
Moirai: Enabling Complex Narrative Structure in
Simulation-Driven Stories
Ben Samuel1, Adam Summerville2

1University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148
2The Molasses Flood, 51 Sawyer Road, Waltham MA, 02453

Abstract
Moirai is a system that governs a social simulation experience from initialization, through the simulation, to its end. Previous
social simulation experiences have usually utilized bespoke glue code that chains together the different aspects of running a
social simulation, utilizing simulation either before play, during play, or after play. Moirai is capable of chaining together
different initialization passes and simulation modules to enable a range of experiences that have not been shown before. This
paper presents the syntax and semantics of the Moirai Domain Specific Language, and demonstrates how it can be used to
create a variety of complex simulation-driven narratives inspired by case-studies from previously existing media.

Keywords
social simulation, procedural narrative, domain specific language

1. Introduction
In Greek mythology the Moirai were the the sisters of
fate – Clotho, Lachesis, Atropos. In this paper, we discuss
Moirai a system that governs a social simulation experi-
ence from initialization (Clotho or “spinner” the one who
presided over birth), through the simulation (Lachesis or
“allotter” the one who controlled the goings on of life),
to stopping simulation (Atropos or “unturnable” the one
who severed the string of life). Moirai uses a Domain
Specific Language (DSL) that enables a user to set up a
social simulation experience, covering a wide range of
possible experiences.

Previous social simulation experiences have usually
utilized bespoke glue code that chains together the differ-
ent aspects of running a social simulation. These experi-
ences have utilized social simulation at different times of
the experience:

• Before Play – to set up the experience
• During Play – to provide the simulation as the

experience
• After Play – to provide an epilogue

with all previous experiences (to our knowledge) using
at most two of these aspects. Furthermore, these expe-
riences have generally progressed in this one direction,
with no branching or looping, limiting the types of expe-
rience possible.
Moirai is capable of chaining together different ini-

tialization passes, simulation modules, and filtering of

AIIDE Workshop on Experimental Artificial Intelligence in Games,
October 08, 2023, University of Utah, Utah, USA
Envelope-Open bsamuel@cs.uno.edu (B. Samuel); adamsumm@gmail.com
(A. Summerville)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

population which enables a range of experiences that
have not been shown before. Of course, to not overstate
our claim, the previous experiences have been authored
(at some level) with Turing complete languages, so there
is nothing inherently possible with Moirai that could not
also be achieved in those languages. However, by provid-
ing a DSL that elevates certain operations the authoring
experience is greatly simplified.

2. Related Work
Moirai is a system intended to be used in conjunction
with social simulations. By social simulation systems, we
refer to computer processes that simulate individual enti-
ties (often referred to as non-player characters, or NPCs
[1]), social relationships between them, and frequently
also has a hand in shaping the world these entities in-
habit. Social simulations are often not intended to be
stand-alone, but rather integrate with and enable inter-
active experiences. For example, the social simulation
system Talk of the Town [2] is responsible for generat-
ing the residents of the fictional small American town
in which the performance art piece Bad News [3] is set.
Likewise, the social simulation engines Comme il Faut
and Ensemble [4, 5] have been core to experiences such
as Prom Week, Vox Populi, VESPACE [6, 7] and enabled
mods for AAA games such as Skyrim and Conan Exiles
[8, 9]. While not yet used for any experiences, Kismet
[10] is a social simulation language designed under the
notion of Compton’s “Casual Creators” [11] that aims to
provide pleasing expressive range [12] with a relatively
low complexity barrier to entry.

The work outlined in this paper explores the use of
simulation at different parts of an experience. To this
end, under a broader view of “social simulation” as any

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:bsamuel@cs.uno.edu
mailto:adamsumm@gmail.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

rule driven process during which characters grow and
dissolve different relationships, the authors take inspi-
ration from a number of experiences that have utilized
varying levels of simulation. Friends at the Table – an
actual play podcast that uses games as the substrate to
tell an audio play – have used multiple games as setup for
longer arcs. In the simplest examples, for their Marielda
arc [13], they played The Quiet Year [14] – a game where
players take turns filling out a map – to develop the world
for a longer run of Blades in the Dark [15] – a more stan-
dard table top role playing game. The Adventure Zone
[16] similarly used The Quiet Year to develop the world
for their Ethersea arc [17] and then used Dungeons &
Dragons [18] for the more standard segment. Friends at
the Table has also gone even more in depth during their
Partizan [19] arc which used seven different games for
worldbuilding at various levels of fidelity – starting with
Dialect: A Game About Language and How It Dies [20]
to first develop the language and culture of their game’s
world, then moving into Armour Astir: Advent [21] to
develop a conflict, Ech0 [22] and Dusk to Midnight [23]
to explore the aftermath of that conflict, Beam Saber [24]
and For the Queen [25] to continue on with the conflict,
and finally Microscope [26] to play out the 500 years after
the end of the conflict.

3. Moirai – Method & Capabilities
In the following section we will discuss the syntax and
semantics of Moirai. At its core, Moirai is an impera-
tive scripting language with standard control flow and
branching operations. However, unlike other scripting
languages, Moirai provides a range of language con-
structs for initializing, running, swapping, and termi-
nating social simulations. Currently, Moirai is designed
to be used with Clotho – a social simulation initialization
system– and Lachesis – a social simulation engine that
the authors have developed (previously known as Kismet
[10]). However, it would be possible to use other cre-
ation and simulation engines, so long as they follow the
APIs of Clotho and Lachesis with abilities to be initialized,
queried, ran, and serialized.

The specifics of Moirai can be broken down into four
main properties: (1) the loading/unloading of ruleset files
(i.e., files which dictate what is able to transpire within
the simulation), (2) the creation and filtering of simulated
entities (i.e., the characters, locations, and other elements
driven by the simulation), (3) the running of simulations
(i.e., having the simulated entities change based on the
possibilities specified by the rulesets), and (4) the control
flow governing these operations (i.e., repetition and se-
lection of the aforementioned affordances). These four
properties will now be discussed in further detail.

3.1. Loading/Unloading
One aspect of social simulations that Moirai operational-
izes is the use of different rulesets. Existing simulations
often use different rulesets at various points of simulation.
For instance, the rules that govern the history generation
in the simulation-heavy Dwarf Fortress [27] are different
from those that govern the moment-to-moment interac-
tions of dwarves. Similarly, Bad News had simulations
that operated at different levels of fidelity with the bulk
of simulated time happening at a very coarse level of sim-
ulation with only the final simulated week (of a simulated
100+ years) happening at a granular level.

Toward this end, Moirai provides the functionality to
load in, add, and remove different rulesets, while keep-
ing the simulated entities in place. By rulesets, we refer
to specifications that dictate what behaviors simulated
entities can engage in, any preconditions those behav-
iors may have, postconditions for how simulated enti-
ties might be affected by taking the behavior, etc. Fur-
thermore, inspired by how Tabletop Role-Playing Games
(TTRPG) communities build off of existing rulesets with
new modules, it is possible to load in multiple ruleset
modules at once. For instance, if there existed a generic
high school simulation module, it could be mixed with a
supernatural horror module to create mixed-genre sim-
ulations in the vein of Buffy the Vampire Slayer [28] or
Stranger Things [29]. Alternatively, swap out supernatu-
ral horror with a romance module to create high school
romance simulation games like Tokimeki Memorial [30]
or Katawa Shouju [31].

The operations available in Moirai are:

• load RULESET+

unloads any currently loaded simulation rulesets
and loads the given simulation ruleset files. The
“+” indicates “one or more” (and retains this mean-
ing throughout the rest of our descriptions of
Moirai’s operations)

• add RULESET+

loads the given simulation ruleset files and con-
catenates them to the already loaded rulesets

• remove RULESET+

unloads the given ruleset files and removes them
from the current rulesets

All of the operations leave the simulated entities in
place throughout the adding, removing, and swapping of
rulesets. The only major consideration to this is that the
simulated entities should have consistent attributes and
hooks across the modules. For instance, if our “high
school” ruleset treated “degree of talkativeness” as a
scalar variable referred to as extroversion, and the “super-
natural horror” ruleset treated it as a ternary value of in-
trovert/normal/extrovert, then the two modules wouldn’t

realize these two variables are referring to to the same
notion, leading to the modules failing to fully leverage
their full potential synergy.

In the next section we will discuss Moirai’s operations
for handling entity creation, filtering, and removal.

3.2. Simulated Entity Creation and
Management

All social simulation based experiences share the com-
monality that there are entities that are being simulated.
Although in theory anything can be a simulated entity, to
provide the reader a frame of reference simulated entities
are often locations (e.g., a dining room in a home), and
the creatures and things that populate them (e.g., a dining
table, a person working on it, a cat napping beneath it,
etc.). These entities might have been authored to pro-
vide a known starting point (e.g., Prom Week, Princess
Maker [32], etc.) or procedurally generated (e.g., Dwarf
Fortress, Bad News) or possibly a mixture of both (e.g.,
Crusader Kings III [33]). Most commonly, once the enti-
ties are initialized and social simulation occurs they will
continue on according to the rules of the simulation, only
leaving the simulation when the simulation itself decides
so (e.g., death or leaving town in The Sims [34] or Bad
News). However, many common story patterns found in
literature, film, and interactive experiences involve casts
of characters coming in and out of focus depending on
the narrative. For instance, in a closed room murder such
as Murder on the Orient Express [35] or Gosford Park [36]
a subset of characters is involved in the actual murder
mystery while other characters might be involved in their
– possibly linked – back stories.

Toward enabling social simulation modalities that ex-
plore new use cases, Moirai enables entities to be initial-
ized, filtered, stored, and restored. In conjunction with
the ability to swap simulation rulesets, this allows for
different story patterns to be possible, as opposed to just
changing the rulesets alone. To the authors’ knowledge,
the only existing social simulation experience to do any-
thing of this form is Dwarf Fortress which creates a new
dwarf expedition at the start of Fortress mode.

Entity creation and management in handled with a
single operation “initialize”, though its execution can
be customized through eight options. The syntax and
explanation of these operations and options in Moirai
are:

• initialize INITIALIZATION+ [:OPTION]+

initializes entities according to the INITIALIZA-
TION files (which may be either deterministically
authored or procedurally generated) with OP-
TIONs on what to do with the existing entities (if
any)

• OPTION:

restoring entities in VARIABLE
restores entities that were previously stored in
the variable named VARIABLE

• OPTION:
keeping all (characters|locations)
keeps all entities of the given class. The | sym-
bol in this context represents an OR selection be-
tween the symbols in the parentheses (and does
in all subsequent operation explanations).

• OPTION:
keeping entities where is STATUS
keeps entities that have the STATUS property

• OPTION:
keeping entities where in PATTERN/ARITY
keeps entities that have are in the PATTERN that
has arity of ARITY. This is to disambiguate be-
tween patterns with the same name but differ-
ent #’s of entities (e.g., the patterns lovers/2 and
lovers/3 referring to couples and thruples, respec-
tively)

• OPTION:
keeping entities where (in

PATTERN1/ARITY1 | RELATIONSHIP)
with entity (is STATUS | in
PATTERN2/ARITY2)

↪

↪

↪

keeps entities that have the RELATIONSHIP or
are in PATTERN1 with an entity that either has
STATUS or is in the PATTERN2

• OPTION:
keeping entities where (in

PATTERN/ARITY | RELATIONSHIP) with
entity in kept

↪

↪

keeps entities that have the RELATIONSHIP or
are in PATTERN with an entity that has already
been kept

• OPTION:
stashing rest in STASH
saves the entities that have not been kept in the
variable STASH

• OPTION:
saving kept as STASH
saves the entities that have been kept in the vari-
able STASH

Moirai assumes that the given simulation engine has
relationships which connect simulated entities (most
likely a given, since a social simulation without rela-
tionships would be relatively boring) and the ability to
define arbitrary patterns (e.g., the love triangle pattern
between three characters labelled RivalA, RivalB, and
Target where RivalA and RivalB both love Target, or the
unrequited love pattern between two characters, Source
and Target, where Source loves Target, but Target does
not love Source, etc.). These patterns can be viewed
through the lens of story sifting [37] as larger patterns
that emerge from the simulation, but which might not

be directly represented in the simulation ruleset files
themselves.

The options to filter can be at the unary level (an entity
has a given attribute), the binary level (an entity is in a
given relationship with another entity), or at the 𝑛-ary
level (an entity is found in a given pattern with other
entities), with the higher levels allowing to match the
other entities against other statuses or patterns or just
looking at entities that are already kept.

To give a concrete example of why this might be useful,
let’s imagine a simulation focused on a wedding (such
as Father of the Bride [38]). For this example, imagine
the wedding as a secondary simulation as part of a larger
simulation. That is, the larger simulation has already
created, let’s say, a town full of people with varied rela-
tionship connections across them, and within this town
are two people primed to get married. To accommodate
their simulated nuptials, first, we would need to initialize
the wedding-specific facets of the simulation (setting up
the venue, perhaps instantiating the officiant, planner,
florist, etc.), by specifying an initialization file

initialize wedding:

The following are all options concatenated to this initial-
ization. After setting up the wedding, the next order of
business is to find the couple in the simulation who is
getting married:

keeping entities in pattern getting_married/2

thenwewould want to invite the families of the (possibly)
happy couple (or, perhaps more accurately, not filter them
out of the simulation):

keeping entities related_to entities in
getting_married/2↪

we’ll invite/keep the couples’ friends, too:

keeping entities in pattern
best_friend_of_couple/3 with entities in
getting_married/2

↪

↪

and then we will save everyone else that was simulated in
a separate variable, so that they can be returned to after
the wedding specific simulation without being included
in the wedding simulation:

stashing rest in not_attending_wedding

After initialization (or perhaps re-initialization), the
actual simulation of the wedding itself needs to play out,
which we will discuss in the next section.

3.3. Simulation Management
Moirai assumes that the given simulation engine can take
one step at a time, and in between steps, the engine can

be queried to find not only if a given set of conditions is
true, but also the counts of how many entities for which
the conditions are true. There exists a single operation
for this (just as with initialization) with a number of
options:

• run (NUM STEPS | until CONDITIONS)

either runs the simulation a set number NUM of
STEPS steps or until a given set of conditions is
found to be true (where a condition, we’ll soon
see, equates to a set of queries on the simulation).
STEPS can either be the keyword step (which
is assumed to be smallest atomic step size) or a
given unit of length (assuming the simulation
keeps track of time at different levels) (e.g., days,
weeks, months, years, centuries, millenia)

• CONDITIONS := CONDITION (or CONDITION)+

CONDITIONS is in disjunctive normal form. In
other words it is a number of clauses (CONDI-
TION) each of which consists of queries that are
logically connected via and, all of which are con-
nected via or

• CONDITION := QUERY (, QUERY)+

A CONDITION is a group of queries connected
via logical and (denoted as a comma “,”)

• QUERY := COUNT entities CONDITION |
NUM STEPS

A QUERY is either the given number COUNT of
entities are found to either have or be lacking
the given CONDITION or the NUM of STEPS (as
discussed above). Note: COUNT can be:

COUNT := NUM | NUM+ | (<|>|<=|>=|==)
NUM↪

NUM := [0-9]+

In other words, the query can test for exact equal-
ity or for inequalities of the query counts (greater
than, less than, etc.)

• CONDITION := entities in PATTERN/ARITY|
entities

(is|isnt|are|arent)?
STATUS ((<|>|<=|>=|==)
NUM)?|

↪

↪

↪

entities
(is|isnt|are|arent)?
RELATIONSHIP/2
((<|>|<=|>=|==) NUM)?

↪

↪

↪

The possible CONDITIONs are the number of
entities that are found in a given PATTERN, the
number of entities foundwith (orwithout) a given
STATUS, the number of entities found with (or
without) a given RELATIONSHIP, or the number
of STEPS (as discussed above). The CONDITIONs

for STATUS and RELATIONSHIP can optionally
do comparisons on the scalar value of the STA-
TUS or RELATIONSHIP. (e.g., “happiness > 5” or
“love/2 > 10”).

Put together, these options allow for a wide range of
different options. For something like Dwarf Fortress or
Bad News where history is generated for a set duration (al-
though Dwarf Fortress can be interrupted by the player),
it would simply be handled as running for a set number
of steps. But for something like the earlier wedding ex-
ample, it would be inadvisable to run the pre-wedding
simulation for a set duration, as there might either be no
(or possibly way too many) couples getting married at
the end of the duration. Instead, we would want to run
until a couple was set to get married:

run until 2 entities in pattern
getting_married/2↪

Now, let’s consider a tonally different example, where
someone has passed away and their loved one(s) have
discovered their body:

run until 1 entities is recently_deceased,
1+ entities in pattern discovered_body/2

At this stage, we might want to move to a funeral specific
ruleset; However, we can imagine that we would want
our simulation to be able to handle a range of different
large life events separately (e.g., it could look for both
weddings and funerals). Putting this together (along with
a fixed maximum duration for good measure), we would
have:

run until 2 entities in pattern
getting_married/2 or↪

1 entities is recently_deceased,
1+ entities in pattern discovered_body/2
or 20 years

As we can see, Moirai enables the simulation to run
until a set of conditions is true, but we are missing the
final piece: handling different scenarios in different man-
ners given those conditions. Putting it all together, we
have the final set of operations for Moirai, the control
flow operations.

3.4. Control Flow
The control flow operations ofMoirai follow the standard
suite of operations (e.g., if, else if, else, while, etc.). The
only major departure is that Moirai lacks many opera-
tions commonly found in most languages (e.g., arbitrary
boolean comparisons, arithmetic, assignment), which
lends a specific flavor to its handling of the control flow
operations. We note that the astute reader might have

detected that due toMoirai’s ability to store/retrieve infor-
mation and run simulations that the lacking operations
are actually latent within it, but we would hope that the
astute reader would not implement them just because
Moirai is Turing complete. The control flow operations
are:

• if CONDITIONS {STATEMENT+}
((elif|elseif|else if) CONDITIONS

{STATEMENT+})*↪

(else {STATEMENT+})?

An if block as in many C-style languages; an ini-
tial if statement (and subsequent block of code
that runs, delimited by curly braces), optionally
followed by some number of else if (optionally
elif or elsif) statements, with an optional final else.
The CONDITIONS are a disjunction of conjunc-
tions as defined as above. A STATEMENT is one
of the operations (either previously discussed or
a control flow operation) in Moirai. The * symbol
represents that zero or more of this set of symbols
can be seen. The ? symbol means this symbol my
appear either zero or one time.

• while (CONDITIONS|ITERATION (<|<=) NUM)
{STATEMENT+}↪

ITERATION := (iterations|i)

A while loop that runs until some CONDITIONS
are met or for a set number of iterations (with
many possible terms accepted)

• yield

A yield statement that returns control to the driv-
ing program (perhaps to accept user input), but
picking up exactly where it left off when Moirai
is told to run again.

• choose [(NUM : {STATEMENT+})+]

A choice block that randomly chooses one of the
inner code blocks to run. NUM is the weight
associated with the given block of statements,
used to bias the selection away from a uniform
distribution.

These control flow operations allow Moirai to chain
together arbitrary sequences of the operations. For in-
stance, let’s return to the previous wedding / funeral
example. The different events would have their own rule-
sets and initialization steps, so we need to be able run
the correct simulations:

run until 2 entities getting_married/2 or
1 entities is recently_deceased, 1+

entities in pattern
discovered_loved_ones_body/2

↪

↪

or 20 years;

if 2 entities getting_married/2 {
...

}
else if 1 entities is recently_deceased,
1+ entities in pattern

discovered_loved_ones_body/2 {↪

...
}
else {
...

}

Now, let’s say that we wanted this whole thing to run
until 5 such events had occurred, it would be as simple
as wrapping all of the above in the following block:

while iterations < 5 {
...

}

Moirai enables many different possible modalities of
simulations, and in the following section we will discuss
different case studies, first progressing though how exist-
ing experiences could be implemented withMoirai before
moving on to other possibilities inspired by non-social
simulation based literature, film, and video games.

4. Moirai – Case Studies
In the following sections we will first discuss how social
simulation has been utilized historically in a variety of
experiences. For these cases, we will provide a demon-
stration of how it could be implemented via Moirai. We
will then discuss more complex use cases of Moirai and
the kinds of experience that it can enable.

4.1. Previous Social Simulation
Experiences

To begin, we will first examine a number of different
social simulation experiences, and their use of social sim-
ulation. To provide some vocabulary, we will examine
social simulation in various roles:

• Substrate – Social simulation that is used before
the play experience to provide the “world” that
the player experiences. Examples include: Dwarf
Fortress, Thousand Threads [41], and Bad News

• Experience – Social simulation is used during
play to provide a major (if not sole) component
of the play. Examples include: The Sims, Dwarf
Fortress, Prom Week, and Princess Maker

• Performance – Social simulation is used after
play (if any exists) as a means of providing con-
tent to the player (or audience member) to receive.
Examples include: Sheldon County, Cozy Mystery

Construction Kit [42] , and the epilogue of Bad
News

These three categories make up the main delineations
in how social simulation has been used up to this point.
We note that experiences can use social simulation in
multiple categories – e.g., Dwarf Fortress uses it as both
substrate (history generation) and experience (fortress
mode); However, it is common for an experience to use
it in only one mode – nearly every “social simulation”
game uses it solely as experience (e.g., The Sims, Prom
Week, Tokimeki Memorial, Princes Maker, etc.). For a
visual representation of this continuum see figure 1. We
will now examine how these experiences would be set
up in Moirai.

4.1.1. Social Simulation as Substrate

The simplest example is an experience that uses it solely
as substrate. In this way, the world is initialized, it runs,
and then stops – at which point the simulation is used as
content for some (elided here) downstream process:

load simulation.lachesis;
initialize world.clotho;
run 200 steps;

4.1.2. Social Simulation as Experience

Not quite as simple is something that uses social simula-
tion solely as a precursor to the core experience, but in
large part it looks much the same:

load simulation.lachesis;
initialize world.clotho;
while is simulation_still_running {

run 1 step;
yield;

}

In this case, the simulation runs only one step at a
time before yielding to the driving experience to make
the game play out as it should.

4.1.3. Social Simulation as Performance

Finally, we come to simulation as performance. However,
we will note that it looks (and is) identical to simulation
as substrate.

load simulation.lachesis;
initialize world.clotho;
run 200 steps;

The only difference comes from the framing experience
– does the player interact with the simulated world or
are they simply a passive audience member?

Simulation as Substrate

Simulation Before Play Simulation During Play Simulation After Play

Simulation as Experience Simulation as Performance

The Sims

Princess Maker

Tokimeki Memorial

Dwarf Fortress

Bad News Bad News

Sheldon County

Prom Week

Proposed Stand By Me experience

Proposed Back to the Future experience

Figure 1: A visualization of different experiences and where they fall on the spectrum of when simulation occurs: Before,
During, or After play. Most experiences use the simulation during play (The Sims, Princess Maker, etc.). Some use it as a
substrate to build up history prior to play, but usually use it in additional ways during (Dwarf Fortress) or after (Bad News)
play. To our knowledge, only one experience uses simulation fully for performance (Sheldon County [37]). We also propose
additional modalities, such as simulation during and after play (to enable epilogues a la Stand by Me [39]), or using it to
generate history, allowing the player to act within the simulation, and then seeing the ramifications of their actions (to enable
time ripples a la Back to the Future [40]).

4.1.4. Previous Complex Experiences

As noted in figure 1 there are two noted experiences that
use social simulation in various modes – Dwarf Fortress
and Bad News – and we will know show how Moirai
could be used to drive these experiences.
Dwarf Fortress uses social simulation at a broad level

for history generation before transitioning into a more
fine-grained moment-to-moment simulation following
a dwarven expedition to create the titular mountain
fortress. In Moirai this would look like:

//Substrate
load history_generation.lachesis;
initialize world.clotho;
run 250 years;
//Experience
load dwarf_simulation.lachesis;
initialize fortress.clotho;
while is simulation_still_running {

run 1 step;
yield;

}

This is just the concatenation of simulation as substrate
and experience. Bad News used social simulation as both
the substrate that the player explored and as performance
for an epilogue where the player got to see how life
panned out for the characters they encountered in their
play through. In Moirai:

//Substrate
load small_town.lachesis;
initialize small_town.clotho;
run 140 years;
//Experience: Player explores simulated world
yield;
//Performance
run 40 years;

Bad News used the same simulation code and the exact
same world constructed via simulation for its epilogue,
so there is no need for anything other than running dur-
ing the “performance” portion. In the next section, we
will explore a variety of more complex permutations of
simulations that are enabled by Moirai’s features.

4.2. Moirai Enabled Design Patterns
In the following sections we will discuss a number of
different design patterns that Moirai enables. We will
detail the types of experience that the pattern enables
and show sample code.

4.2.1. Coarse Simulation to Fine Simulation –
Murder Mystery/RomCom

We will start with the simplest mode of combining simu-
lations into an experience, which is similar to the pattern
found in Dwarf Fortress in which various levels of sim-
ulation are chained together. The key difference here
is that characters will carry over between the simula-
tions; in Dwarf Fortress simulation begins coarsely, with
creation-myth style exploits of gods and other fantasti-
cal characters who—though not explicitly present in the
finer-grained fortress-mode simulation—provide raw ma-
terial for paintings, songs, and other simulated cultural
artifacts.

A large number of tropes in various forms of media
often assume some sort of shared backstory and history
for the characters that occurred before the portrayed
narrative, but carries over and informs the narrative.
For instance, a closed room murder mystery such as
Murder on the Orient Express or Gosford Park relies
on the characters having intertwined histories such
that a large number of characters will have motive
for the murder, but the narrative ostensibly occurs
after that history has occurred. Similarly, a romantic
comedy such as My Best Friend’s Wedding [43] or The
Proposal [44] assume some sort of shared history, but
the narrative takes place during an important event
after this history has transpired (in a way, a closed
room romance as opposed to a closed room murder).
Unlike Dwarf Fortress, characters need to be carried over
between the simulations, as opposed to just using the ear-
lier simulation as a broad culture level history generation.

A murder mystery like Gosford Park might look like the
following, in which an initial coarse simulation runs until
several characters have a motive to murder (possibly gen-
erating many extraneous characters in its process), and
then a secondary finer grained simulation runs involving
only those characters with motive and others that are
close to them:

//Coarse history generation
load georgian.lachesis;
initialize georgian.clotho;
run until 5+ characters in pattern

have_motive/2;↪

//Once characters have motive, move to
fine-grained closed room↪

load murder.lachesis;

initialize manor.clotho :keeping entities
where in have_motive/2↪

:keeping entities where in relationship/2
with entity in kept;↪

run until 1 character is murdered;

Similarly, a romantic comedy like My Best Friend’s Wed-
ding might look like:

//Coarse history generation
load modern.lachesis;
initialize modern.clotho;
run until 3+ characters in pattern

marriage_love_triangle/3;↪

//Once a love triangle pops up and 2 are
getting married to each other, move to
the wedding

↪

↪

load wedding.lachesis;
initialize wedding.clotho :keeping entities

where in love_triangle/3↪

:keeping entities where in family_of/2 with
entity in getting_married/2↪

:keeping entities where in good_friend/2
with entity in getting_married/2;↪

run until 1+ characters in
romantic_misunderstanding/2;↪

In both cases there is a coarse-grained simulation that
runs until some conditions are met, then characters are
filtered based on their relationships to each other, and
then the final fine-grained simulation occurs until some
culminating event has occurred.

4.2.2. Simulate, Modify, Repeat – Back to the
Future/Live Die Repeat

A common trope in modern media is that of the timeloop,
where a character (or set of characters) is able to re-
live the same experience over and over such as in the
movies Groundhog Day [45], Live Die Repeat [46] and
Palm Springs [47]. A related trope is where characters
travel into the past where their actions cause changes
when they return to the future such as in the movies
Back to the Future and The Butterfly Effect [48]. In both
cases, the narrative is reset to a certain point and then
changes play out again and again. A Back to the Future
style experience in Moirai would look like:

//Coarse history generation
load forties.lachesis;
initialize forties.clotho;
run 10 years;
load fifties.lachesis;
initialize fifties.clotho

:keeping all characters
:keeping all locations
:saving kept as fifties_world;

while is simulation_still_running {
while iterations < 7 { //1 week

yield; //Player interacts
run 1 day;

}
run 30 years;
yield; //Player sees the changes
initialize fifties.clotho

:restoring fifties_world;
}

This assumes that there is still substrate that is gener-
ated as history, but it is certainly conceivable for that por-
tion to be removed and replaced with a purely authored
initial world state. Although the proposed experience
above is not identical to the plot of Back to the Future, it
strikes a similar tone. Here, ten years of “forties world”
is simulated as substrate and then recorded as “fifties
world” for safe keeping. The player is given a week to
experience and influence the entities of fifties world, and
then the simulation is run for another thirty years (bring-
ing us to the eighties), to see how these entities ended up.
The experience then returns to the stored “fifties world”,
allowing the player to make different choices, and see
what impact those different choices have on the lives of
the characters thirty years later as compared to their pre-
vious week-long romp in the fifties. As authored above
this process can repeat indefinitely, or until some in-game
goal criteria is achieved (e.g., ensuring two high-school
sweethearts remain in love as they grow older).

4.2.3. Episodic Structure – The Odyssey

Another pattern common in various forms of media is
where a core cast of characters encounters different sce-
narios in an episodic structure. This dates back to at least
the Odyssey [49], but is also the basis of most modern
television programs. Many interactive experiences also
build off of this. For instance, the Persona [50] series
involves a slowly-growing cast of characters that take
on problems in a month-based episodic structure. An
example in Moirai might look like:

//Coarse history generation
load history.lachesis;
initialize setting.clotho;
run 2 years;
load episode1.lachesis;
initialize episode1.clotho
:keeping entities where is main_character;

run until 1+ characters in episode_completed;
load episode2.lachesis;
initialize episode2.clotho
:keeping entities where is main_character;

run until 1+ characters in episode_completed;
load episode3.lachesis;

initialize episode3.clotho
:keeping entities where is main_character;

run until 1+ characters in episode_completed;

4.2.4. Full Continuum Usage – Stand By Me

One final usage is using social simulation across the full
spectrum of before, during, and after play. While this
is not as complex as the previous examples, perhaps, it
is still an example of social simulation that is enabled
by Moirai used in a way that has not been implemented
in other experiences (to the authors’ knowledge). The
touchstone for this usage is something like the film Stand
By Me. In Stand By Me, the characters have a shared
history, the narrative unfolds and relationships are tested
and changes occur, and then the epilogue discusses the
lives that the characters had after the main events of the
story. In Moirai we would envision it as:

//Coarse history generation
load history.lachesis;
initialize setting.clotho;
run 2 years;
load main_event.lachesis;
while iterations < 7 { // Play for 1 week

yield; //Player interacts
run 1 day;

}
load epilogue.lachesis;
run 25 years;

In many ways, this is very much like a combination of
Bad News (history and epilogue generation) and Dwarf
Fortress (history generation and active simulation).

5. Conclusion and Future Work
This paper introduces Moirai, a Domain Specific Lan-
guage which facilitates the creation of interactive ex-
periences that leverage social simulation systems. In
particular, it is intended to be used for experiences in
which simulated narrative content is used before, during,
and after play. Through a demonstration of case-studies—
Moirai encodings of popular narratives from literature,
film, television, and non-simulation games—the authors
have shown the versatility of the system, and its capacity
for enabling new types of simulation-driven playable ex-
periences that mirror popular tropes and narrative genres
in other forms of media.

Natural future work for this project includes build-
ing out one or more of these case studies into an actual
playable experience. Doing so will enable Moirai to be
evaluated on its merits both as an authoring assistant
and on the quality of the produced experience. This in
turn may lead to further insights for language features

that could be added to Moirai, leading to greater ease of
use and more varied narrative output.

References
[1] H. Jenkins, Game design as narrative architecture,

Computer 44 (2004) 118–130.
[2] J. O. Ryan, A. Summerville, M. Mateas, N. Wardrip-

Fruin, Toward characters who observe, tell, misre-
member, and lie, in: Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference,
2015.

[3] B. Samuel, J. Ryan, A. J. Summerville, M. Mateas,
N. Wardrip-Fruin, Bad news: An experiment in
computationally assisted performance, in: Inter-
national Conference on Interactive Digital Story-
telling, Springer, 2016, pp. 108–120.

[4] J. McCoy, M. Treanor, B. Samuel, A. A. Reed,
M. Mateas, N. Wardrip-Fruin, Social story worlds
with comme il faut, IEEE Transactions on Com-
putational intelligence and AI in Games 6 (2014)
97–112.

[5] B. Samuel, A. A. Reed, P. Maddaloni, M. Mateas,
N. Wardrip-Fruin, The ensemble engine: Next-
generation social physics, in: Proceedings of the
Tenth International Conference on the Foundations
of Digital Games (FDG 2015), 2015, pp. 22–25.

[6] J. McCoy, M. Treanor, B. Samuel, A. A. Reed,
N. Wardrip-Fruin, M. Mateas, Prom week, in: Pro-
ceedings of the International Conference on the
Foundations of Digital Games, 2012, pp. 235–237.

[7] D. DeKerlegand, B. Samuel, M. Treanor, Pedagogi-
cal challenges in social physics authoring, in: In-
ternational Conference on Interactive Digital Sto-
rytelling, Springer, 2021, pp. 34–47.

[8] M. Guimarães, P. Santos, A. Jhala, Promweekmeets
skyrim., in: AAMAS, 2017, pp. 1790–1792.

[9] L. Morais, J. Dias, P. A. Santos, From caveman
to gentleman: a cif-based social interaction model
applied to conan exiles, in: Proceedings of the
14th International Conference on the Foundations
of Digital Games, 2019, pp. 1–11.

[10] A. Summerville, B. Samuel, Kismet: a small so-
cial simulation language, in: Summerville, A., &
Samuel, B.(2020, September). Kismet: a Small Social
Simulation Language. In 2020 International Confer-
ence on Computational Creativity (ICCC).(Casual
Creator Workshop). ACC, 2020.

[11] K. Compton, M. Mateas, Casual creators, in: Pro-
ceedings of the Sixth International Conference on
Computational Creativity, 2015, p. 228.

[12] G. Smith, J. Whitehead, Analyzing the expressive
range of a level generator, in: Proceedings of the

2010 Workshop on Procedural Content Generation
in Games, 2010, pp. 1–7.

[13] A. Walker, Marielda 01: The city of light
pt. 1, 2016. URL: https://friendsatthetable.net/
marielda-01-the-city-of-light-pt-1.

[14] A. Alder, The quiet year (game), Buried Without
Ceremony, Pittsburgh, PA (2013).

[15] J. Harper, Blades in the Dark, Evil Hat Productions,
2017.

[16] R. Yeates, Serial fiction podcasting and participa-
tory culture: Fan influence and representation in
the adventure zone, European Journal of Cultural
Studies 23 (2020) 223–243.

[17] G. McElroy, J. McElroy, T. McElroy, C. McEl-
roy, Ethersea: Episode 1, 2021. URL: https:
//maximumfun.org/episodes/adventure-zone/
the-adventure-zone-ethersea-episode-1/.

[18] G. Gygax, D. Cook, The Dungeon Master Guide,
No. 2100, 2nd Edition (Advanced Dungeons and
Dragons), TSR, Inc, 1989.

[19] A. Walker, The road to partizan 05:
Ech0 and dusk to midnight, 2019.
URL: https://friendsatthetable.net/
the-road-to-partizan-05-ech0-dusk-to-midnight.

[20] K. Hymes, H. Seyalıoğlu, Dialect: A Game about
Language and how it Dies, Thorny Games, 2018.

[21] B. Sovereign, Armour Astir: Advent, Itch.io, 2022.
[22] K. Poh, Ech0, Role Over Play Dead, 2019.
[23] R. Rethal, Dusk to Midnight, Itch.io, 2019.
[24] A. Ramsay, Beam Saber, Itch.io, 2019.
[25] A. Roberts, For the queen [card game], Evil Hat

Productions (2019).
[26] B. Robbins, Microscope, Lame M Productions

(2019).
[27] T. Adams, Z. Adams, Dwarf fortress, Game [Win-

dows, Mac, Linux], Bay 12 (2006).
[28] J. Whedon, B. K. Vaughan, G. Jeanty, Buffy the Vam-

pire Slayer: Season 8, volume 1, Dark Horse Comics,
2012.

[29] K. J. Wetmore Jr, Uncovering Stranger Things: Es-
says on eighties nostalgia, cynicism and innocence
in the series, McFarland, 2018.

[30] E. Taylor, Dating-simulation games: Leisure and
gaming of japanese youth culture., Southeast Re-
view of Asian Studies 29 (2007).

[31] A. Champlin, Playing with feelings: Porn, emotion,
and disability in katawa shoujo, Well Played 3 (2014)
63–81.

[32] P. W. Galbraith, Bishōjo games:‘techno-
intimacy’and the virtually human in japan,
Game studies 11 (2011) 31–34.

[33] P. Interactive, Dev diary# 9: Lifestyles, Crusader
Kings III 14 (2020).

[34] V. Maxis, V. E. Arts, P. K. Gibson, G. Rodiek, R. M.
Vaughan, D. E. Holmberg-Weidler, M. Yang, V. M.

https://friendsatthetable.net/marielda-01-the-city-of-light-pt-1
https://friendsatthetable.net/marielda-01-the-city-of-light-pt-1
https://maximumfun.org/episodes/adventure-zone/the-adventure-zone-ethersea-episode-1/
https://maximumfun.org/episodes/adventure-zone/the-adventure-zone-ethersea-episode-1/
https://maximumfun.org/episodes/adventure-zone/the-adventure-zone-ethersea-episode-1/
https://friendsatthetable.net/the-road-to-partizan-05-ech0-dusk-to-midnight
https://friendsatthetable.net/the-road-to-partizan-05-ech0-dusk-to-midnight

Hollmo, S. Miceli, S. Ross, et al., The sims 4, Elec-
tronic Arts (2014).

[35] A. Christie, Murder on the orient express, Lulu. com,
2001.

[36] P. W. Graham, From mansfield park to gosford
park: The english country house from austen to
altman, Persuasions: The Jane Austen Journal 24
(2002) 211–226.

[37] J. Ryan, Curating simulated storyworlds, Ph.D. the-
sis, UC Santa Cruz, 2018.

[38] E. Streeter, Father of the Bride, Simon and Schuster,
2015.

[39] R. Reiner, W. Wheaton, R. Phoenix, C. Feldman,
J. O’Connell, K. Sutherland, J. Nitzsche, S. King,
Stand by me, Skífan, 1986.

[40] R. Zemeckis, Back to the future (film), Amblin
Entertainment (1985).

[41] Seamount, Thousand Threads, Seamount, 2022.
[42] M. Kreminski, D. Acharya, N. Junius, E. Oliver,

K. Compton, M. Dickinson, C. Focht, S. Mason,
S. Mazeika, N. Wardrip-Fruin, Cozy mystery con-
struction kit: prototyping toward an ai-assisted
collaborative storytelling mystery game, in: Pro-
ceedings of the 14th International Conference on
the Foundations of Digital Games, 2019, pp. 1–9.

[43] P. J. Hogan, R. Bass, P. Bosco, C. Diaz, R. Everett,
R. Griffiths, J. N. Howard, L. Kovacs, D. Mulroney,
J. Roberts, et al., My best friend’s wedding, Sony
Pictures Entertainment/TriStar, 1997.

[44] A. Fletcher, P. Chiarelli, S. Bullock, R. Reynolds,
M. Steenburgen, et al., The Proposal, Touchstone
Pictures, 1997.

[45] H. Ramis, T. Albert, D. Rubin, B. Murray, A. Mac-
Dowell, C. Elliott, S. Tobolowsky, B. Doyle-Murray,
G. Fenton, P. J. Herring, et al., Groundhog day,
Columbia Tristar Home Video, 1993.

[46] L. Garcia-Siino, Edge of tomorrow by doug li-
man, Science Fiction Film and Television 9 (2016)
295–299.

[47] L. Coates, The best new shows, movies to come out
of quarantine., UWIRE Text (2020) 1–1.

[48] E. Bress, J. M. Gruber, Butterfly Effect. Director’s
Cut; Written & Directed By Eric Bress & J. Mackye
Gruber; Starring: Ashton Kutcher, Amy Smart, Eric
Stoltz, William Scott, Elden Henson, Logan Lerman,
Icon Home Entertainment, 2004.

[49] H. Homer, The odyssey, Xist Publishing, 2015.
[50] S. M. Tensei, Persona 4: Golden, 2012.

	1 Introduction
	2 Related Work
	3 Moirai – Method & Capabilities
	3.1 Loading/Unloading
	3.2 Simulated Entity Creation and Management
	3.3 Simulation Management
	3.4 Control Flow

	4 Moirai – Case Studies
	4.1 Previous Social Simulation Experiences
	4.1.1 Social Simulation as Substrate
	4.1.2 Social Simulation as Experience
	4.1.3 Social Simulation as Performance
	4.1.4 Previous Complex Experiences

	4.2 Moirai Enabled Design Patterns
	4.2.1 Coarse Simulation to Fine Simulation – Murder Mystery/RomCom
	4.2.2 Simulate, Modify, Repeat – Back to the Future/Live Die Repeat
	4.2.3 Episodic Structure – The Odyssey
	4.2.4 Full Continuum Usage – Stand By Me

	5 Conclusion and Future Work

