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Abstract 
Declarative programming offers several advantages in terms of compactness and modularity.  Logic 
programming and rule-based systems are often chosen for tasks such as social simulation because their 
use of declarative rules and predicates map well to rules of social engagement.  Unfortunately, 
declarative programming is often quite slow, making it inappropriate for large systems or high-
frequency updates.  This is partly because of its use of search algorithms, but also because of its heavy 
use of pointer chasing, dynamic allocation, garbage collection, and runtime type-checking. 

In this paper, we discuss how bottom-up execution of logic programs can be implemented without 
these issues.  We argue that character simulation is a “sweet spot” for bottom-up logic programming, 
allowing character behavior to be specified in terms of declarative rules, while offering performance 
competitive with Python systems such as Talk of the Town.  We present a language, TED, which offers 
very good performance and has been used both in research and in an unannounced commercial game.  

Keywords  
Social simulation, logic programming, declarative programming 1 

 

1. Introduction 
Simulations, including games, involve iterating 
through data structures representing the world state, 
updating the various components of the world and 
looking for pairwise interactions between them.  

For example, needs-based AI [1], such as in The 
Sims [2] involves finding for each character 𝑐𝑐 an object 
𝑜𝑜 in the world that best satisfies its various needs 𝑛𝑛 
using some variant of the one-line formula: 
 

𝐵𝐵(𝑐𝑐) = arg max
𝑜𝑜∈𝑂𝑂

� 𝑆𝑆(𝑐𝑐, 𝑜𝑜,𝑛𝑛)
𝑛𝑛∈𝑁𝑁

 

 
The naïve implementation of this involves three nested 
loops running over the sets of characters 𝐶𝐶, objects 𝑂𝑂, 
and needs 𝑁𝑁.  : 
 
For each character c in C 
   If character idle 
      Best score = 0 
      For each object o in O 
         Score = 0 
         For each need n in N 
            Score += S(c, o, n) 
         If score > best score 
            Best object = o 
            Best score = score 
      Interact with best object 
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This has running time 𝑂𝑂(𝐶𝐶𝐶𝐶𝐶𝐶).  In an effort to optimize 
it, the programmer might maintain separate, dynamic 
lists of just the characters that need to be updated, just 
the objects that are available to satisfy a specific need, 
etc.  This comes at the cost of having to modify other 
parts of the program to maintain these lists, increasing 
development costs and dependencies between 
modules. 

Ideally, one would be able to specify the 
fundamental computation being performed 
(maximization) separately from the choice of data 
structures, as one does in relational databases: queries 
are expressed in terms of a set of logical data 
structures (relational tables).  The physical layout of 
the data can be adjusted independently to best support 
the mix of queries needed.  As those queries inevitably 
change, the physical data structures can be changed to 
support them.  Similar arguments have been made in 
the context of entity-component systems for massively 
online games [3]. 

In this paper, we describe a high-performance 
declarative programming language, TED that can 
compactly express the algorithm above in two lines of 
code (see figure 1).  Moreover, it can be optimized 
declaratively as in a relational database, by providing 
annotations about how to index the data.  TED is highly 
performant, running with minimal dynamic allocation, 
type checking, or pointer chasing.  It also supports 
parallel execution.  We also briefly describe a city 
simulator built using TED. 
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2. Logic programming 
Logic programming is a family of declarative 
programming techniques that involve describing a 
program in terms of a set of predicates (relations) and 
rules for computing them. 

A rule gives a set of conditions implying the truth 
of a predicate.  For example, siblinghood could be 
defined in terms of shared parentage: 
 
Sibling[x,y].If(Parent[x,p], Parent[y,p]); 
 
This states that for any 𝑥𝑥, 𝑦𝑦, and 𝑝𝑝, the sibling 
relationship holds if both parent relationships hold. 

Although not always expressed in the form of logic 
programming, symbolic rules have frequently been 
used to describe character behavior and social physics 
in systems such as Inform 7 [4], Comme Il Faut [5], 
Versu [6], MKULTRA [7], and City of Gangsters [8]. 

1.1. Top-down execution 

Classical logic-programming languages such as Prolog 
[6][7] execute queries “top-down” using SLD 
resolution [11].  The user “calls” a predicate such as 
Sibling, with argument values, and the system tries 
to prove the predicate true of those arguments using 
one of the predicate’s rules. 

Using a rule involves matching the rule’s variables 
to the arguments specified in the call.  For example, the 
call Sibling["Bill", s], i.e. “who is a sibling 𝑠𝑠 of 
Bill?”, matches the rule above to yield the substitution: 
 
Sibling["Bill",s] 
       .If(Parent["Bill",p], Parent[s,p]); 
 
The system then recursively executes the call 
Parent["Bill",p].  If there was another rule that 
stated Jenny was one of Bill’s parents, then executing 
this query would set the variable 𝑝𝑝 to “Jenny”, meaning 
that the second call is really  Parent[s,"Jenny"].  If 
there is a rule that says Jenny is a parent of Christine, 
then this call would set 𝑠𝑠 to Christine.  The rule proves 
Sibling[“Bill”, s] is true and provides Christine 
as the value of 𝑠𝑠.  Further solutions (further siblings) 
can be found by backtracking the proof process. 

Top-down execution computes one solution at a 
time, which is an advantage when only one is needed.  
On the other hand, if the same call is performed 

 
2 For database queries, it is possible to transform a query into an 
equivalent query that, when executed bottom-up is as efficient as top-
down execution using the so-called magic sets algorithm [12].  

repeatedly, e.g. by different subgoals of a call, then the 
entire work of that call is repeated.  Moreover, the 
matching process (unification) is somewhat expensive.  
For example, just looking up the value of a matched 
variable requires a loop chasing forwarding pointers. 

1.2. Bottom-up execution 

Suppose we had already computed the full extension 
(all the child/parent pairs) of the Parent relation  and 
stored them in an array.  In that case, the Sibling rule 
above could be computed with the following loop: 
 
for each (x,p) in Parent 
   for each (y, p2) in Parent 
      if p == p2 
         return (x,y) 

 
Indeed, we could compute an array of all the Siblings, 
with a small modification: 
 
for each (x,p) in Parent 
   for each (y, p2) in Parent 
      if p == p2 
         Sibling.Add( (x,y) ) 
 
After execution of this loop, Sibling contains all the 
sibling pairs.  This has the obvious disadvantages that: 
 
• There may be quite a lot of sibling pairs 
• You may only care about the siblings of Bill, in 

which case the effort to compute the other 
families is wasted.2 

 
However, it also has several advantages: 
 
• Unification can be replaced with if’s and 

assignments to C-like variables. 
• Subsequent calls to Sibling can simply check the 

array; rules are executed only once. 
• Indexing can be used to speed access to the array.   
• What to index can be decided after the rules are 

written and evolve during the life cycle of the 
game. 

 
 This suggests an alternative execution strategy: 
compute the complete extensions of each predicate, 
and place them in arrays, ensuring before executing a 
rule, we first make sure the predicates it references 
have been computed.  This is known as bottom-up 
execution, and is the strategy used in Datalog [13].  We 

However, it’s unclear what this would look like in a game engine use-
case. 

// Assume C[x], O[x], N[x] mean x is a character, object, or need, respectively 
 
// Score[c, o, t] means t is the total score for object o and character c 
var Score = Definition("Score", c, o, t).If(O[o], t==Sum(s, And[N[n], s==S[c,o,n])); 
     
// B[c,o] means c is a character whose best object is o. 
var B = Predicate("B", c, o).If(C[c], Maximal(o, t, Score[c, o, t])); 
 
Figure 1: Needs-based action selection in TED. 
 



believe character simulation is a “sweet spot” for 
bottom-up logic programming: it is often defined in 
terms of rules, and the engine generally does have to 
compute complete extensions anyway. 

3. Declarative simulation 
There are many reasons why it’s appealing to be able 
to treat a simulation as a database that one can query 
using a query language.  One reason is it makes the 
state of the simulation easily inspectable, and so 
hopefully debuggable, because everything is already 
stored in tables that can be queried by the user.   

The motivating example for this work is Ryan’s 
[14] argument for generating stories by running a city-
scale character simulation and then searching 
(“sifting”) its output to find interesting stories.  Story 
sifting effectively requires a query language that can be 
run against the simulation.  Indeed, Datalog has been 
used for story sifting in the past [15].  However, it 
involved logging everything in the simulation to a file 
and then reading the file into a separate application for 
sifting. 

This paper began from the question: what if the 
query language could also be the simulation language?   
That is, can we write the character simulation logic for 
games like The Sims [2], Bad News [16], [17], or Prom 
Week [5], [18] declaratively in some language akin to 
Datalog?  And if so, how performant would it be? 

The basic structure of such a simulation is as 
follows.  In the foregoing we will generally use the 
terms predicate and table interchangeably, since most 
predicates are represented at runtime as tables.  
Simulations use three main types of tables: 

 
• Base tables store the state of the simulation. 

They retain their data from one simulation 
step to the next, except insofar as they’re 
modified by update tables, below. 

• Derived tables are defined in terms of other 
tables (base or derived) using rules.  Derived 
tables are recomputed on every step of the 
simulation. 

• Update tables list modifications to be made 
to different base tables at the end of the 
current simulation step.  They are themselves 
a kind of derived table defined by rules. 
 

As with relational database systems, tables can 
optionally be indexed by different columns (predicate 
arguments), making it faster to perform lookups. 

4. The TED language 
TED is a high-performance, bottom-up logic 
programming language intended for character 
simulation in AI-heavy games.  It is strongly-typed, 
supports higher-order predicates, metaprogramming, 
and parallel execution.  It includes an optional run-
time parser-evaluator that allows users to make live 
queries against an executing simulator. 

TED is embedded in C#, meaning that TED code is 
C# code that builds the TED program in memory.  This 
has several advantages: 

 
• Good interoperability between TED and C#.  

TED code can easily call into C#, and C# code 
can easily access the contents of TED tables. 

• IDE support for C#, such as type and syntax 
checking, colorization, and refactoring 
automatically extends to TED. 

• C# can be used as a macro language for 
metaprogramming; higher-level abstractions 
can be written as C# code that builds the 
necessary TED tables and rules. 
 

TED by itself is strictly less expressive than Prolog: 
it does not allow recursion (see section 5.3) and it does 
not allow Prolog “functors” (composite objects are 
opaque to TED’s pattern matcher).  Unlike datalog, 
TED can call arbitrary  C# code, which is Turing-
complete.  But it still would not be a natural choice to 
use to implement algorithms such as symbolic 
integration or natural language generation, that 
require manipulating tree structures representing 
symbolic expressions.  In exchange for this limitation, 
we get high performance and parallelizability. 

4.1. Trivial example 

Figure 2 shows Conway’s Game of Life [19] 
implemented as a short TED program.  The program 
consists of a series of C# statements that build the 
parse tree of the TED program to be executed.  

The first statement creates a new predicate object 
(table) and stores it in the C# variable Grid.   It holds 
the state of the board.  The predicate has two 
arguments, location and whether the location is 
occupied by a cell, and its table representation has two 
corresponding columns.  It’s a base table; it retains its 
state from tick to tick except as specified by the Set() 
methods at the end.  We will talk about .Set() and the 
the .Key and .Indexed annotations shortly. 

// Base table: holds the state of the grid 
var Grid = Predicate("Grid", loc.Key, occupied.Indexed); 
// Derived table: the number of cells neighboring a given location 
var NeighborCells = Predicate("Neighbors", loc.Key, count.Indexed) 
  .If(Grid[loc, __], count==Count(And[Neighbor[loc, neighbor], Grid[neighbor, true]])); 
// Update table: cell dies if over/underpopulated neighborhood 
Grid.Set(loc,occupied,false).If(Grid[loc,true],Neighbors[loc,count],(count<2|count>3)); 
// Update table: cell born if empty and 3 neighbors 
Grid.Set(loc, occupied, true).If(Neighbors[loc, 3]); 
 
Figure 2: Conway’s Game of Life in TED. 
 



The second statement also defines a table and 
stores it in a C# variable, NeighborCells.  This table 
maps locations in the grid to the number of cells 
surrounding them.  Unlike Grid, this statement calls 
the predicate’s .If() method to add a rule to the 
predicate: NeighborCells[loc,count] is true if: 

 
• Grid[loc, __], i.e. loc is a location on the 

board (__ignores that argument), and 
• count==Count(And[…]), i.e. count is the 

number of solutions to the And[…] query, 
which finds neighbors of loc that have cells. 
 

Since NeighborCells has a rule, it’s a derived table; 
its table is erased and recomputed on each tick.  

The last two statements call the .Set() method of 
the Grid predicate.  The Set() method creates and 
returns a new predicate, which is a table of rows to be 
updated.  The two calls create two such tables.  The 
.If() method called at the ends of the statements 
adds rules to those tables, causing it to recompute 
those tables, and hence the grid locations to modify, on 
each tick, based on their respective rules.  The first rule 
says to set the occupied column of any location with 
less than 2 or more than 3 neighbors to false; it “kills” 
the cell.  The second rule says to set the occupied 
column for locations with exactly 3 neighbors to true; 
it spawns cells. 

4.1.1. Naïve execution 

The control flow of the overall program is as follows: 
 

repeat forever 
   recompute NeighborCells based on Grid 
   recompute table of cells to destroy 
   recompute table of cells to create 
   update Grid based on update tables 

 
        Let’s look in detail at the rule in the third 
statement, which says to kill a cell at location loc if: 
 

• Grid[loc,true] 
There’s a cell at loc, 

• Neighbors[loc,count] 
It’s neighbor count is count, 

• (count<2|count>3) 
And the count is outside the desired range 

 
Remember this is making a table of cells to kill that 

will be rebuilt each tick.  The naïve execution algorithm 
for this would be: 
 

clear the table 
for each (loc1, occupied) in Grid 
   if occupied == true 
      for each (loc2, count) 
               in NeighborCells 
         if loc1==loc2 
            if  (count<2||count>3) 
              add loc1 to the table 

 
On the positive side, the .If() rule is considerably 
more compact than the equivalent code above, which 

is generally a good thing.  However, it exhaustively 
searches the NeighborCells table each time it tries 
to look up the count for a specific location; for 𝑔𝑔 grid 
cells, the algorithm is 𝑂𝑂(𝑔𝑔2).   So on the face of it, the 
logic program is a terrible idea. 

4.1.2. Declarative optimization 

We can speed this rule up by indexing the tables so 
they don’t need to be scanned.  The .Key and 
.Indexed annotations in the declarations of Grid an 
NeighborCells tell the system to index the tables by 
the specified columns.  In the .Key case, the annotation 
also promises that the values in that column will be 
unique; no two rows can have the same key.  Key 
indices map column values to single rows.  Non-key 
indices map values to sets of rows.  Both rows list 
location as a key; given a location, we can find its row 
in 𝑂𝑂(1) time.  They also index their second column; we 
can get the sets of rows with/without cells or rows 
with a given number of neighbors, in 𝑂𝑂(1) time.  Using 
indexing, the rule above effectively executes as: 

 
clear the table 
foreach (loc, _) in Grid.Index[1][true] 
   (_, c) = NeighborCells.Index[0][loc] 
   if  (c<2||c>3) 
      add loc to the table 
 
Here, predicate.Index[columnNumber] is the 

index for the specified column.  It’s a hash table 
mapping column values to rows (key index) or linked 
lists of rows (non-key).  So Grid.Index[1][true] is 
the list of all rows whose second column is true, and 
NeighborCells.Index[0][loc] is the unique row 
that has loc as its first column.  Whereas, the previous 
version ran in 𝑂𝑂(𝑔𝑔2) time, this runs in 𝑂𝑂(𝑐𝑐) time where 
𝑐𝑐 is the number of cells, a dramatic speedup.   

While still not the preferred way to implement Life, 
it’s efficient enough to run at 120Hz on a single core of 
an i9-9900K, including Unity’s graphics code. 

Logic programming lets us write loops 
declaratively: the iteration structure is implicit in the 
conditions listed in a rule.  By precomputing results 
and storing them in tables, bottom-up logic 
programming lets us optimize declaratively.  Indices 
can be added to tables incrementally during 
development, as new access patterns are introduced.  
Crucially, adding indices requires only adding an 
annotation to the predicate declaration; no other 
action is required.  Rules need no modification. 

4.2. Structure of a TED program 

As discussed, a TED program is a C# program builds 
the run-time representation of the TED program, then 
calls into it as necessary.  Declarations create syntax 
trees representing the code, then preprocess them to 
create the run-time representation used by the 
interpreter.  Predicates, calls, rules, etc. are all 
represented at run-time as typed C# objects. 

TED relies on liberal use of operator overloading to 
make TED code look as natural as possible, even 
though it is “really” a series of constructor calls for 



syntax trees.  Square brackets denote calls to 
predicates (C# allows the bracket operator to be 
overloaded, but not the call operator). 

4.2.1. Terms and variables 

Following the terminology used in logic and logic 
programming, the expressions used as arguments to 
predicates are known as terms. 

Since, again, TED code is really C# code that builds 
the syntax tree for the TED code to be executed, a term 
such as x+1 is represented as a data structure such as: 

 
var x = new Var<int>("x"); 
new FunctionalExpression<int>(Add, x, 
 new Constant<int>(1)) 
 

However, overloading allows the programmer to type 
x+1 and have it converted to the constructor call 
above.  The programmer can largely ignore the 
internal representation. 

The one place the programmer does need to be 
aware of terms and their data types is with variables.  
As shown above, a TED variable is represented as a C# 
object of type Var<T> where T is the type of the 
variable’s value.  Before using a variable in a rule: 
 

P[x].If(Q[x]); 
 
which states that P is true of a value x if Q is true of it, 
the programmer needs to first define x as a C# variable 
containing a TED variable, as with the declaration 
above.  Since this is somewhat cumbersome, it can be 
shortened to: 
 

var x = (Var<int>)"x"; 
 
The declaration specifies both the name of the variable 
and its type.  Once a variable is defined, it can be used 
in multiple rules, but is treated as a separate local 
variable for each rule.  While the declaration syntax is 
annoying, one can keep the number of variable 
declarations to a manageable level. 

Note that the program fragment shown in figure 2, 
uses the variables loc, neighbor, occupied, and 
count.  The declarations for these were withheld until 
now and are as follows (Vector2Int is Unity’s 
standard data type for grid locations): 

 
var loc = (Var<Vector2Int>)"loc"; 
var neighbor = (Var<Vector2Int>)"…"; 
var occupied = (Var<bool>)"occupied"; 
var count = (Var<int>)"count"; 

4.2.2. Predicates 

Predicates are C# objects of type Predicate<T1, T2, 
…, Tn>, where 𝑛𝑛 is the number of arguments to the 
predicate and the 𝑇𝑇𝑖𝑖  are their respective types.   The 
predicates we’ve discussed so far are table 
predicates.  They are represented as tables, and 
queries to them are implemented as searches on the 
table and its indices.  Table predicates have a .If() 

method to add rules to them.  Table predicates are 
created using the Predicate method: 
 

Predicate(name, arg1, arg2, …, argn) 
 
where name is a string used for identifying the 
predicate in error messages, and the argi are variables 
with the desired types for each argument (these jointly 
define the type of the predicate).  Thus the declaration: 
 
var Grid=Predicate("Grid",loc,occupied); 
 
sets Grid to a Predicate<Vector2Int, bool>, i.e. a 
predicate with Vector2Int and a bool arguments. 

In addition to table predicates, there are primitive 
predicates, which are directly implemented as C# 
methods.  TED includes many built-in primitives, such 
as the < operator, used in figure 2. 

Finally, TED allows definitions, predicates defined 
by rules that are inlined into any calls.  For example, 

 
var CellAt = Definition(“CellAt”, loc) 
               .If(Grid[loc, true]) 

 
states that CellAt is a predicate over a Vector2Int, 
but queries of the form CellAt[𝑥𝑥] should be replaced 
by the query Grid[𝑥𝑥, true]. 

4.2.3. Goals and rules 

Procedure calls in Prolog and TED are called goals. 
Applying a predicate to a set of terms of the correct 
types returns a Goal object: the syntax tree for a call.  
Goals for table predicates include an If(Goal…) 
method that takes a series of other Goals as 
arguments, constructs a rule from them, and adds the 
rule to the original Goal’s predicate.  Our example 
declaration: 
 

P[x].If(Q[x]); 
 
creates a rule object stating that ∀𝑥𝑥.𝑄𝑄(𝑥𝑥) → 𝑃𝑃(𝑥𝑥), and 
adds it to the list of P’s rules.  For convenience, table 
predicates also have their own If methods, allowing 
rules to be combined with predicate definition.  Thus: 
 

var P = Predicate("P", x).If(Q[x]); 
 
is equivalent to: 
 

var P = Predicate("P", x); 
P[x].If(Q[x]); 

4.2.4. Higher-order predicates 

Higher-order predicates are predicates parameterized 
by goals or other predicates.  TED includes a number 
of these, as well as facilities for defining one’s own.  
Table predicates cannot be higher order. 

Definitions and primitive predicates can be made 
higher order, simply by having one of their arguments 
be of type Goal.  TED includes a number of built-in 
higher-order primitives: 

 



• Logical connectives: And[], Or[], and Not[]  
• Optimization primitives: Maximal and 

Minimal, as used in Figure 1. 
• Flow-control predicates that execute the goal 

in some modified manner, such as Once[]. 
• Aggregation functions: Count, Sum, and 

Aggregate as used in Figure 2. 
 

User-defined higher-order primitive predicates 
are allowed but are currently more involved to write 
than other user-defined primitives. 

4.2.5. Table operators 

Operators map tables to tables.  They encapsulate 
algorithms that execute over a table as a whole, 
returning a new table as a result.  One example is 
CountsBy, which makes pivot tables.  If the table 
Population is a table of characters in the game and it 
has a column called sex, then the declaration: 

 
var Demographics = 
      CountsBy("Demographics", 
               Population, sex, count); 

 
defines a new Predicate<sex,int>, listing the 
number of characters with each sex in the current step 
of the simulation. 

Most other operators encapsulate graph 
algorithms.  For example, if R is a table predicate of 
type Predicate<T,T> for some T, for example, 
representing the edges in a graph whose vertices are 
objects of type T, then: 

 
var RStar = Closure("R*", R); 

 
makes a new predicate, RStar, also of type 
Predicate<T,T>, such that RStar[𝑎𝑎,𝑏𝑏] holds iff 𝑏𝑏 is 
reachable from 𝑎𝑎 via edges in R. 

A number of operators implement different forms 
of graph matching.  If Interested is a 
Predicate<Person,Person>  describing who is 
interested in dating whom, then: 

 
var D = MatchRandomly("D", Interested); 

 
makes a new table,  D, that on any step of the simulation 
contains a subset of the rows of Interested such that 
no person is listed in two different rows.  If we add 
another column to Interested specifying a level of 
interest, then:  

 
var D = MatchGreedily("D", Interested); 

 
will attempt to choose a matching with the highest 
interest levels possible (although it not necessarily 
globally optimal). 

If Interested is a relation not between people, 
but between people and jobs (so it is of type 
Predicate<Person,Job,float>), and if Capacity 
is a Predicate<Job,int> listing how many openings 
there are for each Job, then 

 
var E = AssignGreedily("A", 

               Interested, Capacities); 
makes a new table, E, matching people to jobs with the 
highest possible interest level, without assigning more 
to a job than there are openings.  

4.2.6. Table update 

Base tables can be updated by providing tables of 
changes to perform. 

If 𝐵𝐵 is a base table of type Predicate<T1, …, Tn>, 
then 𝐵𝐵.Add is a table of the same type whose rows are 
appended to 𝐵𝐵 at the end of each simulation step.  
Thus, 𝐵𝐵.Add.If(…), which adds a rule to 𝐵𝐵.Add, 
effectively specifies a rule for when to add a row to 𝐵𝐵.  
There is not presently a 𝐵𝐵.Delete, but there are plans 
to add it. 

Individual columns can be changed by providing 
tables of changes to make.  𝐵𝐵.Set(key, 
updateColumn), where key and updateColumn are 
columns of 𝐵𝐵, i.e. variables specified in 𝐵𝐵’s definition, 
returns a table with the columns key and 
updateColumn.  At the end of each update step, the 
system will iterate through the rows of the 𝐵𝐵.Set 
table, and for each row, use 𝐵𝐵’s index to find the row in 
𝐵𝐵 with the specified key, then change the value of that 
row’s updateColumn to the value listed in the 𝐵𝐵.Set 
table.  Thus, the rule: 

 
Population.Set(who, status) 
     .If(Died(who), status=Status.Dead) 

 
Would update the status column of the Population 
table for someone who dies to Status.Dead. 

4.2.7. Invariant checking 

Every TED program has two built-in base tables. 
Exceptions lists all the exceptions that have been 
thrown while running rules, together with the tables 
and rules that threw them.  Problems lists invariants 
and other assertions that have been violated.  To 
declare an invariant, simply write a rule of the form: 
 

Table.Problem.If(…); 
 
If the rule ever succeeds, it will add a line to the 
Problems table listing Table, the rule, and the values 
of all variables in the rule.  Problem rules are like 
assertions in other languages in that checking of them 
can be enabled and disabled and they impose no run-
time penalty when disabled.  Unlike most languages, 
however, TED problem rules can be enabled and 
disabled at run-time without recompilation. 

5. Implementation 
TED is highly optimized.  Most code can run 

without run-time type checks or storage allocation, 
apart from the initial allocation or reallocation of the 
tables themselves. 

5.1. Table representation 



Table data for a Predicate<T1, …, Tn> is stored in 
a packed array of tuples of type (T1, …, Tn), one per 
table row.  Tuples are value types; they are stored in-
line in the array, rather than separately represented in 
the heap.  This means table data is stored as a 
contiguous sequence of bytes, without boxing.  
Moreover, tables are almost always scanned in order, 
so table operations have best-case cache locality. 

Table operations are optimized to avoid copying of 
value types.  Generics are used for most table 
operations, to avoid the need for boxing or run-time 
type checking.  Compiled code therefore looks largely 
like what one would get with hand-written C code, 
apart from the use of out-of-line calls for things like 
equality comparison. 

For derived tables, which are recomputed on each 
simulation step, the array is reused from step to step.  
When table data overflows the array, the array size is 
doubled, guaranteeing amortized 𝑂𝑂(1) performance. 

Indices are implemented as custom hash tables 
mapping keys to row numbers.  To maximize cache 
performance, the current implementation uses direct 
addressing with linear probing.  To avoid clustering, 
the hash tables keep their load factors below 0.5, 
making clustering unlikely.  Indices use 8 bytes per 
row per index, for key indices, 12 for general indices. 

Tables can also be declared to have unique rows 
(i.e. they are sets rather than multisets).  They 
maintain a hash set of all rows and ignore duplicate 
additions. 

5.2. Rule execution 

A rule, created using the If() method, is specified 
by a Goal object, known as its head, that forms its 
conclusion, and a sequence of Goals, known as its 
body, that form its conditions.  The actual internal 
representation of a rule consists of a series of iterators 
for each goal in the body.  Rules are transformed into 
their iterators through a preprocessing mechanism. 

5.2.1. Unification: read-mode and 
write-mode 

Goals, such as P[x, y, 7], are matched against tuples 
in tables using unification [20], which computes the 
solution to a set of simultaneous equations over terms.  
In its usual form in languages such as Prolog, 
unification can equate variables to other variables.  
Thus, Robinson’s original unification algorithm [21] 
dynamically computes an equivalence relation over 
variables using the disjoint set partition algorithm 
[22].  This requires variables to store forwarding 
pointers when they are equated to some other 
variable.  Looking up the value of a variable involves 
looping over forwarding pointers until an unaliased 
variable is found.  Moreover, equations between 
variables must be backtrackable, requiring a 
mechanism for undoing the aliasing. 

In Datalog-like languages, including TED, 
unification is only performed between goals and table 
tuples that cannot contain variables.  Variables can 
therefore only be unified with data values, not other 
variables, removing the need to track aliases. 

Variables therefore behave much like C variables;  
they are simply typed locations in memory.  The first 
time a variable is unified with a value, that value is 
stored in the location.  This is referred to as write 
mode.  Subsequent uses of the variable later in the 
rule, where the variable is unified with other data 
values, is implemented by testing equality between the 
previously stored value and the new value.  This is 
referred to as read mode. 

For example, the goal P[x, x, 1] can be unified 
with a tuple (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) from P’s table by first storing 𝑎𝑎 in 
x, then testing if that stored value is equal to 𝑏𝑏, and 
finally testing whether 𝑐𝑐 = 1.  It’s essentially 
equivalent to the C# code: 

 
bool CanUnifyXX1(int a, int b, int c) { 
   x = a; 
   return x == b && c == 1; 
} 
    
Running this against a particular 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, tests if they’re 
unifiable, while updating x to its new value.  It requires 
no binding lists, pointer chasing, or type checking.  It’s 
much faster than the general unification algorithm. 

This is the general approach used for unification in 
TED.  The body of a rule is scanned and the first 
(leftmost) occurrence of each variable is found and 
marked write mode.  All other variable occurrences, as 
well as constants, are read mode.  A goal unifies with a 
tuple if each goal argument unifies with its respective 
tuple element.  A write-mode variable aways 
successfully unifies, and updates the variable.  A read-
mode variable or constant unifies with a value only if 
they are equal. 

5.2.2. Body normalization 

The first step of preprocessing is to reduce the rule 
body to a normal form in which: 
 

• Functional expressions are hoisted out of 
calls to predicates other than the built-in 
primitive predicate Eval[].  Thus, P[x+1] is 
transformed to: And[Eval[t,x+1],P[t]] 

• Calls to And[] and Or[] are flattened; that is, 
And[a, And[b, c]] is simplified to And[a, 
b, c]. 

• Any goals that can be partially evaluated are 
reduced to simpler goals.  If their truth values 
are known at preprocessing time, they are 
replaced with true or false.  This includes 
simplifying And, Or, and Not.  It is possible for 
a body to simplify down to just false, in 
which case an warning is printed. 

5.2.3. Iterator selection 

Finally, the Goals of the body, which again are just 
syntax trees, are mapped to iterators to be executed at 
runtime.  For goals involving primitive predicates, the 
primitive implements its own custom iterator. The 
preprocessor leaves it to the primitive to choose it.   

For table predicates, the iterator must iterate 
through the rows of the table, unify them with the 



arguments in the goal, and generate only the ones that 
match.  The preprocessor attempts to choose iterators 
that use indices when possible.  In decreasing order of 
preference, these are: 

 
• If the table is declared to have unique rows and 

all goal arguments are read-mode, then the goal is 
implemented as a single test against the table’s 
hash-set of rows, with no iteration or unification. 

• If the table has a key index for a read-mode 
argument in the goal, the goal is implemented as a 
lookup of this row and a single test of whether it 
unifies with the arguments. 

• If the table has a non-key index for a read-mode 
argument, the goal is implemented as lookup of 
the linked list of rows with the specified column 
value, followed by an iteration over those rows, 
unifying them with the arguments. 

• If no index is available, the goal is implemented 
as an iteration over all rows of the table, 
attempting to unify each with the goal arguments. 

 
There is no hinting mechanism to allow the 
programmer to advise the system on how to choose 
between multiple non-key indices at present.  Nor is 
there a way to make combined indices over multiple 
columns.  However, these are planned additions. 

5.2.4. Iterator sequencing 

Execution consists of running the iterators in order.  
When an iterator succeeds, it updates any write-mode 
variables it unified with the selected table row, and 
execution proceeds to the next iterator.  When an 
iterator fails, execution backs up to the previous 
iterator which generates its next match, if any.  

When the last iterator succeeds, all variables have 
been matched to values during the unification process. 
The system forms a tuple from the arguments in the 
head goal, fills it in with the values of the relevant 
variables, and appends it to the table.  It then returns 
to the last goal’s iterator to generate the next tuple, 
which may involve the last iterator failing, and asking 

for the next solution from the previous iterator, which 
may fail, etc. 

When the first iterator fails, the rule has generated 
all its tuples for the predicate and execution is 
complete. 

5.3. Simulation control flow 

Simulation proceeds by repeatedly recomputing 
derived predicates, then updating base predicates.  
Recomputation of a derived predicate works by 
recursively updating the predicates used its rules, if 
they haven’t already been updated, then recomputing 
the table for the derived predicate.  Updates of base 
tables are specified by update tables, which are 
derived tables defined by rules, as discussed 
previously. 

Bottom-up logic programming can support 
recursive rules at the cost of a significantly more 
complicated algorithm (a fixed-point iteration [23]).  
The classical use case for recursion in Datalog is 
translative closure a binary relation (e.g. reachability 
in a graph).  However, TED can compute reachability in 
an undirected graph in 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) time and 𝑂𝑂(𝑉𝑉) space 
using its EquivalenceClass operator, whereas the 
classical recursive solution in Datalog requires at least 
𝑂𝑂(𝑉𝑉3) time and 𝑂𝑂(𝑉𝑉2) space, depending on the 
algorithm used and the ability of the system to index 
the relevant tables.  We have deferred supporting 
recursion until we have a compelling use case. 

5.4. Parallel execution 

Alternatively, TED programs can be executed in 
parallel.  Each predicate is updated in a separate task.  
Once a table is updated, all further access are read-
only, so parallel update requires no locking or other 
mutual exclusion.  The “continuation” feature of the C# 
task parallelism library is sufficient to guarantee tasks 
are not scheduled until the tasks they depend on have 
been completed, so there is no explicit blocking. 

Since each predicate is updated by a single task, the 
level of parallelism depends on the number of 

 
Figure 3: Execution time per capita (socialog execution time divided by population) against population. 
 



predicates in the program and the length of their serial 
dependencies. 

6. Performance 
TED is currently used in two projects.  It is being used 
for consistency-checking the asset database of an 
unannounced commercial game.  It was chosen over 
Unity Prolog [24] because of its strong typing, and 
because its embedded design made interoperability 
with C# easier.  However, it is not being used for 
character simulation thus far. 

The main project using TED is Voix de la Ville, a 
declarative reimplementation of a subset of Ryan’s 
Talk of the Town city simulator [14].  The current 
system supports small hundreds of characters 
interacting with one another in a city with 44 different 
kinds of buildings and 62 different kinds of 
professions.  Single-core execution times on a single 
core of an i7-7700K running at 4.8GHz are show in 
figure 3.  These are per capita execution times, i.e. the 
execution time of a simulation tick, divided by the 
population.  They represent a combination of 
character updates, which are fixed cost per character, 
and per-relationship updates, which are inherently 
quadratic.  The core simulation is ~500 lines of code, 
including comments. 
7. Related work 
Many AI-based games have used symbolic rules for 
character control.  MKULTRA [7] was written primarily 
in Prolog, save for the graphics and UI code.  City of 
Gangsters [8] used another top-down logic 
programming language, albeit with an exotic 
implementation.  Many other games have used some 
kind of rule engine.  Façade [25] was implemented 
primarily in a reactive planning language, ABL [26], 
however its internal working memory included a 
forward-chaining production system.  Similarly, Prom 
Week [18] used a forward-chaining production system 
implemented in Javascript.  The Sims 3 [27] also used a 
rule-based system to script the interactions between 
situations, personality traits, and actions available to a 
given character [28]. 

Several game development frameworks and social 
simulation middleware have used symbolic rules, 
particular for interactive narrative.  One of the earliest 
and most influential such systems is the Nelson’s 
Inform 7 language [4], [29], which allows designers to 
build interact narrative systems, particularly 
simulationist systems, using declarative statements.  
The Versu simulationist narrative system [30], [31] 
used a custom logic programming language, Praxis, 
which was based on an exotic modal logic called 
eremic logic (aka exclusion logic) [6].  More recently, 
the Lume system [32] made extensive use of Prolog’s 
definite clause grammars [33], [34] for text generation.  
Lapeyrade has also used Prolog for better character 
decision making [35] 

Several systems have used forward-chaining rule-
based systems, including ABL, Comme Il Faut [5], the 

 
3 Tarn Adams, personal communication. 

social simulation engine upon which Prom Week was 
built, and the Ensemble Engine [36], CiF’s successor.   

To our knowledge, bottom-up logic programming 
has not previously been used to implement social 
simulations. However, Datalog has been used for story-
sifting [15], the process of searching the output of a 
social simulator for interesting narrative content. 

Bottom-up logic programming, and Datalog in 
particular, has received the most attention in the 
database community [13], [37], [38], where its appeal 
came partly from the ability to compile it into 
relational algebra operators for efficient execution on 
classical database architectures, and because it can be 
extended to recursive rules using a fixed-point 
evaluation algorithm.  This allows it to compute 
transitive closure (e.g. reachability in a graph), which 
standard relational algebra cannot.  This is where most 
of the original research on the language and its 
implementation was done.  More recently, it has seen 
extensive use for the semantic web [39]. 

Games involving large-scale social simulation are 
relatively rare.  The best known is Dwarf Fortress [40], 
which supports real-time simulator of small hundreds 
of characters. Achieving this level of performance 
requires implementation in C++ and significant 
programmer effort to optimize cache locality and 
minimize the number of pointer indirections.3  
RimWorld is very similar game that also involves social 
simulation for the purpose of storytelling [41].  In the 
research literature, the best known system is Ryan’s 
Talk of the Town, [14], which was used in the award-
winning game Bad News [16], [17].  TotT was a batch 
simulation of the growth of a small American town 
over the course of 140 years, ending with population 
around 400 people using a time-varying level of detail.  
It was implemented in Python and required many 
minutes to simulate a city.  More recently, Johnson-Bey 
has developed Neighborly [42], a more modular and 
modifiable implementation based on an entity-
component-system architecture [3].  With the possible 
exception of RimWorld, these systems run the 
simulation in a single thread. 

Kismet [43] is a rapid-prototyping system for social 
simulations intended for casual users.  It used answer-
set programming (a type of logic programming) 
internally.  However, its focus was on allowing casual 
users to build social simulations, rather than on trying 
to maximize performance. 

8. Conclusion 
TED is a high-performance, embedded, parallelizable, 
logic programming system that allows game designers 
to quickly and conveniently implement large-scale 
social simulations and run them quickly on modern, 
multi-core architectures.  It allows story-sifting and 
simulation to be written in the same language.  The use 
of tables to store all intermediate results aids 
debugging by making all intermediate results 
inspectable and queryable at run-time. 
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