.

The training architecture is designed with wall clock
training time being the priority. The training process is
built around the modified version Unity ML-Agents, a
powerful tool for training intelligent agents to be used
with Unity Game Engine.[26] ML-Agents provides a flex-
ible platform that supports multiple training algorithms,
including Soft Actor-Critic (SAC) and Proximal Policy
Optimization (PPO). Unity also provides a multi-platform
inference engine called Barracuda, which allows us to
inference models without causing disruption to the user
framerate.

While early prototypes used ML-Agents directly, and
modified its internals to support runtime training, recent
versions of Little Learning Machines have been modi-
fied to use only a small fraction of ML-Agents, and train
without the Unity Executable. The main vehicle for this
approach is the development of the Animo Simulation,
which allows us to run simulations without running the



game. This eliminates the overheads of running the Unity
Engine and gRPC communication protocol to generate
sample trajectories during training, that is usually the
case with the standard ML-Agents implementation.

As a result, The Little Learning Machines Project con-
sists of 4 layers:

• A Unity Project, (the game) layer that allows us
to use Unity Editor for development.

• Micro ML-Agents unity package, a lightweight
fork of ML Agents’ C# side package.

• Animo Simulation, a standalone C# dll.
• Animo Trainer A custom Python trainer, that uses

PythonNet to interface with Animo Simulation
directly.

The Animo Simulation is designed to be self-sufficient,
allowing for potential use with other training algorithms.
We have conducted several experiments with DreamerV3
[27], a new model-based training algorithm, to show
that Animo Simulation can be used as a configurable
benchmark environment for testing various training algo-
rithms. During training, our modified ML-Agents Python
package periodically exports current models and train-
ing statistics that are conveniently displayed within the
game. This architecture, along with python, PyTorch and
the rest of the dependencies are installed automatically
during game setup.

Finally, the simulation uses a pluggable architecture,
allowing for the easy design and implementation of new
Objects, Sensors, NPCs, Reward functions and Training
Algorithms. We intend on presenting the Animo Sim-
ulation as a viable benchmark for new RL algorithms
in a separate conference, as it provides novel means of
evaluation for said algorithms.

Micro ML-Agents can be reviewed here:
https://github.com/transformsai/micro-ml-agents.
Animo Trainer Simulation can be installed here:
https://pypi.org/project/animo-trainer/. Both packages
require additional documentation.

8. Discussion and Conclusion
Ultimately, Little Learning Machines is a bridge between
culture and research. It’s an experiential platform, allow-
ing users to not just understand RL in theory, but gain
an intuitive grasp of its peculiarities through exposure
and experimentation. It’s a shared platform for people
to experiment and share different perspectives on RL. As
a small sample of the kinds of communities that could
interact with it, one can imagine:

• RL Researchers can test and benchmark new RL
Algorithms

• Enthusiast Players can fiddle with sensors and
hyperparmeters

• Modders can add new Items, objects and other
content in Mods

• Creative players can come up with new environ-
ments, challenges and tests for their Animo

• Competitive players can push the performance
of these algorithms to their best.

• Educators can use the platform to experientially
demonstrate peculiarities of reinforcement learn-
ing.

Above all, Little Learning Machines is the easiest in-
troduction to the addictive process of training your own
artificially intelligent agents. It exposes players to a loop
of training and observing ever smarter models, the de-
lightfully frustrating process of iterating on experiments
and the joy of seeing the models break through plateaus
and traps. The game requires no prior experience, re-
quires no math (except a bit of graph literacy) and no
coding experience. It even installs python and PyTorch
for you. It is the most straightforward way to experi-
ence reinforcement learning. And it does so not just by
having you set the experiments and look at graphs, but
by letting you see the Animo learn in front of your eyes.
We hope that it’s an inspiration for generations to come.
While the technical potential of the project can be quite
exciting, it is at the end of a day, a game made with care
and attention, ideally enjoyed ludically by a small group
of individuals.

Acknowledgments
In memoriam of Anuj Patel, this project would not be
possible without his hard work.

Thanks to the following people for their support dur-
ing production: Alexander Bakogeorge, Casey Bluestein,
Chloe West, David Oppenheim, Erin Ray, Eve Cuthber-
son, Kory Mathewson, Manal Siddiqui Pablo Samuel Cas-
tro. Thanks to Level Curve Inc for their help with Au-
dio and Music: Eliza Daly, Matt Miller, Robby Duguay.
Thanks to Durham College for their advice and support:
Khris Finley, Richa Thomas, Ryan Miller, Yuqi ”Stanley”
Zhou, Dina Samaha, Dr. Vibha Tyagi, Tejas Vyas, Saba
Siddiqi, Sharath Kumar

Thanks to the following people for their support to
the project: Adam Myhill, Darren Throop, Euro Beinat,
Kevin West, Paul Van Der Boor, Peter Vuong, Priya Ratti,
Victor Nguyen, Vivian Gagliano. This project was possi-
ble thanks to generous funding support from the Canada
Media Fund and from Ontario Creates.

https://github.com/transformsai/micro-ml-agents
https://pypi.org/project/animo-trainer/


References
[1] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Che-

ung, P. Dębiak, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray,
C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto,
J. Raiman, T. Salimans, J. Schlatter, J. Schneider,
S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. Zhang,
Dota 2 with large scale deep reinforcement learning,
2019. arXiv:1912.06680.

[2] M. G. Bellemare, S. Candido, P. S. Castro, J. Gong,
M. C. Machado, S. Moitra, S. S. Ponda, Z. Wang,
Autonomous navigation of stratospheric balloons
using reinforcement learning, Nature 588 (2020)
77–82.

[3] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey,
F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki,
D. de Las Casas, et al., Magnetic control of toka-
mak plasmas through deep reinforcement learning,
Nature 602 (2022) 414–419.

[4] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wain-
wright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, R. Lowe, Training language models to
follow instructions with human feedback, 2022.
arXiv:2203.02155.

[5] M. Morales, Grokking deep reinforcement learning,
Manning Publications, 2020.

[6] C. Course, Y. Bisk, J. Ashe, Reinforcement learning:
Crash course ai 9, 2019. URL: https://www.youtube.
com/watch?v=nIgIv4IfJ6s.

[7] D. Silver, S. Singh, D. Precup, R. S. Sutton, Reward
is enough, Artificial Intelligence 299 (2021) 103535.

[8] K. Compton, M. Mateas, Casual creators., in: ICCC,
2015, pp. 228–235.

[9] Mojang, Minecraft, Videogame, 2011. URL: https:
//minecraft.net.

[10] T. Astle, Animal Uprising, Wobbledogs, Videogame,
2022. URL: https://wobbledogs.com/.

[11] P. Gagliano, C. Blustein, D. Oppenheim, Agence, a
dynamic film about (and with) artificial intelligence,
in: ACM SIGGRAPH 2021 Immersive Pavilion, 2021,
pp. 1–2.

[12] S. Grand, D. Cliff, A. Malhotra, Creatures: Artificial
life autonomous software agents for home enter-
tainment, in: Proceedings of the first international
conference on Autonomous agents, 1997, pp. 22–29.

[13] Lionhead Studios, Black & White, Videogame, 2001.
[14] M. Zammit, I. Voulgari, A. Liapis, G. N. Yannakakis,

The road to ai literacy education: from pedagogical
needs to tangible game design, Academic Confer-
ences International, 2021.

[15] B. F. Skinner, Reinforcement today., American
Psychologist 13 (1958) 94.

[16] A. Zhang, N. Ballas, J. Pineau, A dissection of over-
fitting and generalization in continuous reinforce-
ment learning, arXiv preprint arXiv:1806.07937
(2018).

[17] C. Zhang, O. Vinyals, R. Munos, S. Bengio, A study
on overfitting in deep reinforcement learning, arXiv
preprint arXiv:1804.06893 (2018).

[18] K. Khetarpal, M. Riemer, I. Rish, D. Precup, Towards
continual reinforcement learning: A review and
perspectives. arxiv, arXiv preprint arXiv:2012.13490
(2020).

[19] P. Kaushik, A. Gain, A. Kortylewski, A. Yuille, Un-
derstanding catastrophic forgetting and remember-
ing in continual learning with optimal relevance
mapping, arXiv preprint arXiv:2102.11343 (2021).

[20] V. Kothapalli, Neural collapse: A review on
modelling principles and generalization, 2023.
arXiv:2206.04041.

[21] G. Sokar, R. Agarwal, P. S. Castro, U. Evci, The dor-
mant neuron phenomenon in deep reinforcement
learning, 2023. arXiv:2302.12902.

[22] Subset Games, Into The Breach, Videogame, 2018.
URL: https://subsetgames.com/itb.html.

[23] Brace Yourself Games, Crypt of the Necrodancer,
Videogame, 2015. URL: https://braceyourselfgames.
com/crypt-of-the-necrodancer/.

[24] S. Albawi, T. A. Mohammed, S. Al-Zawi, Under-
standing of a convolutional neural network, in:
2017 International Conference on Engineering and
Technology (ICET), 2017, pp. 1–6. doi:10.1109/
ICEngTechnol.2017.8308186.

[25] B. Baker, I. Kanitscheider, T. Markov, Y. Wu,
G. Powell, B. McGrew, I. Mordatch, Emergent
tool use from multi-agent autocurricula, 2020.
arXiv:1909.07528.

[26] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper,
C. Elion, C. Goy, Y. Gao, H. Henry, M. Mattar,
D. Lange, Unity: A general platform for intelligent
agents, 2020. arXiv:1809.02627.

[27] D. Hafner, J. Pasukonis, J. Ba, T. Lillicrap, Master-
ing diverse domains through world models, 2023.
arXiv:2301.04104.

http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/2203.02155
https://www.youtube.com/watch?v=nIgIv4IfJ6s
https://www.youtube.com/watch?v=nIgIv4IfJ6s
https://minecraft.net
https://minecraft.net
https://wobbledogs.com/
http://arxiv.org/abs/2206.04041
http://arxiv.org/abs/2302.12902
https://subsetgames.com/itb.html
https://braceyourselfgames.com/crypt-of-the-necrodancer/
https://braceyourselfgames.com/crypt-of-the-necrodancer/
http://dx.doi.org/10.1109/ICEngTechnol.2017.8308186
http://dx.doi.org/10.1109/ICEngTechnol.2017.8308186
http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/2301.04104

	1 Introduction
	2 Background
	2.1 Prior work

	3 Gameplay
	3.1 Training Process
	3.1.1 Building an Environment
	3.1.2 Setting Rewards
	3.1.3 Configuring Resets
	3.1.4 Observing training
	3.1.5 Resetting Animo

	3.2 Exploration
	3.2.1 Tutorial
	3.2.2 Quest Islands
	3.2.3 Home Island


	4 Environment
	4.1 Terrain
	4.2 Objects
	4.2.1 Items
	4.2.2 Actors
	4.2.3 Mediums

	4.3 Intents

	5 Reward UI
	6 Animo observations
	6.1 Vector Sensors
	6.2 Convolutional Sensors
	6.3 Attention Sensors
	6.4 Object Encodings
	6.5 Sensor Conclusions

	7 Technical Architecture
	8 Discussion and Conclusion

