
Towards Procedural Generation of Constructed Languages
for Games
Aaron Cai, Chris Martens

Northeastern University
Boston, MA 02115, USA

Abstract
Fictional languages are an aspect present in many hand-authored narratives, but underexplored in procedurally generated
narratives. This paper presents an initial exploration of procedurally generated constructed languages (conlangs), following
principles of language construction that relate phonology, morphology, and syntax. We present this generator as a tool for
game developers. Our approach allows procedurally generated worlds and narratives to draw upon a generative space of
languages that follow plausible linguistic principles.

Keywords
procedural generation, constructed languages, game worlds, worldbuilding

1. Introduction
Research and game development has come a long way
for procedural generation of detailed game worlds
that support rich narrative experiences, such as Dwarf
Fortress [1], with its interconnected systems of geology,
ecology, and history that inform how civilizations de-
velop and interact [2]. These worlds often include simula-
tions of human-like societies that develop social identity,
culture, and tradition. However, the spoken and written
languages of these cultures remain an under-explored fea-
ture for procedural world generation. In Dwarf Fortress,
for example, the set of four languages (one for each race)
is completely fixed and only varies in terms of alphabet
and lexemes (i.e., each of the languages is a relexifica-
tion [3] of the others).

We propose that constructed languages, or conlangs
for short, offer a window into how plausible languages
might be generated for fictional societies in games. In this
paper, we describe a work-in-progress generator based
on documented conlang methods that can create a new
and unique conlang each time generation is invoked. We
present the generator in its current form as a tool for
game developers.

One specific consideration for language generation in
the context of game-worlds is the aesthetics of the lan-
guage. For example, people who have a lot of exposure
to languages with shared aesthetic features will be able
to pick up the sound patterns and tendencies of those
languages and be able to distinguish that language from
a lineup without necessarily actually understanding the

AIIDE Workshop on Experimental Artificial Intelligence in Games,
October 08, 2023, University of Utah, Utah, USA
$ cai.a@northeastern.edu (A. Cai); c.martens@northeastern.edu
(C. Martens)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

spoken words. Those who understand more than one
language will know that sentences or words may be struc-
tured differently, or that certain information is required
grammatically in one language but entirely optional in
others. These factors all contribute to the aesthetic of
the language, and can make a language feel out of place
in certain contexts or appropriate to others. We would
like for game developers that use this tool to be able to
supply parameters so that it creates a language with a
fitting aesthetic for the context it will be used in.

Another goal for this project is to mimic patterns in
natural human languages so that it can generate lan-
guages that players perceive as believable. Therefore, the
creation of the generator is informed by research in the
field of linguistics and is thus separated into sections that
deal with phonology, morphology, and syntax. Where
possible, the models in the generator were informed by
empirical data. This mimicry has the added benefit of
making the tool easier to understand in terms of intu-
itions about human languages, as well as allowing the
generator to make decisions based on data from real hu-
man languages.

The vision for this tool is so that it can be used in games
in such a way that players will encounter a different con-
lang each time they play. One potential application is
language-decoding puzzle gameplay (such as that found
in Heaven’s Vault [4]) based on the conlang, in a way
that is robust to replay and to having answers posted on-
line. However, there are also more general opportunities
to have the language of a generated civilization reflect
aspects of its culture, to include the writing in in-world
artifacts (such as signage and books), and to see it written
or spoken by NPCs. In the long term, we imagine this tool
supporting games that include procedurally generated
worlds and narratives enriched by unique languages.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:cai.a@northeastern.edu
mailto:c.martens@northeastern.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Figure 1: Dataflow architecture of GenLang.

2. Related Work
The project of procedurally generating fictional lan-
guages for game worlds appears to be in its infancy,
but we have identified two previous publications on
the topic. First, Mark Johnson’s development on Ultima
Ratio Regum (URR), includes the generation of dialects
and naming conventions for a procedurally-generated
fictional society [5]. URR constructs and selects sylla-
bles at random from a process constrained by arbitrary
hand-authored decisions. By contrast, our work demon-
strates a linguistics-informed process of sound selection,
phonotactics, and concern for plausibility with respect
to real-world human language development. Second,
James Ryan describes a system for simulating the process
of human societies naturally developing and evolving
language [6]. By contrast, the system we describe opera-
tionalizes the practice of designing constructed languages,
which exist at a level of abstraction above direct simu-
lation of human language development. In fact, Ryan
mentions the possibility of generating conlangs as a ripe
opportunity for future work.

3. Overview
In the course of this paper, there will be discussion about
potential game developers who could use this tool to
assist in the creation of games, as well as players who
could play those created games. For the purpose of clar-
ity, game developers will be henceforth referred to as
developers, and game players will be referred to as play-
ers. It is important to note that developers will not refer
to us, the authors and creators of the generator. We will
avoid the term “users”, even though it may be natural to

think of developers as such.
The creation of a constructed language generator nec-

essarily includes digitally modeling the structure of lan-
guage at multiple levels of abstraction, such as phonol-
ogy, vocabulary, grammar, and writing systems. A small
change in one of these models can influence others in
global ways. As such, our system of models needs to
communicate with each other effectively. This informs
our decision to design the architecture of the software as
a hierarchical one, where code modules handle cascading
levels of abstraction. An overarching script handles the
passing of information between the different modules
as well as the developer (see Figure 1). The higher-level
modules (macro-modules) include phonology, morphol-
ogy, and syntax. These terms may be unfamiliar for those
without a linguistics background, and they will be ex-
plained in greater detail in their respective sections. The
general flow of execution starts from gathering developer
input, and providing that information to the phonology
macro-module. Developer input is stored in an object
that comprises of arrays of strings, booleans, integers,
and enums. The strings contain information regarding
settings pertaining to specific sounds, and the other data
types handle more easily quantified settings. The out-
puts of the phonology macro-module as well as already
gathered developer input will then be provided to the
morphology macro-module. The syntax macro-module
also uses developer input but does not need the output
of the other macro-modules. The outputs of the mor-
phology and syntax modules are then used to generate
output that the developer and players will see. The exact
structure of the data passed between these modules will
be discussed in further detail later. Each macro-module
is subdivided into lower-level modules (micro-modules),
the specifics of which will be discussed in their respective
sections.

Our research that informs the generator includes re-
cent, empirical linguistics studies, avoiding older or more
qualitative studies that have been criticized for bias (e.g.
Anglocentrism). That is not to say that recent empirical
studies are not without bias, but in lieu of directly con-
sulting linguistic experts, we take them to represent the
most up-to-date knowledge about human languages, and
summarize the aspects of these findings relevant to our
project in each of the subsequent sections.

4. Phonology
The phonology of a language is all the sounds, or
phonemes, that speakers of the language use when speak-
ing that language. Phonology can differ greatly between
languages and is one of the first things to be noticed
by someone who does not understand a language be-
ing spoken. Therefore, take phonology as the biggest

CONSONANTS (PULMONIC) © 2015 IPA
 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive
Nasal
Trill
Tap or Flap
Fricative
Lateral
fricative
Approximant
Lateral
approximant

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)
Clicks Voiced implosives Ejectives

 Bilabial Bilabial Examples:

 Dental Dental/alveolar Bilabial

 (Post)alveolar Palatal Dental/alveolar

 Palatoalveolar Velar Velar

 Alveolar lateral Uvular Alveolar fricative

VOWELS
Front Central Back

Close

Close-mid

Open-mid

Open
Where symbols appear in pairs, the one
to the right represents a rounded vowel.

OTHER SYMBOLS
 Voiceless labial-velar fricative Alveolo-palatal fricatives
 Voiced labial-velar approximant Voiced alveolar lateral flap
 Voiced labial-palatal approximant Simultaneous and

 Voiceless epiglottal fricative Affricates and double articulations
can be represented by two symbols
joined by a tie bar if necessary.

 Voiced epiglottal fricative
 Epiglottal plosive

SUPRASEGMENTALS
 Primary stress
 Secondary stress
 Long

 Half-long

 Extra-short

 Minor (foot) group

 Major (intonation) group

 Syllable break

 Linking (absence of a break)

DIACRITICS Some diacritics may be placed above a symbol with a descender, e.g.
 Voiceless Breathy voiced Dental

 Voiced Creaky voiced Apical

 Aspirated Linguolabial Laminal

 More rounded Labialized Nasalized

 Less rounded Palatalized Nasal release

 Advanced Velarized Lateral release

 Retracted Pharyngealized No audible release

 Centralized Velarized or pharyngealized

 Mid-centralized Raised (= voiced alveolar fricative)

 Syllabic Lowered (= voiced bilabial approximant)

 Non-syllabic Advanced Tongue Root

 Rhoticity Retracted Tongue Root

TONES AND WORD ACCENTS
LEVEL CONTOUR
or Extra or Risinghigh
 High Falling
 Mid High

rising
 Low Low

rising
 Extra Rising-

low falling
Downstep Global rise
Upstep Global fall

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols)

Figure 2: IPA Chart showing how to use IPA notation,
http://www.internationalphoneticassociation.org/content/ipa-
chart, available under a Creative Commons Attribution-
Sharealike 3.0 Unported License. Copyright © 2015
International Phonetic Association

contributing factor to the aesthetic of a game-world lan-
guage when the player first encounters it. In settings
with verbalized NPC dialog, it would likely be the most
salient aspect of the language (prior to the player learn-
ing the language’s structure and semantics). One aspect
of phonology that is easily modeled digitally is the size
of the sound inventory. This describes the amount of
different sounds speakers of the language make while
speaking that language. Languages can differ in this way
by incredible magnitudes. Some languages have as few as
6 consonants, for example, while others have more than
100 [7]. As for which sounds are available for selection,
most linguists use the International Phonetic Alphabet
(IPA) [8] (see Figure 2). All sounds that have been ob-
served by linguists to occur in any human language can
be notated using IPA [9]. Looking through all the IPA
symbols gives us a list of sounds to select from. It is of
note that the IPA does not have a symbol for every pos-
sible sound a human mouth can make: there are a few
sounds that are technically possible but have not been
observed in any human language.

Figure 3: Dataflow between submodules of the phonology
module.

Figure 4: Histogram of languages according to categories
of consonant inventory size. The small category indicates an
inventory of 6-14 consonants, a moderately small inventory
contains between 15-18, an average one contains 19-25, a
moderately large one contains 26-33, and a large one contains
between 34-122.

4.1. Implementation
The overall structure of this macro-module is a linear
path from one micro-module to the next (see Figure 3).
We start off with sound inventory size, then move onto
sound selection. The output is a phonology object which
stores all the sounds within the generated language.

If the developer does not specify a size for the phoneme
inventory, the tool will choose one based on a distribu-
tion derived from a database [7] which surveyed real
languages all around the world (see Figure 4). The distri-
bution appears to be a normal distribution at first glance,
but the categories are not equally divided. The “large” cat-
egory actually includes a much larger range of numbers
than the other categories. One could attempt to regress
a skewed probability distribution, but picking a category
with a distribution matching the data and then picking
a number in that category in an uniform distribution
approximates it sufficiently.

Phonemes are modeled in the generator using objects
that store information such as a long, descriptive name
for ease of handling within the code, the IPA notation,
and information about how the sound is created using
the mouth. The latter information is not immediately
important but will become relevant in other parts of the

generator. These objects can be of either the consonant
type or the vowel type, but both will eventually make up
a phoneme object. The reason why this additional level
of abstraction is necessary is due to the fact that some
languages treat multiple consonants or vowels as a singu-
lar phoneme. For example, the /tS/ sound in English is
treated as a single phoneme by English despite typically
being spelled with two alphabetic consonants (“ch”) and
being composed of two IPA sounds. The generator will
also exclude phonemes that have never been observed in
any human language. This set is the same every time the
generator is run, so the information is stored in a JSON
document that the script reads upon execution.

In terms of actually selecting the sounds, some sounds
are more common than others. When the selection of
sounds is not specified by the developer, the generator
picks sound in a distribution informed by a database of
phonological data of real human languages [10]. A dis-
claimer from the database website that is well-included
here is that certain languages have multiple entries from
disagreeing sources. This would mean that languages
under-studied would not influence the data as much as
over-studied languages. However, we decided not to
remove these multiple entries, assuming that such dis-
crepancies will not be noticed by players. One could
weigh the influence of a language by using population
data, but this could bias the dataset in a Eurocentric di-
rection, since the effects of colonialism pervade the land-
scape of real-world languages. One could also reduce the
weight of individual entries if a language has multiple,
but this would ultimately be a subjective decision, since
boundaries between related languages can be hard to
determine. Linguists are still debating over what counts
as a language, a dialect, or an accent [11]. If linguistics re-
search provides a better database to inform the generator
in the future, it would be worthwhile to switch.

Once all the phonemes are selected are selected, they
are stored in a phonology object, which is in essence an
array of phoneme objects with some wrapper functions.
The phonology object is returned and can then be used
as the input for the morphology.

5. Morphology
Morphology is the study of the construction of words.
Words are not easy to classify as they can differ in defi-
nition or purpose between different languages [12]. For
example, large numbers in English are expressed in what
is defined as multiple words, but those same numbers in
German are expressed in what is defined as one word. For
this reason, the tool does not deal with words but with
syllables and morphemes, which are more concretely de-
fined in linguistics. Morphology is an aspect of language
that becomes more relevant to game-world languages

Figure 5: Dataflow between submodules of the Morphology
module.

when the player is intended to learn to speak or write
the language.

In our implementation, the morphology macro-module
is less linear than the phonology module. It consists of
three micro-modules: morpheme, syllable, and phonotac-
tics. The primary function lies in the morpheme micro-
module, which uses the syllable and phonotactics micro-
modules in its execution. The output is a morphology
object which contains the outputs of both the phonotac-
tics and morpheme micro-modules (see Figure 5).

5.1. Syllables
Syllables may seem like a concept that is the same across
all languages, but different languages define syllables in
different ways. Certain languages may define a series of
vowels as a diphthong, which would count for only one
syllable, while others count that same series of vowels
as separate syllables (e.g., /aI/ as in “my” in English
compared to /aI/ as in “愛” in Japanese).

In addition, consonants at the beginning of a syllable
may have different rules than consonants at the end of
a syllable. Different languages can have rules on how
vowels appear in syllables as well. English can have three
vowels as a triphthong in a single syllable as in the word
“flour,” but other languages such as Japanese allows only
a singular vowel sound in a syllable. In addition, some
languages, such as Mandarin, use tones. Tonal languages
differentiate syllables with the pitch or change in pitch
of articulation.

Even with the overall structure of the syllable decided,
there may be additional rules on which combinations of
sounds are allowed together. For example, even though
English allows for a consonant cluster of two at the be-
ginning of a syllable, an “s” sound followed by an “r”
sound is not allowed. In addition, in many languages
(including English), consonants can come in clusters that
still contribute to only a single syllable, but the maxi-
mum number of consonants in a single cluster differs by
language.

5.1.1. Implementation.

For the sake of simplicity, the generator regards syllables
as a sequence of vowels with potentially a sequence of
consonants on either side. Due to the way that languages
differ greatly in syllable construction rules, the generator
encourages developers to specify how many consonants
can be at the beginning and end of each syllable, as well
as how many vowels can appear in the middle. They can
also specify whether tones are differentiating within the
language, and how many and which tones are used.

Within a single language, certain syllable structures
may be more common than others. For example, English
speech has many more syllables starting with one or two
consonants than with three. Due to lack of data on this
matter, the generator uses a Zipfian distribution, which
is a distribution observed in many natural distributions,
such as frequency of a word within bodies of text, or pop-
ulation of cities. In a Zipfian distribution, the frequency
of occurrence of an element is inversely proportional to
its rank in a frequency table. The generator stores these
syllables as an object which primarily consists of a se-
quence of phonemes. However, unlike phonemes, not all
possible syllables within the language are stored as the
number of possible syllables may be orders of magnitude
higher than that of possible phonemes, depending on the
rules of syllable construction.

5.2. Phonotactics
Phonotactics refers to such rules as which sounds are
allowed together, as well as how sounds can change in
certain contexts [13]. For example, the vowel in the sec-
ond syllable of “modal” changes when an additional part
is added onto the end as in “modality.” There is an in-
credibly large array of such rules for change across real
human languages [14]. We did not find a database docu-
menting the frequency of such rules across languages, so
we were not able to weigh the probability of phonotactic
rules being picked by the generator by their frequency
in real human languages.

5.2.1. Implementation

The phonotactics micro-module includes a few common
phonotactic rules that we deemed worth emulating, e.g.
the tendency for unvoiced consonants to become voiced
when they appear between multiple occurrences of the
same vowel.

If the developer does not specify phonotactic rules,
the generator will pick several, but not all, at random
to be enabled. The generator will first pick a number
between a quarter to a half of the total number of rules
available to pick from. It will then pick that many using a
uniform distribution. There may be correlation between
the nature of the sound inventory and the phonotactic

rules, but that may be unnecessary for believability and
is beyond the expertise of the authors. The phonotactics
rules are stored as a phonotactics object consisting of
multiple rules stored as strings. When a syllable is con-
structed, the syllable micro-module checks to make sure
that every rule is followed.

There may be a more computationally efficient method
of storing these rules than as strings, but they are easy
to work with in development. An optimization pass in
the future may change the way these are stored

5.3. Morphemes
Morphemes are defined by linguists as atomic units of
meaning [15]. The “s” sound that English speakers attach
onto the end of words to indicate plurality is an example
of a morpheme. Evidently, morphemes can consist of
multiple syllables, a singular syllable, or even a conso-
nant or vowel that changes another morpheme’s syllable.
Because they are so flexible, morphemes are stored as
an object that consists of either phonemes or syllables,
with a property indicating how they are to be fitted with
other morphemes. This can specify that they are free,
which means they can stand alone in speech and are easy
to deal with. However, bound morphemes cannot stand
alone and thus also store rules on how they are to be
attached to other morphemes.

5.3.1. Implementation.

With the tools of syllable construction and phonotactic
rules, we can begin to construct morphemes. In the mor-
pheme micro-module, the generator can finally assign
meaning to sounds. Morphemes are stored as objects
with strings indicating its pronunciation and meaning,
as well as an enum for its grammatical type. After a ba-
sic set of morphemes are created, they are stored in an
morphology object, which also stores the phonotactics
object from the previous submodule. The morphology
object can then be passed on to the final output

6. Syntax
Syntax is the subdiscipline of linguistics that deals with
the construction of sentences from morphemes [16]. Syn-
tax can differ between languages to a degree that may
surprise those who speak one language. For example,
English adjectives typically appear before the noun it is
describing, but in Romance languages, adjectives typi-
cally occur after the described noun [17]. One easy aspect
of syntax to model digitally is word order, i.e. the order
things appear in sentences. English sentences typically
start with a subject, followed by the verb, and then the
object. This order can be abbreviated to SVO (Subject,
Verb, Object). However, this is not the only possibility.

Figure 6: Subject Object order across languages

Figure 7: Dataflow between submodules of the Syntax mod-
ule.

There are six ways to arrange an ordering of three dis-
tinct objects. Therefore, there are six possible ways to
order the subject, verb, and object in a sentence. While
all permutations have been observed in real human lan-
guages, some orders are far more common than others.
Notably, it seems that vast majority of human languages
have the subject occur before the object [18] (see Figure
6).

6.1. Implementation
The syntax macro-module creates the rules for the con-
struction of sentences (see Figure 7). While it may seem
necessary for the macro-module to use the morphology
macro-module, that is not actually the case. The syntax
module is solely responsible for the rules with which
morphemes or morphemes clusters are ordered in sen-
tences, regardless of what the morphemes or morpheme
clusters are comprised of. Syntax is something that can
greatly increase the feeling of foreignness for players if
they are learning to understand the language.

For sentence word order, we include both the common

options (SVO, SOV, and VSO), and the uncommon (OVS,
OSV, VOS). The generator will first decide which of these
categories to pick from, weighted heavily towards the
common category. It will then pick uniformly at ran-
dom within the category. For developers that choose to
specify a sentence order, the generator produces some
text offering guidance to not use the ones with the object
before the subject, and suggests that using a different
sentence-order from the player’s native language might
make it harder to interpret or relate to (leaving the judg-
ment of whether or not this property is desired to the
developer).

After the sentence ordering is decided, the generator
chooses the ordering of modifiers (e.g. adjectives, ad-
verbs) relative to the head, or the part of the sentence
being modified. (We distinguish the head from nouns
because linguists include other parts of speech such as
verbs as a possibility for the head.) In the initial stages
of this project, this ordering was affected by the sen-
tence word order as informed by older studies that have
since been challenged. Informed by more recent litera-
ture [19], the generator will pick modifier-head order at
random without consideration for sentence word order.
These decisions will be stored in a syntax object that
is outputted and can then be used in conjunction with
a morphology object to create sentences. While there
are many other ways languages differ in syntax, these
two aspects provide a starting point that we intend to
develop further. Some potential additions include the
ordering of numerals and nouns [20], whether nominal
and verbal conjunction are different [21], and different
manifestations of associative plurals [22].

These rules are stored in a syntax object which com-
poses of an enum for sentence word order and a boolean
for the ordering of modifiers. The syntax object can then
be passed on to the final output.

7. Implementation Status
We are in the progress of implementing the design de-
scribed in this paper as the GenLang tool available on
GitHub at https://github.com/AkaiGameDev/GenLang.
Currently, we have implemented the Phonology mod-
ule and the Morphology module except for Phonotactics.
Phonotactics and Syntax remain to me implemented.

Figure 8 shows the current command-line interface
and corresponding output. Each prompt ending in “:”
represents an opportunity for developer input. The sys-
tem then prints out the generated phonology including a
2-dimensional consonant chart, sample morphemes gen-
erated and associated meanings. See Appendix A for a
second input-output example in text form.

https://github.com/AkaiGameDev/GenLang

Figure 8: A screenshot of the current GenLang command-line
user interface and structured output.

8. Discussion
Our main contribution is a preliminary algorithm, de-
signed as a set of modules, for procedurally generating a
constructed language for use in a game world. However,
this project is very much a work in progress, and also
entails some inherent limitations.

First, while we have done some preliminary explo-
ration of written language generation, it is not incor-
porated into this generator and brings its own set of
challenges. A written language generator would have to
generate 2D artifacts with constraints that are difficult to
proceduralize. Written languages typically have glyphs
that are easy to write and distinguish from each other.
It may be difficult to algorithmically evaluate how well
generated artifacts satisfy those constraints. A written
language generation could be integrated with our genera-
tor to allow for a more sophisticated generated language,
as well as supporting gameplay with more emphasis on
visual communication than audio (e.g. text games).

Second, there are important aspects of syntax and se-
mantics that we have not yet implemented, or in some
cases designed good solutions for. For example, the
problem of generating a lexicon (set of meanings to as-
sign to morphemes) is currently the responsibility of the
developer, and currently lexicon meanings will be ran-
domly assigned to morphemes. But this approach does
not take into account the possible relationships between
morphemes, including syntactic concerns like stemming,
inflection, conjugation, tense, aspect, and mood. These
choices could impact other aspects of syntax; for example,

if a verb can be conjugated to encode the subject-pronoun
(as in Spanish), the pronoun subject can be dropped (“pro
drop”). Additionally, we do not treat aspects of vocab-
ulary that might be affected by the cultural context of
the world for which the language is being developed.
Nor do we treat any aspect of semantics, e.g. a process
for constructing character utterances appropriate to spe-
cific game-world contexts, although this task is one over
which we assume a developer would usually want more
manual control.

Finally, GenLang is a project by humans with inher-
ent biases, so it cannot possibly avoid linguistic bias nor
fully represent the diversity of human languages. There-
fore, this generator comes with the disclaimer that the
creators are not experts in linguistics, and (across all au-
thors) are most familiar with English, Mandarin, Japanese,
and Spanish (our “source languages”). There are going
to be unaccounted-for aspects of real-world languages
and linguistic topics that the authors are unfamiliar with.
Fortunately, our source languages differ from each other
in numerous ways and thus provide insight into how
languages can differ. However, it is likely that the dif-
ferences across our source languages are emphasized in
the design of the generator and the similarities are over-
looked. If others with an entirely different set of source
languages and linguistic or computational knowledge
were to tackle the challenge of algorithmically modeling
languages, they may focus more on other aspects of lan-
guages, resulting in a different algorithm. In addition,
the authors acknowledge that linguists’ understanding of
languages is still changing, and that even models made
by practicing linguists on well-studied real human lan-
guages are not without flaws. As this project replicates
such models, it follows that the outputs of this generator
may include such flaws as well.

9. Conclusion
We have presented a proof-of-concept generator for
phonology, morphology, and syntax in a constructed
language, drawing from empirical linguistics research
to represent a cross-section of the possibility space of
languages spoken on Earth. Taking into account the in-
tended use case of generating languages within fictional
game worlds, we have presented our design decisions
for this tool. We demonstrate this design with a working
software implementation.1 As a result, this project makes
significant inroads towards the longer-term ambition of
generating complete, novel constructed languages that
incorporate developer input.

1Available at https://github.com/AkaiGameDev/GenLang.

https://github.com/AkaiGameDev/GenLang

References
[1] B. . Games, Dwarf Fortress, PC, 2006.
[2] T. Betts, Procedural content generation, Handbook

of Digital Games (2014) 62–91.
[3] P. H. Matthews, The concise Oxford dictionary of

linguistics, Oxford Quick Reference, 2014.
[4] Inkle, Heaven’s Vault, PC, PlayStation 4, Nintendo

Switch, 2019.
[5] M. R. Johnson, Procedural generation of linguistics,

dialects, naming conventions and spoken sentences,
in: Proceedings of the FDG workshop on Procedural
Content Generation, 2016.

[6] J. Ryan, Diegetically grounded evolution of game-
world languages, Proc. Procedural Content Gener-
ation (2016).

[7] I. Maddieson, Consonant inventories (v2020.3),
in: M. S. Dryer, M. Haspelmath (Eds.), The World
Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.
doi:10.5281/zenodo.7385533.

[8] P. T. Daniels, W. Bright, The world’s writing sys-
tems, New York: Oxford University Press, 1996.

[9] I. P. Association, Handbook of the International
Phonetic Association: A guide to the use of the
International Phonetic Alphabet, Cambridge: Cam-
bridge University Press, 1999.

[10] S. Moran, D. McCloy (Eds.), PHOIBLE 2.0, Max
Planck Institute for the Science of Human History,
Jena, 2019. URL: https://phoible.org/.

[11] S. R. Anderson, How many languages are there in
the world?, Linguistic Society of America (2010).

[12] M. van Oostendorp, Words and sentences, 2023.
[13] B. Hayes, Introductory Phonology, Wiley-

Blackwell, 2008, p. 64.
[14] M. R. Freeman, H. K. Blumenfeld, V. Marian,

Phonotactic constraints are activated across lan-
guages in bilinguals, Frontiers in Psychology 7
(2016). doi:https://doi.org/10.3389/fpsyg.
2016.00702.

[15] M. van Oostendorp, Morphology, 2023.
[16] M. van Oostendorp, Syntax and word order (a),

2023.
[17] M. van Oostendorp, Syntax and word order (b),

2023.
[18] M. S. Dryer, Order of subject, object and verb

(v2020.3), in: M. S. Dryer, M. Haspelmath (Eds.), The
World Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.
doi:10.5281/zenodo.7385533.

[19] M. S. Dryer, Relationship between the order of
object and verb and the order of adjective and noun
(v2020.3), in: M. S. Dryer, M. Haspelmath (Eds.), The
World Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.

doi:10.5281/zenodo.7385533.
[20] M. S. Dryer, Order of numeral and noun (v2020.3),

in: M. S. Dryer, M. Haspelmath (Eds.), The World
Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.
doi:10.5281/zenodo.7385533.

[21] M. Haspelmath, Nominal and verbal conjunction
(v2020.3), in: M. S. Dryer, M. Haspelmath (Eds.), The
World Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.
doi:10.5281/zenodo.7385533.

[22] M. Daniel, E. Moravcsik, The associative plural
(v2020.3), in: M. S. Dryer, M. Haspelmath (Eds.), The
World Atlas of Language Structures Online, Zenodo,
2013. URL: https://doi.org/10.5281/zenodo.7385533.
doi:10.5281/zenodo.7385533.

A. Worked Example
Example developer configuration:

- Consonant inventory size: Average
- Vowel inventory size: 5
- Include: [’s’, ’k’]
- Exclude: []
- Beginning consonants: [1]
- Ending consonants: [0]
- Consecutive vowels: [1]
- Tonality: None
- Phonotactics: []
- Sentence order: [’SVO’]
- Modifier order: [’HM’]

Possible Output:

selected 22 consonants and 5 vowels.
Consonants:
IPA character: l
Descriptive name:

VoicedAlveolarLateralApproximant
Place of Artic.: [’alveolar’]
Manner: [’lateralapproximant’]

IPA character: m
Descriptive name: VoicedBilabialNasal
Place of Artic.: [’bilabial’]
Manner: [’nasal’]

IPA character: s
Descriptive name: VoicelessAlveolarSibilant
Place of Artic.: [’alveolar’]
Manner: [’sibilant’]

https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533
https://phoible.org/
http://dx.doi.org/https://doi.org/10.3389/fpsyg.2016.00702
http://dx.doi.org/https://doi.org/10.3389/fpsyg.2016.00702
https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
http://dx.doi.org/10.5281/zenodo.7385533

IPA character: b
Descriptive name: VoicedBilabialPlosive
Place of Artic.: [’bilabial’]
Manner: [’plosive’]

IPA character: n
Descriptive name: VoicedAlveolarNasal
Place of Artic.: [’alveolar’]
Manner: [’nasal’]

IPA character: k
Descriptive name: VoicelessVelarPlosive
Place of Artic.: [’velar’]
Manner: [’plosive’]

IPA character: t
Descriptive name: VoicelessAlveolarPlosive
Place of Artic.: [’alveolar’]
Manner: [’plosive’]

IPA character: j
Descriptive name: VoicedPalatalApproximant
Place of Artic.: [’palatal’]
Manner: [’approximant’]

IPA character: d
Descriptive name: VoicedAlveolarPlosive
Place of Artic.: [’alveolar’]
Manner: [’plosive’]

IPA character: g
Descriptive name: VoicedVelarPlosive
Place of Artic.: [’velar’]
Manner: [’plosive’]

IPA character: f
Descriptive name:

VoicelessLabiodentalFricative
Place of Artic.: [’labiodental’]
Manner: [’fricative’]

IPA character: p
Descriptive name: VoicelessBilabialPlosive
Place of Artic.: [’bilabial’]
Manner: [’plosive’]

IPA character: g!
Descriptive name: VoicedAlveolarClick
Place of Artic.: [’alveolar’, ’velar’]
Manner: [’click’]

IPA character: ä
Descriptive name: VoicedVelarImplosive
Place of Artic.: [’velar’]
Manner: [’implosive’]

IPA character: õ
Descriptive name: VoicedRetroflexApproximant
Place of Artic.: [’retroflex’]
Manner: [’approximant’]

IPA character: ú’
Descriptive name: RetroflexEjectiveStop
Place of Artic.: [’retroflex’]
Manner: [’plosive’, ’ejective’]

IPA character: Q
Descriptive name: VoicedPharyngealFricative
Place of Artic.: [’pharyngeal’]
Manner: [’fricative’]

IPA character: ù
Descriptive name: VoicelessRetroflexSibilant
Place of Artic.: [’retroflex’]
Manner: [’sibilant’]

IPA character: &’
Descriptive name: PalatalEjectiveFricative
Place of Artic.: [’palatal’]
Manner: [’fricative’, ’ejective’]

IPA character: q
Descriptive name: VoicelessUvularPlosive
Place of Artic.: [’uvular’]
Manner: [’plosive’]

IPA character: ü
Descriptive name: VoicedRetroflexSibilant
Place of Artic.: [’retroflex’]
Manner: [’sibilant’]

IPA character: r
“Descriptive name: VoicelessAlveolarTrill

Place of Artic.: [’alveolar’]
Manner: [’trill’]

Vowels:
i
u
e
o

a

Generated 10 words:
r
“
elime - meaning observe

äa - meaning man
ge - meaning woman
ju - meaning child
äosa - meaning bread
togi - meaning cook
kitijo - meaning good
üogibaso - meaning bad
&’o - meaning eat
qa - meaning - meaning many

Generated 3 sentences:

English translation:
The man bakes good bread
Generated language:
äa togi äosa kitijo

English translation:
The child eats bad bread
Generated language:
ju &’o üogibaso äosa

English translation:
The woman watches the child cook
Generated language:
ge r

“
elime ju togi

	1 Introduction
	2 Related Work
	3 Overview
	4 Phonology
	4.1 Implementation

	5 Morphology
	5.1 Syllables
	5.1.1 Implementation.

	5.2 Phonotactics
	5.2.1 Implementation

	5.3 Morphemes
	5.3.1 Implementation.

	6 Syntax
	6.1 Implementation

	7 Implementation Status
	8 Discussion
	9 Conclusion
	A Worked Example

