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Abstract
In this paper, we introduce our system HarmonyMapper, a system for generating diverse musical sequences. By combining
the MAP Elites algorithm with insights from music theory, specifically Neo-Riemannian Theory, HarmonyMapper is able to
generate sets of chord sequences with a high-level diversity in terms of the emotions they are expected to elicit. Our intention
is that this system will form the basis for a mixed-initiative musical composition tool focused on generating diverse music for
digital games. While HarmonyMapper is limited in the musical complexity it can produce, our pilot experiments showed that
it is capable of generating large numbers of varied sequences with no input data and only limited set up and computational
resources required.
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1. Introduction
Generative music has a long history in digital games.
From the early dynamic music systems of 1994’s System
Shock [1] and 1998’s Thief: The Dark Project [2] to mod-
ern examples with greater sophistication such as Dying
Light 2 [3], the capacity of generative music systems to
react dynamically to the state of the player has long been
prized for their capacity to increase immersion and re-
duce listener fatigue (see [4] for an overview of these
systems in gaming). While generative music for games
has typically focused on producing individual musical
sequences which are maximally appropriate for a given
game-play situation, we argue that there is significant
potential benefit in instead generating sets of intention-
ally diverse musical compositions which are appropriate
for diverse moods and events in game.

In this paper, we explore the use of the MAP-Elites
algorithm, a genetic search-inspired algorithm that finds
sets of diverse solutions rather than fit individuals, and
apply it to the challenge of generating diverse chord se-
quences. To facilitate the generation of these sequences
we use a branch of transformational music theory, Neo-
Riemannian Theory (NRT) [5], which allows us to gener-
ate sequences of chords that smoothly transition between
each other without the system needing to directly control
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or evaluate these transitions. We also make use of the
seven modes, scales that have specific characteristics, and
harmonic behaviours. To generate chord sequences that
are diverse in terms of the moods and emotions they are
likely to elicit we use insights from NRT but also music
theory more broadly to design heuristics that evaluate
chord sequences and aim to quantify these characteris-
tics.

We find that by combining the power of MAP-Elites
with insights from music theory and NRT we are able
to generate sets of diverse chord sequences without re-
quiring any training data or human guidance during gen-
eration, and in a way that is relatively computationally
light. Although the current system we present is capable
of generating linear chord sequences with some musi-
cal complexity limitations, we view it as a promising
foundation for a more advanced mixed-initiative system
to create game music. Such a system would be useful
for generating music that is both harmonious, but also
diverse in the moods it elicits, allowing a designer or
composer to make music that is appropriate for all of the
diverse moods that the game in question wants to elicit.

In Section 2 we discuss the related research that is
most directly relevant to that presented here. In Section
3 we describe and justify the current implementation of
our music generation system. In Section 5 we discuss the
configuration we used for the pilot experiments using
this system, and in Section 6 we present and discuss the
ramifications of the results of these experiments. Finally,
in Section 7 we discuss the future work we intend to
carry out to improve and advance this music generation
system, and we conclude that while limited, this system
is potentially an exciting and useful foundation for future
music generation systems focused on games.
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2. Related Work

2.1. Music Generation Systems
The generation of chord progressions has been investi-
gated for the automatic generation of musical harmony
to accompany various forms of media. Bernardes et. al.
[6] implemented the D’accord harmony generation sys-
tem which worked over a perceptually motivated tonal
interval space. Monteith et al. [7] generated music to in-
duce targeted emotions, using statistical techniques such
as HMMs, and applied this in [8] to produce affective
music to accompany the audio of fairy tales being read.

Numerous generative systems have been used to cre-
ate soundtracks for videogames. For instance, the game
GhostWriter (1998) [9] uses a generative approach to
create the music. The system implements a rule-based
algorithm that maps the in-game tension to the music.
To create a chord progression, the system implements
Schoenberg’s Theory of Harmony [10]. While the com-
positional aspect is conducted by a generative system,
the detection of in-game tension is not an automated pro-
cess: a director identifies and maps the level of suspense
in the music to the in-game events.

More recently, Lopez Duarte [11] introduced an al-
gorithmic music generator that makes use of a second
or third-order Markov model to manage instrumental
range and quantity, RNN for melody and bass, and an
Augmented Transition Network (ATN) to provide a tonal
grid. Duarte states that a system which combines gener-
ative and algorithmic (rule-based systems, deterministic
approaches) could provide extensive musical variety in
the structure and musicality while supporting the style
and offering continuity [11].

2.2. Neo-Riemannian Theory
Neo-Riemannian Theory (NRT) is a branch of transforma-
tional theory that provides analytical methods to study
chromatic chord progressions that deviate from tradi-
tional tonality. Conventional music theory, which relies
on keys and modes to analyze harmonic developments,
often struggles to effectively analyze these types of pro-
gressions. NRT introduces Neo-Riemannian Operators
(NROs) to examine chord changes. These operators de-
scribe the transitions between chords in a sequence, al-
lowing for the analysis of chord progressions that go
beyond traditional tonal frameworks. These NROs can
be applied individually to a chord to produce a new chord,
or several can be applied at once to produce a Compound
NRO (CNRO) which is more distant from the initial chord.

NRT does not just allow for the description of non-
traditional progressions; it also allows them to be anal-
ysed. Through the analysis of diverse film scores using
NRT, Lehman observed a link between the chosen NROs

and compound NROS employed by composers and the
specific events or emotions they aimed to portray [12]. By
identifying the NROs and CNROs used in a progression
we can to an extent infer the likely emotional response
of a potential listener.

NRT has been used as the basis of generative music
for games before in the work of Cardinale and Colton
[13]. They introduced procedural NRT and suggested
that it could be used in conjunction with Lehman’s obser-
vations to write event-based music for media, including
games. This led to the development of their GENRT
system which used NRT to procedurally generate musi-
cal sequences which matched with a given specification
such as matching a specified tempo, or by incorporating
changes in the music’s mood using Lehman’s descriptors
at specific time stamps. We expand on these ideas by
generating sets of diverse sequences rather than individ-
ual sequences, though the current version of our system
produces simpler music than GENRT which is capable of
generating sequences with a melody, harmony, bassline,
and percussion rather than just a chord sequence.

2.3. MAP-Elites and Music Generation
The algorithm at the centre of this work’s music gener-
ation system is the ‘Multi-dimensional Archive of Phe-
notypic Elites’ algorithm, more commonly referred to
as MAP-Elites. MAP-Elites is the most prominent algo-
rithm within a family of relatively modern algorithms
referred to as ‘Quality-Diversity’ (QD) algorithms. These
algorithms work similarly to traditional genetic search
methods, which aim to find high-performing solutions to
problems by combining and mutating the best solutions
found so far, in a way heavily influenced by real-world
evolution. Where QD algorithms distinguish themselves
is by generating populations of solutions rather than fit
individuals, and by aiming to maximise the phenotypic
diversity of this population.

MAP-Elites achieve quality and diversity by discretis-
ing the search space for solutions into an evenly spaced
grid, with each cell in the grid defined by a range of cal-
culable phenotypic traits (Phenotype/phenotypic in this
context meaning characteristics of the actual generated
artefact, in our case a musical sequence. This is opposed
to genotype/genotypic which refers to the encoded form
of the artefact). Classically this grid is defined by two
dimensions, though there are implementations that work
in higher dimensions [14]. Each cell in the grid is only
allowed to contain a fixed number of solutions, and the
membership of the cell is determined by a fitness func-
tion. If a new solution is generated and its phenotypic
traits mean it should be added to a cell that is already
at capacity, then the fitness of all solutions is calculated
and the least fit solution is removed. Each loop of the
algorithm previously generated solutions are selected



from the archive, new solutions are generated from them
and then they are added to the archive. By repeating this
process until a stopping condition is met such as a certain
number of loops, the intention is to arrive at a final grid
populated with a set of solutions that are both high per-
forming and diverse in terms of designer-selected traits.

MAP Elites is a relatively new algorithm, having been
introduced by Mouret and Clune in 2015 [15]. However
it and its variants have already seen significant success
in domains as varied as generating robot designs [16],
generating digital artworks [17], controlling swarms of
micro-robots [18], and many others. It has also seen
significant popularity in the generation of content for
digital games, especially game levels [19, 20, 21].

A domain that has seen little use of QD algorithms
is the domain of music generation (that the authors are
aware of). However, they have seen success in similarly
creative tasks such as digital drawing. McCormack et
al.[22] employ quality-diversity search techniques to in-
vestigate a creative generative system based on an agent-
based line drawing model. The application of quality-
diversity search allowed for the discovery of multiple
high aesthetic value phenotypes within the system.

Berker and Colton have recently argued that QD algo-
rithms for music generation could be a good fit for the
field [23]. We agree that it is a potentially good fit for
multiple reasons. There is a substantial amount of music
theory that can be leveraged to produce interesting phe-
notypic metrics with which to evaluate generated music.
Music can also be encoded genotypically in a form that
makes it easy to manipulate using conventional genetic
operators, especially when using NRT as we do in this
paper.

3. Methodology

3.1. Musical Encoding
To generate our musical sequence we need a genotypic
form for them which can be easily manipulated by ge-
netic operators, while also being convertible into midi
audio with limited effort and compute. This is where NRT
works well. NRT describes a series of Neo-Riemannian
Operators (NROs), conventionally labeled with a letter,
which can operate on a trichord to produce a new tri-
chord. These NROs can be combined together and applied
in sequence to a starting chord to produce a Compound
NRO (CNRO). The musical encoding we use in this ver-
sion of our system is to store tracks as an ordered array
of CNROs along with a starting chord. From this we can
generate the series of chords produced by applying these
CNROs in order, forming a musical sequence that can be
converted to midi at any point.

To apply these CNROs to a chord, we need to store the

Table 1
List of Every NRO in their Forms for Acting on Trichords in
Note Number Form

NRO
Letter

Major
Form

Minor
Form

R 0 0 2 -2 0 0
P 0 -1 0 0 1 0
L -1 0 0 0 0 1
N 0 1 1 -1 1 0
M -2 -2 0 0 2 2
S 1 0 1 -1 0 -1

chord in the form of an array of midi note numbers. A
midi note number is a widely used encoding form within
music in which each note is assigned a number from 0 to
127, with middle C found at number 60. For example, a
C Major chord in the 4th octave composed of the notes
C4, E4, and G4 can be encoded as [60, 64, 67]. Each NRO
in traditional NRT can be described as a set of additions
and subtractions to the notes of a trichord in midi note
number form (see Table 1). This makes applying an NRO
to a trichord a mathematically trivial operation. However,
after applying an NRO to the midi note number, its form
may have to be reordered to place the trichord in its
root position. This is also complicated by the fact that
each NRO letter operates on note numbers differently
depending on whether it is applied to a Major or a Minor
triad.

3.2. Phenotypic Metrics and Fitness
Function

As discussed in Section 2.3, a central decision when im-
plementing MAP-Elites is on the choice of phenotypic
metrics to use to determine where generated artifacts are
placed within the grid archive. One of the contributions
of this work is the introduction of metrics that can be
calculated for a musical sequence. These metrics are in-
formed by musical theory and are intended to capture
specific characteristics of musical pieces which are mean-
ingful to listeners, and therefore characteristics that a
game designer or composer might like to have diversity
in to fit diverse game settings.

3.2.1. Fitness Function: Key Prediction

To quantify the fitness of the generated chord sequences
we experimented with several alternatives before arriv-
ing at the option that gave the most appealing results:
the strength of fit between a chord sequence and its pre-
dicted key. To analyse the predicted key of a piece we use
the Krumhansl-Schmuckler Key-Finding Algorithm [24].
By comparing the distributions of pitches in a musical



Algorithm 1 Illustration of the Process for Generating a List of Chords from a Start Chord and a List of Compound
NRO Objects
Require: 𝑆𝑡𝑎𝑟𝑡_𝐶𝑜𝑟𝑑,𝐶𝑁𝑅𝑂_𝐿𝑖𝑠𝑡

𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡 = []
𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡← 𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡+ 𝑆𝑡𝑎𝑟𝑡_𝐶ℎ𝑜𝑟𝑑
for CNRO IN CNRO_List do

for NRO IN CNRO do
𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐶ℎ𝑜𝑟𝑑← 𝐺𝑒𝑡𝐿𝑎𝑠𝑡𝐶ℎ𝑜𝑟𝑑(𝐶ℎ𝑜𝑟𝑑𝑠)
𝐼𝑠_𝑀𝑎𝑗𝑜𝑟 ← 𝐺𝑒𝑡𝐼𝑠𝑀𝑎𝑗𝑜𝑟(𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐶ℎ𝑜𝑟𝑑)
if 𝐼𝑠_𝑀𝑎𝑗𝑜𝑟 then

𝑁𝑒𝑤_𝐶ℎ𝑜𝑟𝑑← 𝐴𝑝𝑝𝑙𝑦𝑀𝑎𝑗𝑜𝑟𝑁𝑅𝑂(𝑁𝑅𝑂,𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐶ℎ𝑜𝑟𝑑)
else

𝑁𝑒𝑤_𝐶ℎ𝑜𝑟𝑑← 𝐴𝑝𝑝𝑙𝑦𝑀𝑖𝑛𝑜𝑟𝑁𝑅𝑂(𝑁𝑅𝑂,𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐶ℎ𝑜𝑟𝑑)
end if
𝑁𝑒𝑤_𝐶ℎ𝑜𝑟𝑑←𝑀𝑜𝑣𝑒𝑇𝑜𝑅𝑜𝑜𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑁𝑒𝑤_𝐶ℎ𝑜𝑟𝑑)
𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡← 𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡+𝑁𝑒𝑤_𝐶ℎ𝑜𝑟𝑑

end for
end for
return 𝐶ℎ𝑜𝑟𝑑_𝐿𝑖𝑠𝑡

sequence with those of the fixed key profiles which they
developed, one can predict the key of any piece of music.

In this work, we use Music21 [25], a popular mu-
sicology Python Library, and their implementation of
Krumhansl-Schmuckler’s Algorithm. This not only gives
us a possible key of a piece, which is used later for pre-
dicting the mode of our generated music, but it also gives
us the correlation coefficient of the confidence level of
the algorithm. The higher the coefficient, the better the
distribution of pitches matches the predicted key. This
is important to know, as it is more than possible for a
piece to fit best with a certain key, but to still only weakly
match its distribution. It is this correlation coefficient
that we use as our fitness function, with the goal of push-
ing the system to produce music that is strongly within
one key and therefore that is likely to sound more cohe-
sive to a listener. However, this does significantly limit
the variety of music that will be generated, something
we discuss further in Section 7 on our future plans with
this system.

4. Implementation
4.0.1. Average CNRO Shift

The first of the two metrics that we use is what we term
Average NRT Shift. This metric is based on the obser-
vations of musicologist Frank Lehman [12] that there
is a relationship between how many NROs are used be-
tween two chords in a sequence and how unsettling a
piece is. This could be attributed to the fact that when
using only one NRO, the resulting chord is more likely
to be in the same key or a closely-related key, whereas

as you increase the size of the CNROs used, the resulting
chord tends to be further away from the original key. In
a series of experiments carried out by Krumhansl [26], it
was shown that tones less closely related to the tonality
are less stable than tones closely related to the tonality.
As tonality is inferred through harmonic context and
the interplay of tension and release among surrounding
chords in relation to a specific tone or chord base [27],
the absence of a tonal centre can be said to create a sense
of uncertainty.

We operationalise this metric by summing all of the
NROs in all CNROs that define a track, and then dividing
this number by the number of CNROs, giving us the mean
number of NROs per chord transition. We also argue that
this is a natural characteristic to want to find diversity in
when generating video game music, as varying levels of
tension during the course of play is common to so many
genres of game.

4.0.2. Predicted Mode

The second metric we use is the predicted mode of a piece.
As discussed in Section 1, music theory describes seven
musical modes. These are highly useful for our purposes
as prior research has found that they can be ordered
from brightest-sounding, Lydian, to darkest-sounding,
Locrian, as shown in Figure 1 [27].

There are several steps involved in HarmonyMapper’s
process for predicting the mode of a generated piece
of music. First, we take the predicted key of the piece
using the same Krumhansl-Schmuckler’s Algorithm [24]
which we use in calculating fitness. For this key, we
then generate the scale of that key for each of the seven
modes, giving us seven scales, each containing 7 notes, to



Table 2
Modes and their character notes.

Mode Character Note
Ionian Natural 4th
Lydian Raised 4th

Mixolydian Lowered 7th
Dorian Raised 6th
Aeolian Natural 6th
Phrygian Lowered 2nd
Locrian Lowered 5th

Lydian

Ionian

Mixolydian

Dorian

Aeolian

Phrygian

Locrian

Brightest

Darkest

Figure 1: The seven modes ordered in terms of brightness
[27].

check. We then loop through every chord in the piece of
music and count each chord whose notes are all contained
within each mode’s scale. At the end of this process, we
then select the mode for which the most chords fit within.
In the case that there the chords fit within two or more
scales equally, we then check the frequency rate of the
appearance of a character note of each scale within the
chords. This note can be considered to be the signature
note of a scale, and the one that most represents that
scale (see Table 2) [28]. For instance, the character note
of the Lydian mode is the raised fourth degree.

We again argue that this mode prediction would be
potentially very useful to a game designer or composer,
as similarly to NRO shift, being able to target a variety of
moods would be very useful for many games and game
genres. While some games may not change their intended
mood much at all during play, especially traditional ar-
cade titles, these are in the minority in contemporary
video gaming. The composer or game designer would be

able to pick a mode and NRO shift that most represent the
in-game situation or the situation they want the player
to perceive. For example, in the song At Doom’s Gate
[29] from the game Doom [30] the main guitar riff is in
Locrian, giving a tense, dark mood to the level, whereas
the soundtrack frequently switches to brighter moods
for more triumphant moments.

4.1. Genetic Operators
In this system, we use two genetic operators to produce
child solutions from pairs of parent tracks, namely a mu-
tation operator and a crossover operator both designed
to work on a sequence of CNROs. This parent pair are
selected at random from the MAP-Elites archive archive
population as in conventional MAP-Elites [15].

The mutation operator works by replacing a CNRO in
a sequence with a new generated CNRO. This CNRO is
generated by first stochastically selecting a CNRO length
with a range between 1 and the max length for a CNRO
which is specified for the MAP-Elites run as a whole. We
then generate a sequence of NROs by selecting NROs
at random until we have enough to produce a CNRO of
the specified length. This new CNRO then replaces the
selected CNRO in the original sequence. This process has
a chance of being applied to every CNRO in a sequence,
so a mutation rate of X% means that every CNRO in a
selected sequence has an X% chance of being replaced
with a newly generated one.

The crossover operator used is a one-point crossover.
First, we generate a random crossover point for a selected
pair of parents which can be anywhere in the range 1
to the fixed track length minus 1. Two child CNRO se-
quences are then generated by taking the portion of par-
ent 1s CNRO sequence up until the crossover point and
concatenating it with the portion of parent 2s following
the crossover point, and vice versa for child 2.

4.2. Duplicate Chord Fitness Adjustment
An issue with our method for generating CNROs stochas-
tically is that there is a chance that when a series of
NROs are applied to a chord it can produce a loop that
produces the same chord as the initial chord. This can
be especially problematic in conjunction with the NRT
shift metric. As discussed, the goal for this phenotypic
metric is as a heuristic for how discomforting the track
might be to a listener based on the magnitude of the
shifts between sequential chords. Due to this looping
issue, however, it is possible to have long NRO sequences
which would cause higher scores on the NRT shift metric,
while producing duplicate chords which do not produce
the desired discomfort.

To address this issue we opted to check each newly
generated track for the existence of duplicate chords in



sequence. Where a duplicate chord is found we force the
fitness of the track to be 0. This means the track can still
be stored in the MAP Elites grid, but it will always be
discarded when a sufficient number of tracks without
duplicates are generated within the same cell location.
While this approach is commonly used to handle infea-
sible individuals in genetic search and it undoubtedly
achieves the goal of avoiding them being present in the
final generated track set, it has also long been argued
against as an approach due to the loss of genetic informa-
tion involved in effectively discarding these individuals
which may have made for useful parents [31]. As a re-
sult, we consider it to be an non-ideal solution to the
problem and something we will look to improve in future
iterations of this system.

5. Experimental Configuration
To conduct our initial experiments to explore this system
and its capabilities we first needed to decide on how
the system would be parameterised. Where possible we
based these decisions on quantitative data from pilot
experiments to indicate parameterisations that appeared
to lead to the best system performance, but where this
was not possible a more arbitrary decision was made.

5.0.1. Musical Parameterisation

In terms of the parameterisation of the music tracks them-
selves, each track starts with a tri-chord in the 4th octave.
This tri-chord is randomly selected for each track when
generating the starting population, and then inherited
from one of the two parents for tracks generated during
a run. Each track is composed of 20 CNROs giving a total
of 21 chords including the initial chord. The maximum
CNRO length was capped at 5. Decisions on track and
max CNRO length were made arbitrarily, and it is here
where we expect that designers and composers using fu-
ture iterations of this system would have the most control.
However, it is more than possible there is a performance
impact induced by these choices, something we aim to
examine in future work.

5.0.2. MAP Elites and Genetic Operator
Parameters

The most important performance-affecting parameters
are the mutation and crossover rates, as well as the num-
ber of elites that are stored per cell in the MAP Elites grid.
Initial experiments using a grid search suggested that a
mutation rate of 0.2, a crossover rate of 0.5, and storing a
maximum of 3 elites per cell led to the best overall perfor-
mance. We note that in future iterations of this system
that are designed to meet the needs of game designers
and composers, we may have to consider not just the

performance of the system when it comes to the number
of elites stored, but also the impact on system usability.
One can imagine circumstances in which having a large
range of similar compositions with similar traits would
be useful to present a user with a sufficient choice, but
also circumstances in which a choice of any kind could be
redundant. However, for these initial experiments, this
decision was made purely based on system performance.

For the dimensions of the map, the predicted mode
dimension was split into 7 increments, one for each pos-
sible mode, whereas the NRT Shift dimension was split
into 10 increments evenly divided between 1 at the bot-
tom end of the theoretical range if every CNRO in a track
was of the minimum length and 5 at the top of the range.

5.1. Performance Measures
To evaluate the performance of a generative run we cal-
culate two features: Average Grid Fitness and Coverage.

To calculate the Average Grid Fitness we first sum up
the fitness scores of the fittest tracks found in each grid
cell, with empty cells receiving a fitness of 0. This number
is then divided by the total number of cells. To calculate
the Coverage we count the number of cells which have
any solution at all, and divide this count by the total
number of cells. Coverage is intended to measure how
effectively we are exploring the overall space, whereas
Average Grid Fitness looks at performance more gener-
ally and requires both exploration but also the finding
of high-performing tracks. Coverage is commonly cal-
culated in MAP Elites implementations including in the
paper which introduced the algorithm [15], and Aver-
age Grid Fitness is similar to the Reliability score which
appears in that paper and others, except that we do not
have an alternative algorithm to compare to.

5.1.1. Run Length

In terms of experiment length, we let the process run
for 5,000 loops. This cutoff point was selected after ini-
tial experimentation suggested that we were unlikely
to see Average Grid Fitness gains after this point. Each
loop involved the selection and generation of two tracks
to support the use of the crossover operator. Therefore
10,000 tracks were generated in total. To seed the ini-
tial map a starting population of size 500 was generated
for each run. This starting population was generated
through purely stochastic generation and concatenation
of CNROs, as well as the selection of a random 4th-octave
start chord for each starting track.

5.1.2. Computational Resources Used

All experiments were run on a Dell laptop with an i5-
10310U CPU with 16.0 GB of RAM. With the above con-



Figure 2: Figure showing the performance of the generative
process in terms of average grid fitness and coverage as loop
count increases. Measurements recorded and visualised for
every 100th loop

Figure 3: Figure showing the final MAP Elites archive in the
form of a heat map. The color of each cell is determined by
the fittest track found for the cell

figuration on this hardware, a full generative run took 1
hour and 32 minutes.

The system including all of its code, data for the results,
as well as the generated chord progressions from this pa-
per’s experiment in both textual and .midi form is avail-
able at github.com/KrellFace/harmony-mapper/.

6. Results and Discussion
Here we discuss the overall performance of the system
including its strengths and weaknesses of it which are
highlighted by the results of our initial experiments.

In terms of systems performance, we are cautiously
optimistic. It is able to produce sets of tracks with signif-
icant amounts of diversity present in terms of our two
metrics. The relatively high final average fitness score of
0.786 indicates that the system is able to produce series

of chords with a high level of tonal consistency.
The system has the advantage of being fairly compu-

tationally light and it was able to generate and evaluate
over 10 thousand chord sequences on a modestly pow-
ered laptop in only 92 minutes. However, the process
would be too slow to be used in a generative system
which required quick iteration and generation such as a
mixed-initiative generative system with a human in the
loop (see [32] for an overview of mixed-initiative content
generation systems). Additionally, though we were able
to achieve a robust average fitness during our experimen-
tal runs, Figure 6 suggests that a longer run time would
be required to achieve the maximum possible fitness as
average fitness and coverage were still increasing at the
termination point.

As is evident in Figure 3 there were combinations of
metric values which the system struggled to find tracks
for. At the extreme low and high ends of the possible
NRT Shift values the system visibly struggles to further
populate the MAP Elites grid, especially in the 4.6 to 5
range in which it found 0 tracks. While one would expect
that the outlying locations of the possibility space would
naturally be harder to reach, we expect that this could
also be the result of the high mutation rate used and the
nature of our mutation operator. With the mutation rate
used of 20% for each of a track’s 20 CNROs, and with
the 80% chance that a generated CNRO will have less
than 5 NROs there is significant pressure pulling newly
generated tracks back to the centre of the grid.

By inspecting the rules of our system, we can see that
it cannot produce chord progressions that are fully in the
Locrian mode. This is because it is impossible to produce
its signature half-diminished interval tonic using only
conventional NRO shifts. The best tracks found in this
part of the archive are comprised of chord sequences
that do not fit comfortably into any key when analysed
with Krumhansl-Schmuckler’s Algorithm but happen to
contain chords that conform best to the Locrian scale
for the best-fitting key. However, this does not mean
they are actually in the Locrian mode. This highlights
the need for a fitness cutoff before any generated chord
sequences are actually selected for use, as the lower the
fitness of a track, it both conforms less to a key, but also
less likely to be in the correct mode. The inability of
the system to produce sequences in the Locrian mode is
a limitation we aim to address on as discussed later in
Section 7. This limitation could be improved by using the
extended version of NRT by Colton and Cardinale [33]
which is able to produce multiple chord types, including
diminished.

The music produced by the system consists of chords
played on a piano. Each chord has an equal duration
and the instrumentation does not change throughout the
chord progression. This is a simplified version of the
system as proof of concept. In Section 7 we discuss the



future addition of melody components and improving the
complexity of the music generated by HarmonyMapper.

In terms of the metrics themselves, future listening
studies are required to explore whether or not we are suc-
cessfully producing emotionally diverse chord sequences.
However, our initial impressions are that the NRT shift
metric did not perform as expected. We were aware that
there were limitations to it as a heuristic due to the way
NROs operate. To take an example from one of the re-
views of this paper, R and SSLL are equivalent in terms of
the chord change they produce but they differ massively
in length. We were aware of this limitation but hoped
that larger shifts would still tend to indicate tracks with
chord transitions which would be perceived as more jar-
ring. To the authors’ ears, however, this was not always
the case. As a result, improving on this distance metric
is going to be a focus of our future work.

7. Future Work
The most important area in which to improve and expand
HarmonyMapper is the musical complexity it is able to
generate. Specifically, we aim to extend the system with
the generation of melodies, bass lines and percussion to
pair with the diverse harmonies that are currently gener-
ated. One of the potential end goals for this system is for
non-musicians to be able to use HarmonyMapper musi-
cal sequences in their games without the need for any
alteration. In terms of how these additions are generated,
we could take inspiration from Cardinale and Colton’s
GENRT and generate them stochastically based on a set
of specifications [13]. Naturally, these musical additions
are also another facet of the music in which we can try
and promote interesting diversity. For instance, we plan
to produce deliberate diversity during the melody gen-
eration process, by using similar heuristics to the ones
introduced in this paper to make the melody more or less
voice-led.

We also plan to explore using different evaluation met-
rics for our system. One substantial change we plan
to make is to use a different distance metric, such as
Lerdhal and Krumhansl’s model for tonal tension [34].
Lerdahl suggests that a multidimensional representation
of a pitch space allows for a more nuanced understanding
of tonal relationships and can capture the hierarchical
organization of tonal music [35]. This could allow us to
understand more in-depth the link between NRT chord
progressions, modes, and moods. This would potentially
also allow us to avoid the use of our duplicate chord
fitness adjustment and the subsequent loss of genetic
information.

Another potential extension to HarmonyMapper
which we are keen to explore is the introduction of the
concept of leitmotifs. Leitmotifs are repeated musical

phrases that often represent a concept or character in
soundtracks. Firstly we aim to explore the generation
of diverse harmonies that all include the same leitmotif,
mirroring how they are used in traditional composition
to evoke different moods while still referencing the same
character or concept. More excitingly perhaps, we aim
to investigate whether we can use HarmonyMapper to
produce tracks that are blends of two leitmotifs by devel-
oping a heuristic for evaluating how much a composition
confirms to either or both of two specified leitmotifs. This
could allow us to generate musical sequences that both
evoke different moods but also evoke two contrasting
characters or concepts to a lesser or greater degree, simi-
lar to how composers write music to unite two or more
leitmotifs.

8. Conclusion
In this paper, we introduced HarmonyMapper, a novel
system for generating diverse chord sequences using
MAP Elites, and have argued that a Quality-Diversity ap-
proach for music generation with music theory-inspired
metrics is a valuable basis for game music generation
systems. While the current output is limited to simple
chord progressions, their intentional diversity in terms of
the mood they convey to a listener makes them valuable
as a musical foundation for generating more complex
compositions. We look forward to expanding on this
approach to develop a controllable system for generating
diverse and appropriate music for games.
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